Channel flow–vegetation interaction has been extensively studied in the past few decades and many equations have been developed which essentially differ from each other in derivation and form. As the process is extremely complex, getting deterministic or analytical forms of process phenomena are too difficult. A hybrid neural network model (combining genetic algorithm with neural network), which is particularly useful in modeling processes about which adequate knowledge of the physics is limited, is presented here as a complementary tool to model channel flow–vegetation interactions in submerged vegetation conditions. The prediction capability of the model has been found to be satisfactory. The input significance of the different parameters has been analyzed in the present work in order to find out the influence of these parameters on channel flow velocity.
Skip Nav Destination
Article navigation
Research Article|
November 22 2013
Flow prediction in vegetative channel using hybrid artificial neural network approach
Bimlesh Kumar
1Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, India
E-mail: [email protected]
Search for other works by this author on:
Journal of Hydroinformatics (2014) 16 (4): 839–849.
Article history
Received:
May 06 2013
Accepted:
September 28 2013
Citation
Bimlesh Kumar; Flow prediction in vegetative channel using hybrid artificial neural network approach. Journal of Hydroinformatics 1 July 2014; 16 (4): 839–849. doi: https://doi.org/10.2166/hydro.2013.255
Download citation file: