The hydraulic model EPANET was applied and calibrated for the water distribution system (WDS) of La Sirena, Colombia. The Parameter ESTimator (PEST) was used for parameter optimization and sensitivity analysis. Observation data included levels at water storage tanks and pressures at monitoring nodes. Adjustable parameters were grouped into different classes according to two different scenarios identified as constrained and unconstrained. These scenarios were established to evaluate the effect of parameter space size and compensating errors over the calibration process. Results from the unconstrained scenario, where 723 adjustable parameters were declared, showed that considerable compensating errors are introduced into the optimization process if all parameters were open to adjustment. The constrained scenario on the other hand, represented a more properly discretized scheme as parameters were grouped into classes of similar characteristics and insensitive parameters were fixed. This had a profound impact on the parameter space as adjustable parameters were reduced to 24. The constrained solution, even when it is valid only for the system's normal operating conditions, clearly demonstrates that Parallel PEST (PPEST) has the potential to be used in the calibration of WDS models. Nevertheless, further investigation is needed to determine PPEST's performance in complex WDS models.