Long-term stochastic inflow predictions can potentially improve decision making for reservoir operations. However, they are still not widely incorporated into actual reservoir management. One of the reasons may be that impacts of various types of uncertainty contained in stochastic inflow predictions have not been sufficiently clarified, thus enabling reservoir managers to recognize the advantages of their use. Impacts of uncertainties of stochastic inflow prediction on long-term reservoir operation for drought management are therefore investigated in order to analyze the kind of uncertainty that most affects improvements in the performance of reservoir operations. Two indices, namely reliability and discrimination, are introduced here to represent two major attributes of a stochastic prediction's uncertainty. Monte Carlo simulations of reservoir operations for water supply are conducted, coupling with optimization process of reservoir operations by stochastic dynamic programming (SDP) considering long-term stochastic inflow predictions, which are artificially generated with arbitrary uncertainties controlled by changing the two uncertainty indices. A case study was conducted using a simplified reservoir basin of which data were derived from the Sameura Reservoir basin in Japan with finer discretization settings for SDP. The results demonstrated the additional implication of the effect of stochastic inflow prediction's uncertainty on the authors’ previous work.
Skip Nav Destination
Article navigation
Research Article|
May 27 2013
Impact analysis of stochastic inflow prediction with reliability and discrimination indices on long-term reservoir operation
Daisuke Nohara;
1Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, 6110011, Japan
E-mail: [email protected]
Search for other works by this author on:
Tomoharu Hori
Tomoharu Hori
1Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, 6110011, Japan
Search for other works by this author on:
Journal of Hydroinformatics (2014) 16 (2): 487–501.
Article history
Received:
November 08 2012
Accepted:
April 22 2013
Citation
Daisuke Nohara, Tomoharu Hori; Impact analysis of stochastic inflow prediction with reliability and discrimination indices on long-term reservoir operation. Journal of Hydroinformatics 1 March 2014; 16 (2): 487–501. doi: https://doi.org/10.2166/hydro.2013.206
Download citation file: