Open water systems are one of the most externally influenced systems due to their size and continuous exposure to uncertain meteorological forces. The control of systems under uncertainty is, in general, a challenging problem. In this paper, we use a stochastic programming approach to control a drainage system in which the weather forecast is modeled as a disturbance tree. Each branch of the tree corresponds to a possible disturbance realization and has a certain probability associated to it. A model predictive controller is used to optimize the expected value of the system variables taking into account the disturbance tree. This technique, tree-based model predictive control (TBMPC), is solved in a distributed fashion. In particular, we apply dual decomposition to get an optimization problem that can be solved by different agents in parallel. In addition, different possibilities are considered in order to reduce the communicational burden of the distributed algorithm without reducing the performance of the controller significantly. Finally, the performance of this technique is compared with others such as minmax or multiple MPC.
Distributed tree-based model predictive control on a drainage water system
J. M. Maestre, L. Raso, P. J. van Overloop, B. De Schutter; Distributed tree-based model predictive control on a drainage water system. Journal of Hydroinformatics 1 April 2013; 15 (2): 335–347. doi: https://doi.org/10.2166/hydro.2012.125
Download citation file:
Close
J. M. Maestre, L. Raso, P. J. van Overloop, B. De Schutter; Distributed tree-based model predictive control on a drainage water system. Journal of Hydroinformatics 1 April 2013; 15 (2): 335–347. doi: https://doi.org/10.2166/hydro.2012.125
Download citation file:
Close
Impact Factor 1.728
CiteScore 3.5 • Q2
Cited by
Subscribe to Open
This paper is Open Access via a Subscribe to Open model. Individuals can help sustain this model by contributing the cost of what would have been author fees. Find out more here.