Water distribution for open-channel irrigation networks is more and more complex due to increasing constraints on water resources and changing demand patterns, whereas the performance of such systems is expected to increase. In this regard, an optimization approach is developed in order to schedule a fair scenario of water distribution among different users, where water demand is formulated in term of start time, duration and flow rate. This study investigates how to optimize the water distribution over a finite scheduling horizon while respecting the constraints linked to the system. The optimization approach forces the scheduled start time and the volume to be closer to the demanded ones, to minimize water losses and to reduce manpower. The constraints take into account the flow routing processes, the physical infrastructure, the available water resource, and the gate keeper timetable. The numerical resolution is done by using an optimization software IBM-Ilog Cplex. The method is then illustrated with the scheduling of off-take withdrawals for a typical traditional open-channel network: a lateral canal of the Gignac canal, in southern France.

This content is only available as a PDF.