Modelling of hydraulic characteristics of jump using theoretical and empirical models has always been a difficult task. The length of jump may be defined as the distance measured from the toe of the jump to the location of the surface rise. Due to high turbulence this length cannot be determined easily by theory. However, it has been investigated experimentally so as to design the stilling basins with hydraulic jumps. In this work, the control of a hydraulic jump by broad-crested sills in a U-shaped channel is recalled theoretically and experimentally examined. The study begins with a multiple regression (MR) analysis. Then, and in order to model the relative lengths of hydraulic jumps, we have implemented and evaluated two different artificial neural networks (ANN): multilayer perceptron neural network (MLPNN) and generalized regression neural network (GRNN). The results demonstrate the predictive strength of GRNN and its potential to predict hydraulic problems with an adaptive spread value. However, the MLPNN model remains best classified by these indexes of performance.
Skip Nav Destination
Article navigation
Research Article|
September 21 2012
An evaluation of ANN methods for estimating the lengths of hydraulic jumps in U-shaped channel
Larbi Houichi;
Larbi Houichi
1Research Laboratory in Applied Hydraulics, Department of hydraulics, University of Batna, Algeria
Search for other works by this author on:
Noureddine Dechemi;
Noureddine Dechemi
2Laboratory Construction and Environment, Polytechnical National School, Alger, Algeria
Search for other works by this author on:
Salim Heddam;
3Faculty of Science, Department of Agronomy, University of Skikda, Algeria
E-mail: [email protected]
Search for other works by this author on:
Bachir Achour
Bachir Achour
4Research Laboratory in Subterranean and Surface hydraulics, University of Biskra, Algeria
Search for other works by this author on:
Journal of Hydroinformatics (2013) 15 (1): 147–154.
Article history
Received:
October 17 2011
Accepted:
June 14 2012
Citation
Larbi Houichi, Noureddine Dechemi, Salim Heddam, Bachir Achour; An evaluation of ANN methods for estimating the lengths of hydraulic jumps in U-shaped channel. Journal of Hydroinformatics 1 January 2013; 15 (1): 147–154. doi: https://doi.org/10.2166/hydro.2012.138
Download citation file: