Ship locks are the most widely used, promising, and important type of navigation structure in the world at present. It is, therefore, crucial to evaluate the operation safety of a ship lock in service. However, the determination of indicator thresholds is challenging. Accordingly, this paper describes the systematic study of the evaluation system of ship lock operation safety. First, the safety accidents of ship locks are counted. According to the rhombic thinking mode (that is, the thinking mode of ‘first divergence and then convergence’), with the help of extenics, a multi-indicator hierarchical indicator system including 5 first-class indicators and 47 second-class indicators for the safety evaluation of ship lock operation is established, and 4 safety evaluation grades are classified: normal, deterioration, early warning, and shutdown. The threshold range of each indicator at each grade is determined individually. Second, based on the idea of multi-factor optimization and integration, the process and the matter-element model of ship lock operation safety evaluation based on extension theory are proposed. Then the weight of the safety indicator is determined by the combination weighting method. The evaluation result is consistent with the actual situation.

  • The safety accident examples of ship locks are counted.

  • The multi-level and multi-index system and standard for comprehensive evaluation of ship lock operation safety are constructed.

  • The evaluation method and process of ship lock operation safety based on extension theory are proposed.

  • Game theory combines the weights of the analytic hierarchy process and the coefficient of variation method.

A ship lock is a kind of navigable building that enables a ship to overcome the concentration drop of the water level of a channel, and is primarily composed of an approach channel, the head of the gate, a lock chamber, and a water conveyance system, i.e., an open complex giant system (Zhang 2001; Yao 2003). As an important node project on a waterway, once a lock fails to operate normally, it will lead to the blockage of the entire channel, the interruption of navigation (Changjiang 2004), and potentially disastrous consequences. Therefore, ship lock operation safety plays a decisive role in shipping safety in an inland waterway.

China was the earliest country in the world to build a navigable building of artificial canals for shipping with 1,041 ship locks under construction and having been built. Thousands of ship locks have been applied in the inland shipping hubs of Belgium and the Netherlands (Li et al. 1999), but there are various types of damage that affect the operation safety of a ship lock (Chen 2012). In recent years, accidents that have caused serious consequences due to ship lock failure have also become common around the world. Many ship locks have had major safety problems in operation, such as the collapse of the lock wall, the water leakage of the foundation, the tearing of the working gate panel, and the fracture of the top pivot pull rod, as listed in Table 1 (Chen 1983; Jin 1983; Lin 2008). Due to the suspension of activity caused by ship lock breakdown and repair, ships were delayed for 1 day every 52 days in transit on average, resulting in extra hundreds of millions of dollars spent per year by businesses and consumers. In summary, it is imperative to evaluate the operation safety status of ship locks.

Table 1

Statistics of ship lock accident cases

Serial No.TimeShip lockRegionRiver (or water system)Accident overviewConsequence
8 March 1982 Gezhouba Ship Lock No. 2 Yichang, Hubei, China Yangtze The pull rod A at the top pivot of the left miter gate of the lower gate head suddenly broke into two segments, causing the left door to tilt The shipping across the dam of the Yangtze River was immediately completely interrupted for 9 days 
16 January 2007 Huai'an Ship Lock Huai'an, Jiangsu, China Beijing–Hangzhou Canal The panel near the diagonal column at the right bottom of the miter gate (the door panel closest to the gradient section) was severely damaged, tearing a hole with a size of about 1 m2, and only a few parts of the gate panel between the beam lattices were connected to the gate The safety of ship lock operation was endangered 
June 2012 Mengcheng Ship Lock Mengcheng, Anhui, China The main stream of the Guo River, a tributary of the Huai River Emergency repair of broken navigation 15 days 
13 January 2013 Fuyang Ship Lock Fuyang, Anhui, China Shaying River The top hub of the downstream gate suddenly failed The ship lock was suspended for emergency repair, it was forced to interrupt navigation operations for 20 consecutive days, and about 200 ships downstream and nearly 100 ships upstream were stranded 
18 May 2014 Weishan second-line Ship Lock Weishan, Shandong, China The main channel of the Beijing–Hangzhou Canal The copper cap of the bottom pivot of the bottom running part of the upstream left-bank underwater gate was seriously worn, and the gate sank, hindering the normal operation of the gate, resulting in the abnormal noise failure of vibration of the upstream left-bank gate 15 days taken for broken navigation and emergency repair 
4 January 2015 Gezhouba Ship Lock 3 Yichang, Hubei, China Yangtze A horizontal penetrating crack appeared at the bottom of the lower right herringbone gate The loss of water stopped functionality, and serious water leakage occurred 
18 February 2020 Shihutang Ship Lock Taihe, Jiangxi, China Ganjiang About 80 m in the middle of the wall of the waterfront lock chamber collapsed outward Broken navigation 
15 December 2022 Miraflores Ship Lock Panama City, Panama Panama Canal A fire broke out in a mechanical tunnel Ship traffic was temporarily suspended and a tanker was stranded for several hours 
Serial No.TimeShip lockRegionRiver (or water system)Accident overviewConsequence
8 March 1982 Gezhouba Ship Lock No. 2 Yichang, Hubei, China Yangtze The pull rod A at the top pivot of the left miter gate of the lower gate head suddenly broke into two segments, causing the left door to tilt The shipping across the dam of the Yangtze River was immediately completely interrupted for 9 days 
16 January 2007 Huai'an Ship Lock Huai'an, Jiangsu, China Beijing–Hangzhou Canal The panel near the diagonal column at the right bottom of the miter gate (the door panel closest to the gradient section) was severely damaged, tearing a hole with a size of about 1 m2, and only a few parts of the gate panel between the beam lattices were connected to the gate The safety of ship lock operation was endangered 
June 2012 Mengcheng Ship Lock Mengcheng, Anhui, China The main stream of the Guo River, a tributary of the Huai River Emergency repair of broken navigation 15 days 
13 January 2013 Fuyang Ship Lock Fuyang, Anhui, China Shaying River The top hub of the downstream gate suddenly failed The ship lock was suspended for emergency repair, it was forced to interrupt navigation operations for 20 consecutive days, and about 200 ships downstream and nearly 100 ships upstream were stranded 
18 May 2014 Weishan second-line Ship Lock Weishan, Shandong, China The main channel of the Beijing–Hangzhou Canal The copper cap of the bottom pivot of the bottom running part of the upstream left-bank underwater gate was seriously worn, and the gate sank, hindering the normal operation of the gate, resulting in the abnormal noise failure of vibration of the upstream left-bank gate 15 days taken for broken navigation and emergency repair 
4 January 2015 Gezhouba Ship Lock 3 Yichang, Hubei, China Yangtze A horizontal penetrating crack appeared at the bottom of the lower right herringbone gate The loss of water stopped functionality, and serious water leakage occurred 
18 February 2020 Shihutang Ship Lock Taihe, Jiangxi, China Ganjiang About 80 m in the middle of the wall of the waterfront lock chamber collapsed outward Broken navigation 
15 December 2022 Miraflores Ship Lock Panama City, Panama Panama Canal A fire broke out in a mechanical tunnel Ship traffic was temporarily suspended and a tanker was stranded for several hours 

Because the safety evaluation of a lock has been insufficiently researched, the findings are limited. This section introduces the research results achieved so far around the world in the professional field of ship lock operation safety evaluation.

In terms of the evaluation method, Zhang (2013) adopted a safety assessment method based on the reliability theory. This method was highly dependent on data. The weighting method used in this research is also single.

In terms of the evaluation basis, the Ministry of Transport of China issued ‘Technical Code of Maintenance for Navigation Structure’ (JTS 2018) in 2018. The technical status grade standards of ship lock equipment and facilities were proposed. This was followed in 2019 by ‘Technical Specification for Safety Detection and Assessment of Navigation Junction’ (JTS 2019), which involves specific requirements related to ship lock safety assessment. However, there is a lack of hydraulic power standards.

In terms of the evaluation content, the ‘Technical Code of Maintenance for Navigation Structure’ puts forward the evaluation content of the detection result of navigational water flow conditions, hydraulic characteristics of a water transmission system, gate, and valve. Kolosov (2002) established an accident risk assessment model of a gate and a lock wall. Xu (2007) carried out the safety analysis of a gate structure. These studies considered hydraulic and metal structures but did not consider hydraulic, electrical systems, or hydraulic power.

In terms of the evaluation indicator, Senitskiy & Kuzmin (2012) studied the dynamic characteristics of a ship lock. The precise design relationship formula between the inherent vibration and forced vibration of the gate bottom is proposed. Zhang (2013) conducted a qualitative and quantitative safety assessment, which made the result more scientific and credible.

These research results have played an important role in promoting the safety evaluation of ship lock operation, but due to many factors affecting the safety of ship lock operation and the work to be done, there is no relevant and complete safety evaluation system around the world (Teng 2011).

Extension evaluation method

Evaluation methods are generally divided into subjective methods and objective methods, among the subjective methods, the fuzzy comprehensive evaluation method is commonly used. The extension evaluation method of the objective methods is adopted in this study, which can make use of the measured data of a ship lock and make the evaluation results more credible.

The extension evaluation method is a method that takes the indicator and characteristic value as matter-element and obtains the classic domain, the node domain, and the correlation degree using the evaluation standard (Shen 2007; Sun et al. 2007; Zeng 2014). In this study, according to the characteristics of ship locks and based on the system concept based on the overall situation, the extensibility theory (Yang & Cai 2000; Hu 2001; Jia et al. 2003; Zhang et al. 2013) is introduced to establish an extension evaluation model (Nabipour et al. 2020) for the safety of ship lock operation.

By studying the integrity of a ship lock and the extensibility of the evaluation matter-element, from the perspective of the matter-element analysis, each evaluation factor related to the operation safety of a ship lock is expressed by an information matter-element, and multiple evaluation factors form an information matter-element system (ship lock operation safety evaluation indicator system) according to a certain structure. The method of processing information is abstracted as matter-element transformation (Su et al. 2005), and the degree of the certain characteristic of the evaluation factor is reflected by the correlation function to realize the integrated evaluation of operation safety of a ship lock from qualitative to quantitative. The steps are as follows:

  • 1.

    Classic and node domain

The classic domain is the threshold interval of the indicator for a certain grade, and the node domain is its interval for all grades:
(1)
where R is the classic domain matter-element of Ci about Nj, Nj is the jth safety grade divided (j = 1, 2, … , m), Ci is the ith indicator (i = 1, 2, … , m), and Vij = <aij, bij > is the magnitude range of Ci on Nj, i.e., the classic domain:
(2)
where RN is the node domain matter-element of Ci about N, N is all grades, and Vi = <ai, bi > is the magnitude range of Ci for N, that is, the node domain.
  • 2.

    Matter-element to be evaluated

The actual status of the evaluation indicator is expressed as
(3)
wherein RP is the matter-element to be evaluated of the evaluation object P, P is the evaluation object in the criterion layer of the ship lock operation safety evaluation indicator system, and vi is the value of indicator Ci.
  • 3.
    Single indicator correlation degree
    (4)
    (5)
    (6)
    where Kij is the correlation degree of the ith evaluation indicator of the evaluation object P for grade j, ρ(vi, Vi) is the distance between point vi and interval Vi, and ρ(vi, Vij) is the distance between point vi and interval Vij (Li & Wang 2020; Zhang & Wang 2020).
  • 4.

    Multi-indicator comprehensive correlation degree

The weight of the evaluation indicator combined with its correlation degree is
(7)
where Kj(P) is the comprehensive correlation degree of the evaluation object P about grade j, Wi is the weight of the ith indicator of the evaluation object, which satisfies .
Then a target layer evaluation is conducted:
(8)
where Kj is the comprehensive correlation degree of the evaluation target about grade j and Kj (Pi) is the comprehensive correlation degree of the ith evaluation object Pi about grade j.
  • 5.

    Rating

The grade with the greatest correlation degree is the evaluation result.
(9)

Then the evaluation target belongs to grade j′.

  • 6.

    Evaluation process

The process of realizing the safety evaluation of ship lock operation is shown in Figure 1 (Sharafati et al. 2021).
Figure 1

Extension evaluation process.

Figure 1

Extension evaluation process.

Close modal

Combination weighting method

The weight of the indicator represents the relative importance of each indicator to the evaluation. The weight can be subjectively determined based on expert opinions in combination with the special geographical and climatic conditions and structural characteristics of a ship lock. This method is easy to apply and professional advice can be obtained, but it is subjective and arbitrary (Wang et al. 2013). Instead, the objective weighting method aims to determine weight based on actual data and a processing algorithm, without relying on subjective judgments, but it lacks consideration of expert experience. In this study, a combination weighting method that both reduces information loss and appropriately reflects the importance of each indicator is used (Guo & Liu 2011; Li et al. 2020a). In this way, the weights that are obtained are more reasonable and the evaluation results are more reliable.

A combination weighting method (Li et al. 2019) usually has two ways to synthesize weights: the multiplication normalization method and the linear weighting method. The former has a ‘multiplier effect’–the bigger value is bigger and the smaller value is smaller, making the weights polarized. The latter has no weighted parameter standard and is highly subjective. A more reasonable weight value and more credible evaluation results can be obtained by determining the linear weighting parameters (Baghban et al. 2019) with game theory and then calculating the weight with the combination weighting method.

In this study, the objective extension evaluation method combined with game theory and the combination weighting method is used to evaluate the operation safety of a lock; this causes less artificial randomness than the subjective evaluation method combined with the combination weighting method in reference (Li et al. 2019).

Game theory combination weighting method

The game theory combination weighting method (Fan & Han 2006) maximizes advantages, reduces one-sidedness, and improves scientificity. The basic idea is to find compromises and minimize the deviation sum from basic weights (Lai et al. 2015; Zhang et al. 2021).

  • 1.

    Construction of a possible weight set

The indicators are weighted with H methods to obtain the weight vector Wh = (Wh1, Wh2, ···, Whn). The arbitrary linear combination of these weight vectors is:
(10)
where αh is the weight coefficient (Jeon & Paek 2021) and W is the possible weight vector of the basic weight sets.
  • 2.

    Determination of the most satisfactory weight vector W*

The game assembly model (Xing 2016) is used to optimize αh and minimize the difference between W* and Wh (Li et al. 2020b) to find the most satisfactory weight vector W*:
(11)
The best first derivative condition of the above formula is:
(12)
The corresponding linear formula is:
(13)
According to the above formula, (α1, α2, …, αH) is determined and normalized:
(14)
Finally, the combination weight is obtained:
(15)

Subjective weight–analytic hierarchy process

The main subjective weighting methods are the Delphi method and the analytic hierarchy process (Zhang et al. 2022a). The former requires multiple experts and is difficult to implement. The latter not only simplifies the goal but also shares qualitative and quantitative indicators (Xi et al. 2010; Chen et al. 2014; Wang et al. 2015; Feng et al. 2017). The evaluation results of the two are also largely the same. Therefore, in this research, the analytic hierarchy process is adopted. The steps are as follows.

  • 1.

    Establishing a hierarchy

The target layer is the evaluation target. The criterion layer is the criterion for judging the evaluation target. The indicator layer is the subdivided evaluation indicator.

  • 2.
    Constructing a judgment matrix
    (16)
    where Aii’ is the relative importance of i and i′ to the upper element.

Based on the comparison of the importance of the indicators, Aii’ is shown in Table 2.

  • 3.

    Hierarchical single sorting and inspection

    • (1)

      Determining the weight

Table 2

1–9 Scale method

Scale valueMeaning
i is as important as i′ 
i is slightly more important than i′ 
i is significantly more important than i′ 
i has strong importance compared with i′ 
i has extreme importance compared with i′ 
2, 4, 6, 8 Is the case between the odd numbers of neighbors 
Reciprocal The ratio of the importance of i′ to i 
Scale valueMeaning
i is as important as i′ 
i is slightly more important than i′ 
i is significantly more important than i′ 
i has strong importance compared with i′ 
i has extreme importance compared with i′ 
2, 4, 6, 8 Is the case between the odd numbers of neighbors 
Reciprocal The ratio of the importance of i′ to i 

Hierarchical single sorting is based on the judgment matrix to sort the importance. Common methods for calculating weight are the sum product method, power multiplication method, and square root method. In this research, the square root method is used. The formula is as follows (Buckley 1985):
(17)
  • (2)
    Calculating the maximum feature root (Wang 2015)
    (18)
  • (3)
    Performing an inspection
    (19)
    (20)

The values of RI are shown in Table 3.

The smaller the CI, the greater the consistency. When CI = 0, there is complete consistency. When CI is close to zero, there is satisfactory consistency (Razavi et al. 2019). Therefore, when CR < 0.1, the single sort meets the consistency requirements. Conversely, the judgment matrix must be modified until it passes the consistency inspection. In this way, the weights can be reasonable and the results can be accurate.

  • 4.

    Performing hierarchical total sorting inspection

CIi is used as the consistency index of the criterion layer, RIi is the corresponding stochastic consistency index, and the stochastic consistency ratio of the total sorting of the hierarchy is as follows:
(21)
When CR′ < 0.1, the total sorting satisfies the consistency. Otherwise, the judgment matrix needs to be reconstructed, and the weights that pass consistency inspection are desirable (He 2008).

Objective weight–variation coefficient method

Objective methods generally include the entropy method and the variation coefficient method. The former is more dependent on the samples. The latter avoids the equal division of weights and makes the result more reasonable. Therefore, in this research, the variation coefficient method is used. The steps are as follows (Jiang 2011):

  • 1.
    The variation coefficient of the indicator is calculated (Zayed et al. 2021):
    (22)
    (23)
    (24)
    where σi is the mean variance of the eigenvalue of Ci and is the mean value of the eigenvalue of Ci.
  • 2.
    Calculating the objective weight
    (25)

Evaluation indicator

A ship lock is an open complex giant system, and its operational safety can be characterized by multiple subsystems and indicators (Wang & Lee 2001). Each subsystem is finally reflected by the corresponding indicators.

Subsystems can be divided according to the four basic components of the approach channel, lock head, lock chamber, and water transmission system, and the indicators are subdivided in turn. However, the resulting indicator system has many duplicate indicators, resulting in a complex evaluation process. If subsystems are divided into the hydraulic structure, metal structure, hydraulic system, electrical system, and hydraulic power according to the type of specialty, the indicator system and evaluation process can be simplified, and professional safety improvement work can be carried out in a targeted manner according to the evaluation results. The indicators and subsystems safety grade evaluation results of the two ways to divide subsystem are different, but the overall evaluation results of the lock are consistent.

Based on the statistical analysis of the data of multiple representative ship locks, according to the requirements of some evaluation contents in reference (JTS 2019), the operability is considered, the evaluation indicators are sorted out and summarized, and then a complete multi-layer evaluation indicator system related to the operation safety of a ship lock is built. A total safety evaluation of the operation of a ship lock is performed, with 5 first-class evaluation indicators and 47 second-class evaluation indicators (Zhang & Li 2020) such as the ratio of the stress to the allowable value, deformation, the ratio of the crack width to the standard value and the ratio of the damage degree to the standard value, etc., to truly reflect the safety status of ship lock operation. The indicator system is shown in Table 4.

Safety grade

Referring to the division of safety status in pumping stations, sluices, and other engineering fields, combined with the relevant regulations on the operation safety of ship lock in China, such as the ‘Technical Code of Maintenance for Navigation Structure’, the safety of ship lock operation can be divided into four grades: ‘good’, ‘fair’, ‘relatively poor’, and ‘poor’. If these grades are renamed ‘normal’, ‘deterioration’, ‘early warning’, and ‘shutdown’ (Lu 2019), they can more intuitively characterize the safety status of a lock and guide the corresponding operations. The specific meanings corresponding to each safety grade are shown in Table 5.

N1, N2, N3, and N4 represent the four grade statuses of ‘normal’, ‘deterioration’, ‘early warning’, and ‘shutdown’.

Table 3

Stochastic consistency index value

n123456789101112
RI 0.58 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 
n123456789101112
RI 0.58 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 
Table 4

List of ship lock operation safety evaluation indicator system

Target layerGuideline layerIndicator layer
Operation safety of ship lock Hydraulic structure Ratio of damage degree to standard value 
Deformation 
Ratio of crack width to standard value 
Grinding depth 
Carbonization depth 
Ratio of stress to allowable value 
Ratio of seepage flow to standard value 
Ratio of strength to standard value 
Cavitation depth 
Ratio of elastic modulus to standard value 
Metal structure Ratio of static stress to allowable value 
Fatigue 
Ratio of runout exceeding standard value 
Rust area ratio 
Drift 
Deformation 
Amount of wear 
Lintel ventilation volume 
Ratio of pressure bar clearance exceeding standard value 
Average vibration displacement 
Crack area ratio 
Friction ultrasound 
Hydraulic system System pressure 
Piston rod deformation 
Running speed 
Piston rod vibration extreme acceleration 
Ratio of opening and closing force to design value 
Ratio of internal leakage amount to standard value 
Aging of the pipeline 
Synchronization error 
Electrical system Power supply 
Monitor latency 
Communication system stability 
Electronic component failure rate 
Sensor stability 
Navigation signal 
Aging of equipment and facility 
Insulation resistance 
Ground resistance 
Hydraulic power Water transport characteristic 
Cavitation noise of water flow 
Sonic vibration 
Siltation of the pilot channel 
Ratio of flow velocity in port area to standard value 
Pilot channel water level fluctuation 
Amplitude of upstream and downstream water level pulsation 
Ratio of navigable water depth to standard value 
Target layerGuideline layerIndicator layer
Operation safety of ship lock Hydraulic structure Ratio of damage degree to standard value 
Deformation 
Ratio of crack width to standard value 
Grinding depth 
Carbonization depth 
Ratio of stress to allowable value 
Ratio of seepage flow to standard value 
Ratio of strength to standard value 
Cavitation depth 
Ratio of elastic modulus to standard value 
Metal structure Ratio of static stress to allowable value 
Fatigue 
Ratio of runout exceeding standard value 
Rust area ratio 
Drift 
Deformation 
Amount of wear 
Lintel ventilation volume 
Ratio of pressure bar clearance exceeding standard value 
Average vibration displacement 
Crack area ratio 
Friction ultrasound 
Hydraulic system System pressure 
Piston rod deformation 
Running speed 
Piston rod vibration extreme acceleration 
Ratio of opening and closing force to design value 
Ratio of internal leakage amount to standard value 
Aging of the pipeline 
Synchronization error 
Electrical system Power supply 
Monitor latency 
Communication system stability 
Electronic component failure rate 
Sensor stability 
Navigation signal 
Aging of equipment and facility 
Insulation resistance 
Ground resistance 
Hydraulic power Water transport characteristic 
Cavitation noise of water flow 
Sonic vibration 
Siltation of the pilot channel 
Ratio of flow velocity in port area to standard value 
Pilot channel water level fluctuation 
Amplitude of upstream and downstream water level pulsation 
Ratio of navigable water depth to standard value 
Table 5

Ship lock operation safety grade and corresponding meaning

Safety gradeMeaning
Grade 1 (Normal) The actual state and function of the ship lock meet the requirements of current relevant national regulations, norms, and standards, the evaluation indicators are in a normal state, the entire system can operate normally, and the grade of safety is high. 
Grade 2 (Deterioration) Some evaluation indicators show abnormal signs, reaching the deterioration threshold. The function and the actual state of the ship lock cannot fully meet the requirements of the current national regulations, norms, and standards, which may affect the normal use of the ship lock project, and failures are more frequent. The number of overhauls increases significantly and the grade of operation safety is moderate. 
Grade 3 (Early warning) Some evaluation indicators are in an abnormal state, reaching the early warning threshold. There are serious problems that endanger the safety of a ship lock, the number of major failures increases, and the grade of operation safety is low. 
Grade 4 (Shutdown) Some evaluation indicators are in an abnormal state, reaching the shutdown threshold. The function and actual condition of the ship lock cannot meet the requirements of the current national regulations, norms, and standards, and the project has serious safety problems and should be stopped immediately. 
Safety gradeMeaning
Grade 1 (Normal) The actual state and function of the ship lock meet the requirements of current relevant national regulations, norms, and standards, the evaluation indicators are in a normal state, the entire system can operate normally, and the grade of safety is high. 
Grade 2 (Deterioration) Some evaluation indicators show abnormal signs, reaching the deterioration threshold. The function and the actual state of the ship lock cannot fully meet the requirements of the current national regulations, norms, and standards, which may affect the normal use of the ship lock project, and failures are more frequent. The number of overhauls increases significantly and the grade of operation safety is moderate. 
Grade 3 (Early warning) Some evaluation indicators are in an abnormal state, reaching the early warning threshold. There are serious problems that endanger the safety of a ship lock, the number of major failures increases, and the grade of operation safety is low. 
Grade 4 (Shutdown) Some evaluation indicators are in an abnormal state, reaching the shutdown threshold. The function and actual condition of the ship lock cannot meet the requirements of the current national regulations, norms, and standards, and the project has serious safety problems and should be stopped immediately. 

Evaluation criteria

The grading criteria for the quantitative indicator are determined by its own characteristics, and the qualitative indicator adopts a scoring system. A full score of 100 can be divided equally across the four grades, but the higher the grade is, the more difficult the scoring is, so the score criteria are more reasonable according to Table 6 (Zhang et al. 2022b), and the obtained evaluation results are more accurate.

Table 6

Corresponding score criteria at each grade of qualitative indicator

GradeGrade 1Grade 2Grade 3Grade 4
Score (90, 100] (75, 90] (60, 75] [0, 60] 
GradeGrade 1Grade 2Grade 3Grade 4
Score (90, 100] (75, 90] (60, 75] [0, 60] 

According to the relevant specifications, there are many measurement types of some indicator evaluation standards, and direct adoption increases the amount of calculation. Therefore, harmonizing these criteria with nondimensionalization simplifies the calculations without affecting the results. The safety evaluation criteria for the operation of a ship lock are shown in Table 7.

Table 7

Ship lock operation safety evaluation criteria

ItemSafety status
Grade 1 (Normal)Grade 2 (Deterioration)Grade 3 (Early warning)Grade 4 (Shutdown)
Hydraulic structure Ratio of damage degree to standard value (%) [0, 33.33) [33.33, 100) [100, 140) [140, +∞) 
Deformation (mm) [0, 1.5] (1.5, 3] (3, 6] (6, +∞) 
Ratio of crack width to standard value (%) [0, 50) [50, 100) [100, 140) [140, +∞) 
Grinding depth (mm) [0, 1) [1, 2) [2, 10) [10, +∞) 
Carbonization depth (mm) [0, 1) [1, 3) [3, 6) [6, +∞) 
Ratio of stress to allowable value (%) [0, 85] (85, 100] (100, 115] (115, +∞) 
Ratio of seepage flow to standard value (%) [0, 41.67) [41.67, 100) [100, 140) [140, +∞) 
Ratio of strength to standard value (%) (88.75, 100] [70, 88.75] [33.33, 70) [0, 33.33) 
Cavitation depth (mm) [0, 0.27) [0.27, 2) [2, 5) [5, +∞) 
Ratio of elastic modulus to standard value (%) (90, 100] (75, 90] (60, 75] [0, 60] 
Metal structure Ratio of static stress to allowable value (%) [0, 75) [75, 80) [80, 90) [90, +∞) 
Fatigue [0, 0.85) [0.85, 1) [1, 1.05) [1.05, 2] 
Ratio of runout exceeding standard value (%) [−100, 0] (0, 100) [100, 133) [133, +∞) 
Rust area ratio (%) [0, 0.3) [0.3, 10) [10, 11) [11, +∞) 
Drift (mm) [0, 3] (3, 6) [6, 9) [9, 12] 
Deformation (mm) [0, 1.5] (1.5, 3] (3, 6] (6, +∞) 
Amount of wear (mm) [0, 2.5) [2.5, 5) [5, 7.5) [7.5, 10] 
Lintel ventilation volume (m3/s) (0.42, +∞) (0.37, 0. 42] (0.33, 0. 37] [0, 0.33] 
Ratio of pressure bar clearance exceeding standard value (%) [−62.5, 0] (0, 100) [100, 133) [133, +∞) 
Average vibration displacement (mm) [0, 0.0508) [0.0508, 0.254) [0.254, 0.508] (0.508, 2] 
Crack area ratio (%) [0, 0.15) [0.15, 0.3] (0.3, 1] (1, +∞) 
Friction ultrasound No friction ultrasound Mild friction ultrasound Relatively severe friction ultrasound Severe friction ultrasound 
Hydraulic system System pressure (MPa) [16, 20] (14.1, 16) (3, 14.1] [0, 3] 
Piston rod deformation (mm) [0, 1.5] (1.5, 3] (3, 6] (6, +∞) 
Running speed (m/min) [0, 2) [2, 4] (4, 8) [8, +∞) 
Piston rod vibration extreme acceleration (g) [0, 0.25) [0.25, 0. 5] (0.5, 1) [1, +∞) 
Ratio of opening and closing force to design value (%) [0, 40) [40, 70] (70, 105) [105, +∞) 
Ratio of internal leakage amount to standard value (%) [0, 40) [40, 100] (100, 140) [140, +∞) 
Aging of the pipeline No aging Slight aging Noticeable aging Severe aging 
Synchronization error (%) [0, 5) [5, 15] (15, 20) [20, +∞) 
Electrical system Power supply Normal Relatively normal Relatively abnormal Extremely abnormal 
Monitor latency (s) [0, 2) [2, 3) [3, 6) [6, +∞) 
Communication system stability Good Lower Obviously lower Significantly lower 
Electronic component failure rate (%) [0, 5) [5, 10) [10, 30) [30, 100] 
Sensor stability Good Lower Poor Extremely poor 
Navigation signal Stable Waning Significantly weakened Does not meet the requirements 
Aging of equipment and facility Intact Mild aging Noticeable aging Severe aging 
Insulation resistance (MΩ[5, +∞) [2, 5) [0.5, 2) [0, 0.5) 
Ground resistance (MΩ[0, 2) [2, 4] (4, 30) [30, +∞) 
Hydraulic power Water transport characteristic Good Relatively good Relatively poor Extremely poor 
Cavitation noise of water flow (dB) [0, 120) [120, 140) [140, 160) [160, +∞) 
Sonic vibration Extremely weak Weak Strong Extremely strong 
Siltation of the pilot channel No siltation Mild siltation Significant siltation Severe siltation 
Ratio of flow velocity in port area to standard value (%) [0, 30) [30, 100] (100, 125) [125, +∞) 
Pilot channel water level fluctuation (m) [0, 0.4] (0.4, 0.45) [0.45, 0. 5] (0.5, +∞) 
Amplitude of upstream and downstream water level pulsation (m) [0, 0.1) [0.1, 0.2) [0.2, 0. 4] (0.4, +∞) 
Ratio of navigable water depth to standard value (%) (150, +∞) [100, 150] (47, 100) [0, 47] 
ItemSafety status
Grade 1 (Normal)Grade 2 (Deterioration)Grade 3 (Early warning)Grade 4 (Shutdown)
Hydraulic structure Ratio of damage degree to standard value (%) [0, 33.33) [33.33, 100) [100, 140) [140, +∞) 
Deformation (mm) [0, 1.5] (1.5, 3] (3, 6] (6, +∞) 
Ratio of crack width to standard value (%) [0, 50) [50, 100) [100, 140) [140, +∞) 
Grinding depth (mm) [0, 1) [1, 2) [2, 10) [10, +∞) 
Carbonization depth (mm) [0, 1) [1, 3) [3, 6) [6, +∞) 
Ratio of stress to allowable value (%) [0, 85] (85, 100] (100, 115] (115, +∞) 
Ratio of seepage flow to standard value (%) [0, 41.67) [41.67, 100) [100, 140) [140, +∞) 
Ratio of strength to standard value (%) (88.75, 100] [70, 88.75] [33.33, 70) [0, 33.33) 
Cavitation depth (mm) [0, 0.27) [0.27, 2) [2, 5) [5, +∞) 
Ratio of elastic modulus to standard value (%) (90, 100] (75, 90] (60, 75] [0, 60] 
Metal structure Ratio of static stress to allowable value (%) [0, 75) [75, 80) [80, 90) [90, +∞) 
Fatigue [0, 0.85) [0.85, 1) [1, 1.05) [1.05, 2] 
Ratio of runout exceeding standard value (%) [−100, 0] (0, 100) [100, 133) [133, +∞) 
Rust area ratio (%) [0, 0.3) [0.3, 10) [10, 11) [11, +∞) 
Drift (mm) [0, 3] (3, 6) [6, 9) [9, 12] 
Deformation (mm) [0, 1.5] (1.5, 3] (3, 6] (6, +∞) 
Amount of wear (mm) [0, 2.5) [2.5, 5) [5, 7.5) [7.5, 10] 
Lintel ventilation volume (m3/s) (0.42, +∞) (0.37, 0. 42] (0.33, 0. 37] [0, 0.33] 
Ratio of pressure bar clearance exceeding standard value (%) [−62.5, 0] (0, 100) [100, 133) [133, +∞) 
Average vibration displacement (mm) [0, 0.0508) [0.0508, 0.254) [0.254, 0.508] (0.508, 2] 
Crack area ratio (%) [0, 0.15) [0.15, 0.3] (0.3, 1] (1, +∞) 
Friction ultrasound No friction ultrasound Mild friction ultrasound Relatively severe friction ultrasound Severe friction ultrasound 
Hydraulic system System pressure (MPa) [16, 20] (14.1, 16) (3, 14.1] [0, 3] 
Piston rod deformation (mm) [0, 1.5] (1.5, 3] (3, 6] (6, +∞) 
Running speed (m/min) [0, 2) [2, 4] (4, 8) [8, +∞) 
Piston rod vibration extreme acceleration (g) [0, 0.25) [0.25, 0. 5] (0.5, 1) [1, +∞) 
Ratio of opening and closing force to design value (%) [0, 40) [40, 70] (70, 105) [105, +∞) 
Ratio of internal leakage amount to standard value (%) [0, 40) [40, 100] (100, 140) [140, +∞) 
Aging of the pipeline No aging Slight aging Noticeable aging Severe aging 
Synchronization error (%) [0, 5) [5, 15] (15, 20) [20, +∞) 
Electrical system Power supply Normal Relatively normal Relatively abnormal Extremely abnormal 
Monitor latency (s) [0, 2) [2, 3) [3, 6) [6, +∞) 
Communication system stability Good Lower Obviously lower Significantly lower 
Electronic component failure rate (%) [0, 5) [5, 10) [10, 30) [30, 100] 
Sensor stability Good Lower Poor Extremely poor 
Navigation signal Stable Waning Significantly weakened Does not meet the requirements 
Aging of equipment and facility Intact Mild aging Noticeable aging Severe aging 
Insulation resistance (MΩ[5, +∞) [2, 5) [0.5, 2) [0, 0.5) 
Ground resistance (MΩ[0, 2) [2, 4] (4, 30) [30, +∞) 
Hydraulic power Water transport characteristic Good Relatively good Relatively poor Extremely poor 
Cavitation noise of water flow (dB) [0, 120) [120, 140) [140, 160) [160, +∞) 
Sonic vibration Extremely weak Weak Strong Extremely strong 
Siltation of the pilot channel No siltation Mild siltation Significant siltation Severe siltation 
Ratio of flow velocity in port area to standard value (%) [0, 30) [30, 100] (100, 125) [125, +∞) 
Pilot channel water level fluctuation (m) [0, 0.4] (0.4, 0.45) [0.45, 0. 5] (0.5, +∞) 
Amplitude of upstream and downstream water level pulsation (m) [0, 0.1) [0.1, 0.2) [0.2, 0. 4] (0.4, +∞) 
Ratio of navigable water depth to standard value (%) (150, +∞) [100, 150] (47, 100) [0, 47] 

This section describes how the operation safety evaluation is carried out in combination with an in-service ship lock in China.

Classic and node domains

The classic domain and the node domain are determined according to the evaluation criteria of Table 7. The indicator values come from actual measurement and scoring, and their alterations may cause the evaluation indicator, object, and target grade results to be changed in turn.

Calculation of the correlation degree of a single indicator

The indicator data in Tables 812 are substituted into Formulas (4)–(6) to calculate the correlation degree of the single indicator of the second-class indicator, as shown in Tables 1317.

Table 8

Classic domain, node domain, and indicator value of the second-class indicator of hydraulic structure

Second-class indicator of hydraulic structureClassic domain
Node domainThe indicator value
N1N2N3N4
Ratio of damage degree to standard value <0,33.33> <33.33,100> <100,140> <140,200> <0,200> 14.12 
Deformation <0,1.5> <1.5,3> <3,6> <6,12> <0,12> 2.2 
Ratio of crack width to standard value <0,50> <50,100> <100,140> <140,200> <0,29> 21.43 
Grinding depth <0,1> <1,2> <2,10> <10,20> <0,20> 0.3333 
Carbonization depth <0,1> <1,3> <3,6> <6,12> <0,12> 0.6667 
Ratio of stress to allowable value <0,85> <85,100> <100,115> <115,130> <0,130> 
Ratio of seepage flow to standard value <0,41.67> <41.67,100> <100,140> <140,200> <0,200> 33.33 
Ratio of strength to standard value <88.75,100> <70,88.75> <33.33,70> <0,33.33> <0,100> 25 
Cavitation depth <0,0.27> <0.27,2> <2,5> <5,10> <0,10> 
Ratio of elastic modulus to standard value <90,100> <75,90> <60,75> <0,60> <0,100> 3.4 
Second-class indicator of hydraulic structureClassic domain
Node domainThe indicator value
N1N2N3N4
Ratio of damage degree to standard value <0,33.33> <33.33,100> <100,140> <140,200> <0,200> 14.12 
Deformation <0,1.5> <1.5,3> <3,6> <6,12> <0,12> 2.2 
Ratio of crack width to standard value <0,50> <50,100> <100,140> <140,200> <0,29> 21.43 
Grinding depth <0,1> <1,2> <2,10> <10,20> <0,20> 0.3333 
Carbonization depth <0,1> <1,3> <3,6> <6,12> <0,12> 0.6667 
Ratio of stress to allowable value <0,85> <85,100> <100,115> <115,130> <0,130> 
Ratio of seepage flow to standard value <0,41.67> <41.67,100> <100,140> <140,200> <0,200> 33.33 
Ratio of strength to standard value <88.75,100> <70,88.75> <33.33,70> <0,33.33> <0,100> 25 
Cavitation depth <0,0.27> <0.27,2> <2,5> <5,10> <0,10> 
Ratio of elastic modulus to standard value <90,100> <75,90> <60,75> <0,60> <0,100> 3.4 
Table 9

Classic domain, node domain, and indicator value of the second-class indicator of metal structure

Second-class indicator of metal structureClassic domain
Node domainThe indicator value
N1N2N3N4
Ratio of static stress to allowable value <0,75> <75,80> <80,90> <90,100> <0,100> 85 
Fatigue <0,50> <50,100> <100,140> <140,200> <0,200> 12 
Ratio of runout exceeding standard value <−100,0> <0,100> <100,133> <133,150> <−100,150> 29 
Rust area ratio <0,0.3> <0.3,10> <10,11> <11,100> <0,100> 20 
Drift <0,1.5> <1.5,3> <3,6> <6,12> <0,12> 
Deformation <0,1.5> <1.5,3> <3,6> <6,12> <0,12> 1.3 
Amount of wear <0,2.5> <2.5,5> <5,10> <10,20> <0,20> 
Lintel ventilation volume <0.42,1> <0. 37,0.42> <0.33,0.37> <0,0.33> <0,1> 0.25 
Ratio of pressure bar clearance exceeding standard value <−62.5,0> <0,100> <100,133> <133,150> <−62.5,150> 10 
Average vibration displacement <0,0.0508> <0.0508,0.254> <0.254,0.508> <0.508,1> <0,1> 0.4 
Crack area ratio <0,0.15> <0.15,0.3> <0.3,1> <1,100> <0,100> 0.36 
Friction ultrasound <90,100> <75,90> <60,75> <0,60> <0,100> 85 
Second-class indicator of metal structureClassic domain
Node domainThe indicator value
N1N2N3N4
Ratio of static stress to allowable value <0,75> <75,80> <80,90> <90,100> <0,100> 85 
Fatigue <0,50> <50,100> <100,140> <140,200> <0,200> 12 
Ratio of runout exceeding standard value <−100,0> <0,100> <100,133> <133,150> <−100,150> 29 
Rust area ratio <0,0.3> <0.3,10> <10,11> <11,100> <0,100> 20 
Drift <0,1.5> <1.5,3> <3,6> <6,12> <0,12> 
Deformation <0,1.5> <1.5,3> <3,6> <6,12> <0,12> 1.3 
Amount of wear <0,2.5> <2.5,5> <5,10> <10,20> <0,20> 
Lintel ventilation volume <0.42,1> <0. 37,0.42> <0.33,0.37> <0,0.33> <0,1> 0.25 
Ratio of pressure bar clearance exceeding standard value <−62.5,0> <0,100> <100,133> <133,150> <−62.5,150> 10 
Average vibration displacement <0,0.0508> <0.0508,0.254> <0.254,0.508> <0.508,1> <0,1> 0.4 
Crack area ratio <0,0.15> <0.15,0.3> <0.3,1> <1,100> <0,100> 0.36 
Friction ultrasound <90,100> <75,90> <60,75> <0,60> <0,100> 85 
Table 10

Classic domain, node domain, and indicator value of the second-class indicator of hydraulic system

Second-class indicator of hydraulic systemClassic domain
Node domainThe indicator value
N1N2N3N4
System pressure <16,20> <14.1,16> <3,14.1> <0,3> <0,20> 10 
Piston rod deformation <0,1.5> <1.5,3> <3,6> <6,12> <0,12> 2.2 
Running speed <0,2> <2,4> <4,8> <8,16> <0,16> 10 
Piston rod vibration extreme acceleration <0,0.25> <0.25,0.5> <0.5,1> <1,2> <0,2> 0.98 
Ratio of opening and closing force to design value <0,40> <40,70> <70,105> <105,200> <0,200> 
Ratio of internal leakage amount to standard value <0,40> <40,100> <100,140> <140,200> <0,200> 13 
Aging of the pipeline <90,100> <75,90> <60,75> <0,60> <0,100> 80 
Synchronization error <0,5> <5,15> <15,20> <20,40> <0,40> 10 
Second-class indicator of hydraulic systemClassic domain
Node domainThe indicator value
N1N2N3N4
System pressure <16,20> <14.1,16> <3,14.1> <0,3> <0,20> 10 
Piston rod deformation <0,1.5> <1.5,3> <3,6> <6,12> <0,12> 2.2 
Running speed <0,2> <2,4> <4,8> <8,16> <0,16> 10 
Piston rod vibration extreme acceleration <0,0.25> <0.25,0.5> <0.5,1> <1,2> <0,2> 0.98 
Ratio of opening and closing force to design value <0,40> <40,70> <70,105> <105,200> <0,200> 
Ratio of internal leakage amount to standard value <0,40> <40,100> <100,140> <140,200> <0,200> 13 
Aging of the pipeline <90,100> <75,90> <60,75> <0,60> <0,100> 80 
Synchronization error <0,5> <5,15> <15,20> <20,40> <0,40> 10 
Table 11

Classic domain, node domain, and indicator value of the second-class indicator of electrical system

Second-class indicator of electrical systemClassic domain
Node domainThe indicator value
N1N2N3N4
Power supply <90,100> <75,90> <60,75> <0,60> <0,100> 20 
Monitor latency <0,2> <2,3> <3,6> <6,7> <0,7> 
Communication system stability <90,100> <75,90> <60,75> <0,60> <0,100> 61 
Electronic component failure rate <0,5> <5,10> <10,30> <30,100> <0,100> 
Sensor stability <90,100> <75,90> <60,75> <0,60> <0,100> 65 
Navigation signal <90,100> <75,90> <60,75> <0,60> <0,100> 85 
Aging of equipment and facility <90,100> <75,90> <60,75> <0,60> <0,100> 80 
Insulation resistance <5,20> <2,5> <0.5,2> <0,0.5> <0,20> 
Ground resistance <0,2> <2,4> <4,30> <30,60> <0,60> 
Second-class indicator of electrical systemClassic domain
Node domainThe indicator value
N1N2N3N4
Power supply <90,100> <75,90> <60,75> <0,60> <0,100> 20 
Monitor latency <0,2> <2,3> <3,6> <6,7> <0,7> 
Communication system stability <90,100> <75,90> <60,75> <0,60> <0,100> 61 
Electronic component failure rate <0,5> <5,10> <10,30> <30,100> <0,100> 
Sensor stability <90,100> <75,90> <60,75> <0,60> <0,100> 65 
Navigation signal <90,100> <75,90> <60,75> <0,60> <0,100> 85 
Aging of equipment and facility <90,100> <75,90> <60,75> <0,60> <0,100> 80 
Insulation resistance <5,20> <2,5> <0.5,2> <0,0.5> <0,20> 
Ground resistance <0,2> <2,4> <4,30> <30,60> <0,60> 
Table 12

Classic domain, node domain, and indicator value of the second-class indicator of hydraulic power

Second-class indicator of hydraulic powerClassic domain
Node domainThe indicator value
N1N2N3N4
Water transport characteristic <90,100> <75,90> <60,75> <0,60> <0,100> 95 
Cavitation noise of water flow <0,120> <120,140> <140,160> <160,180> <0,180> 71 
Sonic vibration <90,100> <75,90> <60,75> <0,60> <0,100> 49 
Siltation of the pilot channel <90,100> <75,90> <60,75> <0,60> <0,100> 85 
Ratio of flow velocity in port area to standard value <0,30> <30,100> <100,125> <125,200> <0,200> 100 
Pilot channel water level fluctuation <0,0.4> <0.4,0.45> <0.45,0. 5> <0.5,0.55> <0,0.55> 0.1 
Amplitude of upstream and downstream water level pulsation <0,0.1> <0.1,0.2> <0.2,0.4> <0.4,0.8> <0,0.8> 0.8 
Ratio of navigable water depth to standard value <150,200> <100,150> <47,100> <0,47> <0,200> 200 
Second-class indicator of hydraulic powerClassic domain
Node domainThe indicator value
N1N2N3N4
Water transport characteristic <90,100> <75,90> <60,75> <0,60> <0,100> 95 
Cavitation noise of water flow <0,120> <120,140> <140,160> <160,180> <0,180> 71 
Sonic vibration <90,100> <75,90> <60,75> <0,60> <0,100> 49 
Siltation of the pilot channel <90,100> <75,90> <60,75> <0,60> <0,100> 85 
Ratio of flow velocity in port area to standard value <0,30> <30,100> <100,125> <125,200> <0,200> 100 
Pilot channel water level fluctuation <0,0.4> <0.4,0.45> <0.45,0. 5> <0.5,0.55> <0,0.55> 0.1 
Amplitude of upstream and downstream water level pulsation <0,0.1> <0.1,0.2> <0.2,0.4> <0.4,0.8> <0,0.8> 0.8 
Ratio of navigable water depth to standard value <150,200> <100,150> <47,100> <0,47> <0,200> 200 
Table 13

Correlation degree of a single indicator of the second-class indicator of hydraulic structure

Second-class indicator of hydraulic structureN1N2N3N4MaxGrade
Ratio of damage degree to standard value 0.4236 −0.5764 −0.8588 −0.8991 0.4236 
Deformation −0.2414 0.4667 −0.2667 −0.6333 0.4667 
Ratio of crack width to standard value 0.4286 −0.5714 −0.7857 −0.8469 0.4286 
Grinding depth 0.3333 −0.6667 −0.8334 −0.9667 0.3333 
Carbonization depth 0.3333 −0.3333 −0.7778 −0.8889 0.3333 
Ratio of stress to allowable value −1 −1 −1 
Ratio of seepage flow to standard value 0.2001 −0.2001 −0.6667 −0.7619 0.2001 
Ratio of strength to standard value −0.7183 −0.6429 −0.2499 0.2499 0.2499 
Cavitation depth −0.5889 −0.5 −0.2 0.2 −0.5889 
Ratio of elastic modulus to standard value −0.9622 −0.9547 −0.9433 0.0567 0.0567 
Second-class indicator of hydraulic structureN1N2N3N4MaxGrade
Ratio of damage degree to standard value 0.4236 −0.5764 −0.8588 −0.8991 0.4236 
Deformation −0.2414 0.4667 −0.2667 −0.6333 0.4667 
Ratio of crack width to standard value 0.4286 −0.5714 −0.7857 −0.8469 0.4286 
Grinding depth 0.3333 −0.6667 −0.8334 −0.9667 0.3333 
Carbonization depth 0.3333 −0.3333 −0.7778 −0.8889 0.3333 
Ratio of stress to allowable value −1 −1 −1 
Ratio of seepage flow to standard value 0.2001 −0.2001 −0.6667 −0.7619 0.2001 
Ratio of strength to standard value −0.7183 −0.6429 −0.2499 0.2499 0.2499 
Cavitation depth −0.5889 −0.5 −0.2 0.2 −0.5889 
Ratio of elastic modulus to standard value −0.9622 −0.9547 −0.9433 0.0567 0.0567 
Table 14

Correlation degree of a single indicator of the second-class indicator of metal structure

Second-class indicator of metal structureN1N2N3N4MaxGrade
Ratio of static stress to allowable value −0.4 −0.25 0.5 −0.25 0.5 
Fatigue 0.24 −0.76 −0.88 −0.9143 0.24 
Ratio of runout exceeding standard value −0.1933 0.29 −0.3698 −0.4622 0.29 
Rust area ratio −0.4962 −0.3333 −0.3103 0.1011 0.1011 
Drift −0.4118 −0.2857 0.3333 −0.1667 0.3333 
Deformation 0.1333 −0.1333 −0.5667 −0.7833 01333 
Amount of wear −1 −1 −1 
Lintel ventilation volume −0.4048 −0.3243 −0.2424 0.2424 0.2424 
Ratio of pressure bar clearance exceeding standard value −0.1212 0.1 −0.5538 −0.6292 0.1 
Average vibration displacement −0.4661 −0.2674 0.4252 −0.2126 0.4252 
Crack area ratio −0.3684 −0.1429 0.0857 −0.64 0.0857 
Friction ultrasound −0.25 0.3333 −0.4 −0.625 0.3333 
Second-class indicator of metal structureN1N2N3N4MaxGrade
Ratio of static stress to allowable value −0.4 −0.25 0.5 −0.25 0.5 
Fatigue 0.24 −0.76 −0.88 −0.9143 0.24 
Ratio of runout exceeding standard value −0.1933 0.29 −0.3698 −0.4622 0.29 
Rust area ratio −0.4962 −0.3333 −0.3103 0.1011 0.1011 
Drift −0.4118 −0.2857 0.3333 −0.1667 0.3333 
Deformation 0.1333 −0.1333 −0.5667 −0.7833 01333 
Amount of wear −1 −1 −1 
Lintel ventilation volume −0.4048 −0.3243 −0.2424 0.2424 0.2424 
Ratio of pressure bar clearance exceeding standard value −0.1212 0.1 −0.5538 −0.6292 0.1 
Average vibration displacement −0.4661 −0.2674 0.4252 −0.2126 0.4252 
Crack area ratio −0.3684 −0.1429 0.0857 −0.64 0.0857 
Friction ultrasound −0.25 0.3333 −0.4 −0.625 0.3333 
Table 15

Correlation degree of a single indicator of the second -class indicator of hydraulic system

Second-class indicator of hydraulic systemN1N2N3N4MaxGrade
System pressure −0.375 −0.2908 0.3694 −0.4118 0.3694 
Piston rod deformation −0.2414 0.4667 −0.2667 −0.6333 0.4667 
Running speed −0.5714 −0.5 −0.25 0.25 0.25 
Piston rod vibration extreme acceleration −0.4269 −0.3288 0.04 −0.02 0.04 
Ratio of opening and closing force to design value 0.125 −0.875 −0.9286 −0.9524 0.125 
Ratio of internal leakage amount to standard value 0.325 −0.675 −0.87 −0.9071 0.325 
Aging of the pipeline −0.3333 0.3333 −0.2 −0.5 0.3333 
Synchronization error −0.3333 0.5 −0.3333 −0.5 0.5 
Second-class indicator of hydraulic systemN1N2N3N4MaxGrade
System pressure −0.375 −0.2908 0.3694 −0.4118 0.3694 
Piston rod deformation −0.2414 0.4667 −0.2667 −0.6333 0.4667 
Running speed −0.5714 −0.5 −0.25 0.25 0.25 
Piston rod vibration extreme acceleration −0.4269 −0.3288 0.04 −0.02 0.04 
Ratio of opening and closing force to design value 0.125 −0.875 −0.9286 −0.9524 0.125 
Ratio of internal leakage amount to standard value 0.325 −0.675 −0.87 −0.9071 0.325 
Aging of the pipeline −0.3333 0.3333 −0.2 −0.5 0.3333 
Synchronization error −0.3333 0.5 −0.3333 −0.5 0.5 
Table 16

Correlation degree of a single indicator of the second-class indicator of electrical system

Second-class indicator of electrical systemN1N2N3N4MaxGrade
Power supply −0.7778 −0.7333 −0.6667 0.3333 0.3333 
Monitor latency 0.5 −0.5 −0.6667 −0.8333 0.5 
Communication system stability −0.4265 −0.2642 0.0667 −0.025 0.0667 
Electronic component failure rate −0.5 −0.8333 
Sensor stability −0.4167 −0.2222 0.3333 −0.125 0.3333 
Navigation signal −0.25 0.3333 −0.4 −0.625 0.3333 
Aging of equipment and facility −0.3333 0.3333 −0.2 −0.5 0.3333 
Insulation resistance −0.2 0.3333 −0.3333 −0.4667 0.3333 
Ground resistance −0.5 −0.9333 
Second-class indicator of electrical systemN1N2N3N4MaxGrade
Power supply −0.7778 −0.7333 −0.6667 0.3333 0.3333 
Monitor latency 0.5 −0.5 −0.6667 −0.8333 0.5 
Communication system stability −0.4265 −0.2642 0.0667 −0.025 0.0667 
Electronic component failure rate −0.5 −0.8333 
Sensor stability −0.4167 −0.2222 0.3333 −0.125 0.3333 
Navigation signal −0.25 0.3333 −0.4 −0.625 0.3333 
Aging of equipment and facility −0.3333 0.3333 −0.2 −0.5 0.3333 
Insulation resistance −0.2 0.3333 −0.3333 −0.4667 0.3333 
Ground resistance −0.5 −0.9333 
Table 17

Correlation degree of a single indicator of the second-class indicator of hydraulic power

Second-class indicator of hydraulic powerN1N2N3N4MaxGrade
Water transport characteristic 0.5 −0.5 −0.8 −0.875 0.5 
Cavitation noise of water flow 0.4083 −0.4083 −0.4929 −0.5562 0.4083 
Sonic vibration −0.4556 −0.3467 −0.1833 0.1833 0.1833 
Siltation of the pilot channel −0.25 0.3333 −0.4 −0.625 0.3333 
Ratio of flow velocity in port area to standard value −0.4118 −0.2 
Pilot channel water level fluctuation 0.25 −0.75 −0.7778 −0.8 0.25 
Amplitude of upstream and downstream water level pulsation −1 −1 −1 
Ratio of navigable water depth to standard value −1 −1 −1 
Second-class indicator of hydraulic powerN1N2N3N4MaxGrade
Water transport characteristic 0.5 −0.5 −0.8 −0.875 0.5 
Cavitation noise of water flow 0.4083 −0.4083 −0.4929 −0.5562 0.4083 
Sonic vibration −0.4556 −0.3467 −0.1833 0.1833 0.1833 
Siltation of the pilot channel −0.25 0.3333 −0.4 −0.625 0.3333 
Ratio of flow velocity in port area to standard value −0.4118 −0.2 
Pilot channel water level fluctuation 0.25 −0.75 −0.7778 −0.8 0.25 
Amplitude of upstream and downstream water level pulsation −1 −1 −1 
Ratio of navigable water depth to standard value −1 −1 −1 

Weight with analytic hierarchy process

The judgment matrix and hierarchical sorting of the ship lock operation safety evaluation indicator system are shown in Tables 1824.

Table 18

Judgment matrix and hierarchical single sorting of operation safety first-class indicator

Operation safetyHydraulic structureMetal structureHydraulic systemElectrical systemHydraulic powerWiSortInspection
Hydraulic structure  0.2634 λmax = 5.068
CI = 0.017
RI = 1.12
CR = 0.0152<0.1 
Metal structure 0.4174 
Hydraulic system    0.0975 
Electrical system     0.0615 
Hydraulic power   0.1602 
Operation safetyHydraulic structureMetal structureHydraulic systemElectrical systemHydraulic powerWiSortInspection
Hydraulic structure  0.2634 λmax = 5.068
CI = 0.017
RI = 1.12
CR = 0.0152<0.1 
Metal structure 0.4174 
Hydraulic system    0.0975 
Electrical system     0.0615 
Hydraulic power   0.1602 
Table 19

Judgment matrix and hierarchical single sorting of hydraulic structure second-class indicator

Hydraulic structureRatio of damage degree to standard valueDeformationRatio of crack width to standard valueGrinding depthCarbonization depthRatio of stress to allowable valueRatio of seepage flow to standard valueRatio of strength to standard valueCavitation depthRatio of elastic modulus to standard valueWiSortInspection
Ratio of damage degree to standard value     0.0771 λmax = 10.5513
CI = 0.0612
RI = 1.49
CR = 0.0411 < 0.1 
Deformation  0.2164 
Ratio of crack width to standard value 0.2889 
Grinding depth    0.11 
Carbonization depth      0.0539 
Ratio of stress to allowable value          0.0144 10 
Ratio of seepage flow to standard value       0.0378 
Ratio of strength to standard value        0.0267 
Cavitation depth   0.1556 
Ratio of elastic modulus to standard value         0.0192 
Hydraulic structureRatio of damage degree to standard valueDeformationRatio of crack width to standard valueGrinding depthCarbonization depthRatio of stress to allowable valueRatio of seepage flow to standard valueRatio of strength to standard valueCavitation depthRatio of elastic modulus to standard valueWiSortInspection
Ratio of damage degree to standard value     0.0771 λmax = 10.5513
CI = 0.0612
RI = 1.49
CR = 0.0411 < 0.1 
Deformation  0.2164 
Ratio of crack width to standard value 0.2889 
Grinding depth    0.11 
Carbonization depth      0.0539 
Ratio of stress to allowable value          0.0144 10 
Ratio of seepage flow to standard value       0.0378 
Ratio of strength to standard value        0.0267 
Cavitation depth   0.1556 
Ratio of elastic modulus to standard value         0.0192 
Table 20

Judgment matrix and hierarchical single sorting of metal structure second-class indicator

Metal structureRatio of static stress to allowable valueFatigueRatio of runout exceeding standard valueRust area ratioDriftDeformationAmount of wearLintel ventilation volumeRatio of pressure bar clearance exceeding standard valueAverage vibration displacementCrack area ratioFriction ultrasoundWiSortInspection
Ratio of static stress to allowable value    0.1131 λmax = 12.995
CI = 0.0904
RI = 1.54
CR = 0.0587 < 0.1 
Fatigue   0.1524 
Ratio of runout exceeding standard value          0.0169 10 
Rust area ratio        0.0312 
Drift            0.0101 12 
Deformation  0.2006 
Amount of wear       0.0431 
Lintel ventilation volume      0.0596 
Ratio of pressure bar clearance exceeding standard value           0.0128 11 
Average vibration displacement     0.0823 
Crack area ratio 0.2552 
Friction ultrasound         0.0227 
Metal structureRatio of static stress to allowable valueFatigueRatio of runout exceeding standard valueRust area ratioDriftDeformationAmount of wearLintel ventilation volumeRatio of pressure bar clearance exceeding standard valueAverage vibration displacementCrack area ratioFriction ultrasoundWiSortInspection
Ratio of static stress to allowable value    0.1131 λmax = 12.995
CI = 0.0904
RI = 1.54
CR = 0.0587 < 0.1 
Fatigue   0.1524 
Ratio of runout exceeding standard value          0.0169 10 
Rust area ratio        0.0312 
Drift            0.0101 12 
Deformation  0.2006 
Amount of wear       0.0431 
Lintel ventilation volume      0.0596 
Ratio of pressure bar clearance exceeding standard value           0.0128 11 
Average vibration displacement     0.0823 
Crack area ratio 0.2552 
Friction ultrasound         0.0227 
Table 21

Judgment matrix and hierarchical single sorting of hydraulic system second-class indicator

Hydraulic systemSystem pressurePiston rod deformationRunning speedPiston rod vibration extreme accelerationRatio of opening and closing force to design valueRatio of internal leakage amount to standard valueAging of the pipelineSynchronization errorWiSortInspection
System pressure       0.0327 λmax = 8.2877
CI = 0.0411
RI = 1.41
CR = 0.0292<0.1 
Piston rod deformation 0.328 
Running speed     0.0713 
Piston rod vibration extreme acceleration  0.2319 
Ratio of opening and closing force to design value      0.0479 
Ratio of internal leakage amount to standard value        0.0231 
Aging of the pipeline   0.1585 
Synchronization error    0.1066 
Hydraulic systemSystem pressurePiston rod deformationRunning speedPiston rod vibration extreme accelerationRatio of opening and closing force to design valueRatio of internal leakage amount to standard valueAging of the pipelineSynchronization errorWiSortInspection
System pressure       0.0327 λmax = 8.2877
CI = 0.0411
RI = 1.41
CR = 0.0292<0.1 
Piston rod deformation 0.328 
Running speed     0.0713 
Piston rod vibration extreme acceleration  0.2319 
Ratio of opening and closing force to design value      0.0479 
Ratio of internal leakage amount to standard value        0.0231 
Aging of the pipeline   0.1585 
Synchronization error    0.1066 
Table 22

Judgment matrix and hierarchical single sorting of electrical system second-class indicator

Electrical systemPower supplyMonitor latencyCommunication system stabilityElectronic component failure rateSensor stabilityNavigation signalAging of equipment and facilityInsulation resistanceGround resistanceWiSortInspection
Power supply       0.0352 λmax = 9.4004
CI = 0.05
RI = 1.46
CR = 0.0343 < 0.1 
Monitor latency         0.0179 
Communication system stability  0.2235 
Electronic component failure rate 0.3081 
Sensor stability   0.157 
Navigation signal        0.0247 
Aging of equipment and facility    0.1084 
Insulation resistance     0.0743 
Ground resistance      0.0509 
Electrical systemPower supplyMonitor latencyCommunication system stabilityElectronic component failure rateSensor stabilityNavigation signalAging of equipment and facilityInsulation resistanceGround resistanceWiSortInspection
Power supply       0.0352 λmax = 9.4004
CI = 0.05
RI = 1.46
CR = 0.0343 < 0.1 
Monitor latency         0.0179 
Communication system stability  0.2235 
Electronic component failure rate 0.3081 
Sensor stability   0.157 
Navigation signal        0.0247 
Aging of equipment and facility    0.1084 
Insulation resistance     0.0743 
Ground resistance      0.0509 
Table 23

Judgment matrix and hierarchical single sorting of hydraulic power second-class indicator

Hydraulic powerWater transport characteristicCavitation noise of water flowSonic vibrationSiltation of the pilot channelRatio of flow velocity in port area to standard valuePilot channel water level fluctuationAmplitude of upstream and downstream water level pulsationRatio of navigable water depth to standard valueWiSortInspection
Water transport characteristic    0.1066 λmax = 8.2877
CI = 0.0411
RI = 1.41
CR = 0.0292<0.1 
Cavitation noise of water flow 0.328 
Sonic vibration  0.2319 
Siltation of the pilot channel        0.0231 
Ratio of flow velocity in port area to standard value     0.0713 
Pilot channel water level fluctuation       0.0327 
Amplitude of upstream and downstream water level pulsation      0.0479 
Ratio of navigable water depth to standard value   0.1585 
Hydraulic powerWater transport characteristicCavitation noise of water flowSonic vibrationSiltation of the pilot channelRatio of flow velocity in port area to standard valuePilot channel water level fluctuationAmplitude of upstream and downstream water level pulsationRatio of navigable water depth to standard valueWiSortInspection
Water transport characteristic    0.1066 λmax = 8.2877
CI = 0.0411
RI = 1.41
CR = 0.0292<0.1 
Cavitation noise of water flow 0.328 
Sonic vibration  0.2319 
Siltation of the pilot channel        0.0231 
Ratio of flow velocity in port area to standard value     0.0713 
Pilot channel water level fluctuation       0.0327 
Amplitude of upstream and downstream water level pulsation      0.0479 
Ratio of navigable water depth to standard value   0.1585 
Table 24

Hierarchical total sorting

Indicator layerHydraulic structureMetal structureHydraulic systemElectrical systemHydraulic powerWiSortInspection
0.26340.41740.09750.06150.1602
Ratio of damage degree to standard value 0.0771     0.0203 16 CR = 0.0454 < 0.1 
Deformation 0.2164     0.057 
Ratio of crack width to standard value 0.2889     0.0761 
Grinding depth 0.11     0.029 12 
Carbonization depth 0.0539     0.0142 21 
Ratio of stress to allowable value 0.0144     0.0038 40 
Ratio of seepage flow to standard value 0.0378     0.0099 26 
Ratio of strength to standard value 0.0267     0.007 31 
Cavitation depth 0.1556     0.041 
Ratio of elastic modulus to standard value 0.0192     0.0051 36 
Ratio of static stress to allowable value  0.1131    0.0472 
Fatigue  0.1524    0.0636 
Ratio of runout exceeding standard value  0.0169    0.0071 30 
Rust area ratio  0.0312    0.013 23 
Drift  0.0101    0.0042 39 
Deformation  0.2006    0.0837 
Amount of wear  0.0431    0.018 18 
Lintel ventilation volume  0.0596    0.0249 14 
Ratio of pressure bar clearance exceeding standard value  0.0128    0.0053 34 
Average vibration displacement  0.0823    0.0344 10 
Crack area ratio  0.2552    0.1065 
Friction ultrasound  0.0227    0.0095 28 
System pressure   0.0327   0.0032 42 
Piston rod deformation   0.328   0.032 11 
Running speed   0.0713   0.0069 32 
Piston rod vibration extreme acceleration   0.2319   0.0226 15 
Ratio of opening and closing force to design value   0.0479   0.0047 37 
Ratio of internal leakage amount to standard value   0.0231   0.0023 44 
Aging of the pipeline   0.1585   0.0154 20 
Synchronization error   0.1066   0.0104 25 
Power supply    0.0352  0.0022 45 
Monitor latency    0.0179  0.0011 47 
Communication system stability    0.2235  0.0137 22 
Electronic component failure rate    0.3081  0.019 17 
Sensor stability    0.157  0.0096 27 
Navigation signal    0.0247  0.0015 46 
Aging of equipment and facility    0.1084  0.0067 33 
Insulation resistance    0.0743  0.0046 38 
Ground resistance    0.0509  0.0031 43 
Water transport characteristic     0.1066 0.0171 19 
Cavitation noise of water flow     0.328 0.0526 
Sonic vibration     0.2319 0.037 
Siltation of the pilot channel     0.0231 0.0037 41 
Ratio of flow velocity in port area to standard value     0.0713 0.0114 24 
Pilot channel water level fluctuation     0.0327 0.0053 35 
Amplitude of upstream and downstream water level pulsation     0.0479 0.0077 29 
Ratio of navigable water depth to standard value     0.1585 0.0254 13 
Indicator layerHydraulic structureMetal structureHydraulic systemElectrical systemHydraulic powerWiSortInspection
0.26340.41740.09750.06150.1602
Ratio of damage degree to standard value 0.0771     0.0203 16 CR = 0.0454 < 0.1 
Deformation 0.2164     0.057 
Ratio of crack width to standard value 0.2889     0.0761 
Grinding depth 0.11     0.029 12 
Carbonization depth 0.0539     0.0142 21 
Ratio of stress to allowable value 0.0144     0.0038 40 
Ratio of seepage flow to standard value 0.0378     0.0099 26 
Ratio of strength to standard value 0.0267     0.007 31 
Cavitation depth 0.1556     0.041 
Ratio of elastic modulus to standard value 0.0192     0.0051 36 
Ratio of static stress to allowable value  0.1131    0.0472 
Fatigue  0.1524    0.0636 
Ratio of runout exceeding standard value  0.0169    0.0071 30 
Rust area ratio  0.0312    0.013 23 
Drift  0.0101    0.0042 39 
Deformation  0.2006    0.0837 
Amount of wear  0.0431    0.018 18 
Lintel ventilation volume  0.0596    0.0249 14 
Ratio of pressure bar clearance exceeding standard value  0.0128    0.0053 34 
Average vibration displacement  0.0823    0.0344 10 
Crack area ratio  0.2552    0.1065 
Friction ultrasound  0.0227    0.0095 28 
System pressure   0.0327   0.0032 42 
Piston rod deformation   0.328   0.032 11 
Running speed   0.0713   0.0069 32 
Piston rod vibration extreme acceleration   0.2319   0.0226 15 
Ratio of opening and closing force to design value   0.0479   0.0047 37 
Ratio of internal leakage amount to standard value   0.0231   0.0023 44 
Aging of the pipeline   0.1585   0.0154 20 
Synchronization error   0.1066   0.0104 25 
Power supply    0.0352  0.0022 45 
Monitor latency    0.0179  0.0011 47 
Communication system stability    0.2235  0.0137 22 
Electronic component failure rate    0.3081  0.019 17 
Sensor stability    0.157  0.0096 27 
Navigation signal    0.0247  0.0015 46 
Aging of equipment and facility    0.1084  0.0067 33 
Insulation resistance    0.0743  0.0046 38 
Ground resistance    0.0509  0.0031 43 
Water transport characteristic     0.1066 0.0171 19 
Cavitation noise of water flow     0.328 0.0526 
Sonic vibration     0.2319 0.037 
Siltation of the pilot channel     0.0231 0.0037 41 
Ratio of flow velocity in port area to standard value     0.0713 0.0114 24 
Pilot channel water level fluctuation     0.0327 0.0053 35 
Amplitude of upstream and downstream water level pulsation     0.0479 0.0077 29 
Ratio of navigable water depth to standard value     0.1585 0.0254 13 

Weight with variation coefficient method

The variation coefficient and weight of each indicator are calculated according to Formulas (22) to (25). The final result is shown in Table 25. Indicators data are included in the supplementary file.

Table 25

Weight of operation safety evaluation indicator based on the variation coefficient method

Target layerGuideline layerIndicator layer
IndicatorWeight
Operation safety Hydraulic structure Ratio of damage degree to standard value 0.0239 
Deformation 0.0253 
Ratio of crack width to standard value 0.0297 
Grinding depth 0.0102 
Carbonization depth 0.0078 
Ratio of stress to allowable value 0.0413 
Ratio of seepage flow to standard value 0.0129 
Ratio of strength to standard value 0.0104 
Cavitation depth 0.0202 
Ratio of elastic modulus to standard value 0.0098 
Metal structure Ratio of static stress to allowable value 0.0046 
Fatigue 0.052 
Ratio of runout exceeding standard value 0.0132 
Rust area ratio 0.0148 
Drift 0.0153 
Deformation 0.0245 
Amount of wear 0.0293 
Lintel ventilation volume 0.0175 
Ratio of pressure bar clearance exceeding standard value 0.0233 
Average vibration displacement 0.0197 
Crack area ratio 0.0371 
Friction ultrasound 0.0154 
Hydraulic system System pressure 0.0098 
Piston rod deformation 0.0202 
Running speed 0.025 
Piston rod vibration extreme acceleration 0.0151 
Ratio of opening and closing force to design value 0.0448 
Ratio of internal leakage amount to standard value 0.0237 
Aging of the pipeline 0.0032 
Synchronization error 0.0113 
Electrical system Power supply 0.0161 
Monitor latency 0.0193 
Communication system stability 0.0069 
Electronic component failure rate 0.0522 
Sensor stability 0.0135 
Navigation signal 0.0189 
Aging of equipment and facility 0.0191 
Insulation resistance 0.0298 
Ground resistance 0.0577 
Hydraulic power Water transport characteristic 0.0203 
Cavitation noise of water flow 0.017 
Sonic vibration 0.0342 
Siltation of the pilot channel 0.0028 
Ratio of flow velocity in port area to standard value 0.0131 
Pilot channel water level fluctuation 0.0202 
Amplitude of upstream and downstream water level pulsation 0.023 
Ratio of navigable water depth to standard value 0.0246 
Target layerGuideline layerIndicator layer
IndicatorWeight
Operation safety Hydraulic structure Ratio of damage degree to standard value 0.0239 
Deformation 0.0253 
Ratio of crack width to standard value 0.0297 
Grinding depth 0.0102 
Carbonization depth 0.0078 
Ratio of stress to allowable value 0.0413 
Ratio of seepage flow to standard value 0.0129 
Ratio of strength to standard value 0.0104 
Cavitation depth 0.0202 
Ratio of elastic modulus to standard value 0.0098 
Metal structure Ratio of static stress to allowable value 0.0046 
Fatigue 0.052 
Ratio of runout exceeding standard value 0.0132 
Rust area ratio 0.0148 
Drift 0.0153 
Deformation 0.0245 
Amount of wear 0.0293 
Lintel ventilation volume 0.0175 
Ratio of pressure bar clearance exceeding standard value 0.0233 
Average vibration displacement 0.0197 
Crack area ratio 0.0371 
Friction ultrasound 0.0154 
Hydraulic system System pressure 0.0098 
Piston rod deformation 0.0202 
Running speed 0.025 
Piston rod vibration extreme acceleration 0.0151 
Ratio of opening and closing force to design value 0.0448 
Ratio of internal leakage amount to standard value 0.0237 
Aging of the pipeline 0.0032 
Synchronization error 0.0113 
Electrical system Power supply 0.0161 
Monitor latency 0.0193 
Communication system stability 0.0069 
Electronic component failure rate 0.0522 
Sensor stability 0.0135 
Navigation signal 0.0189 
Aging of equipment and facility 0.0191 
Insulation resistance 0.0298 
Ground resistance 0.0577 
Hydraulic power Water transport characteristic 0.0203 
Cavitation noise of water flow 0.017 
Sonic vibration 0.0342 
Siltation of the pilot channel 0.0028 
Ratio of flow velocity in port area to standard value 0.0131 
Pilot channel water level fluctuation 0.0202 
Amplitude of upstream and downstream water level pulsation 0.023 
Ratio of navigable water depth to standard value 0.0246 
Table 26

Extension evaluation result of the operation safety of a certain ship lock

ItemN1N2N3N4MaxGrade
Guideline layer Hydraulic structure 0.0274 −0.3664 −0.5982 −0.6156 0.0274 
Metal structure −0.165 −0.297 −0.2465 −0.5641 −0. 165 
Hydraulic system −0.2526 −0.0668 −0.2999 −0.4482 −0.0668 
Electrical system −0.1762 −0.0365 −0.3104 −0.5341 −0.0365 
Hydraulic power −0.0268 −0.5116 −0.549 −0.442 −0.0268 
Target layer Operation safety −0.1062 −0.2968 −0.3938 −0.5416 −0.1062 
ItemN1N2N3N4MaxGrade
Guideline layer Hydraulic structure 0.0274 −0.3664 −0.5982 −0.6156 0.0274 
Metal structure −0.165 −0.297 −0.2465 −0.5641 −0. 165 
Hydraulic system −0.2526 −0.0668 −0.2999 −0.4482 −0.0668 
Electrical system −0.1762 −0.0365 −0.3104 −0.5341 −0.0365 
Hydraulic power −0.0268 −0.5116 −0.549 −0.442 −0.0268 
Target layer Operation safety −0.1062 −0.2968 −0.3938 −0.5416 −0.1062 

Game theory combination weighting method

Compared with the above result, the weight distribution of the two methods is different, so the weights need to be optimized.

For the base weight set {W1, W2}, , , , and weight vector set (12) can be written as follows:
(26)

The optimal solutions of Formula (26) are α1 = 0 8689 and α2 = 0.2534, which are then normalized, and the final results are and .

The final combination weight can be derived from Formula (15):

W* = (0.0211,0.0498,0.0656,0.0247,0.0128,0.0123,0.0106,0.0078,0.0363,0.0061,0.0376,0.061,0.0084,0.0134,0.0067,0.0704,0.0205,0.0232,0.0094,0.0311,0.0909,0.0108,0.0047,0.0293,0.011,0.0209,0.0137,0.0071,0.0127,0.0106,0.0053,0.0052,0.0122,0.0265,0.0105,0.0054,0.0095,0.0103,0.0155,0.0178,0.0445,0.0365,0.0035,0.0118,0.0086,0.0112,0.0252)

Calculation of the comprehensive correlation degree of multiple indicators and the rating

The correlation degree of a single indicator in Tables 1317 and the calculated weight are substituted into Formulas (7)–(9) to calculate the comprehensive correlation degree of multiple indicators. The final grade is evaluated as Table 26.

The result shows that the operation safety grade of the ship lock belongs to the first grade (normal state), and all the first-class indicators belong to the first grade, except for the hydraulic system and electrical system, which belong to the second grade (deterioration state). Among the second-class indicators, special attention should be paid to the following: the ratio of the strength to the standard value, the cavitation depth and the ratio of the elastic modulus to the standard value of the hydraulic structure; the rust area ratio and the lintel ventilation volume of the metal structure; the running speed of the hydraulic system; the power supply of the electrical system; and the sonic vibration and the amplitude of the upstream and downstream water level pulsation of the hydraulic power belonging to the fourth grade (shutdown state).

The operation safety evaluation of an in-service ship lock is extremely essential and has significant social and economic benefits. In this study, a ship lock operation safety evaluation system was systematically discussed. The safety accident examples of ship locks were counted, and the operation safety evaluation scheme suitable for a ship lock was formulated in a targeted manner. The safety evaluation indicator system of a ship lock was constructed and the evaluation method and process of ship lock operation safety based on extension theory were proposed to provide a basis for the safety evaluation of ship locks. The following conclusions were drawn.

Due to the complexity of a ship lock, the weight of the safety indicator could not be determined using a single weighting method. The combination weighting method based on the game theory used in this study could apply to the weight fusion of a ship lock operation safety indicator. Comparing the results of three types of weights, it was found that the combination weighting method was between the analytic hierarchy process and the variation coefficient method, showing that it combined the advantages of the two methods and made the results more accurate.

Notably, the limitation of this study was that the indicator system was too large, which led to very low weights and weakened the importance of key indicators. This could be improved by reducing the dimensionality and giving key indicators ‘one veto power’. In the future, lock safety evaluation should develop in the direction of real-time intelligence.

All authors contributed to the study's conception and design. Material preparation, data collection, and analysis were performed by Yaan Hu, Xin Wang, and Mingjun Diao. The first draft of the manuscript was written by Junman Li and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Statements and declarations were given by the National Key R&D Program of China (Grant number 2018YFB1600400).

All relevant data are included in the paper or its Supplementary Information.

The authors declare there is no conflict.

Baghban
A.
,
Jalali
A.
,
Shafiee
M.
,
Ahmadi
M. H.
&
Chau
K. W.
2019
Developing an ANFIS based Swarm concept model for estimating relative viscosity of nanofluids
.
Engineering Applications of Computational Fluid Mechanics
13
(
1
),
26
39
.
Buckley
J. J.
1985
Fuzzy hierarchical analysis
.
Fuzzy Sets & Systems
17
(
3
),
233
247
.
Changjiang Waterway Bureau
2004
Waterway Engineering Manual (Fine)
.
China Communications Publishing House
,
Beijing
.
Chen
J. W.
1983
Preliminary analysis of the causes of the fracture of the miter gate of Gezhouba No.2 ship lock
.
Journal of China Three Gorges University (Natural Sciences)
(
02
),
57
66
.
Chen
D. J.
2012
Health Index System and Evaluation of Lock Facilities System on the Grand Canal in Northern Jiangsu Province
.
Southeast University, Nanjing
.
Chen
G. B.
,
Gu
L. R.
,
Jia
L. J.
&
Ge
L.
2014
Variation of project benefit for land comprehensive improvement
.
Agricultural Engineering
4
(
2
),
56
61
.
Fan
R. G.
&
Han
M. C.
2006
Game Theory
.
Wuhan University Press, Wuhan
.
Feng
L.
,
Wang
Z. C.
,
Wang
C.
,
Dong
B. H.
,
Xia
D.
&
Wang
T. Y.
2017
Application of fuzzy comprehensive evaluation based on game theory to evaluate the renovation of irrigation districts
.
Henan Science
35
(
11
),
1889
1894
.
Guo
H.
&
Liu
L.
2011
A combination weighting method for public transportation safety evaluation index system of multi-disasters about large passenger terminals
. In
International Conference on Transportation Engineering
.
He
K. J.
2008
Study on Methods and Application for Post-Evaluation of Water-Saving Improvement Project in Large-Scale Canal Irrigation Area
.
Xi'an University of Technology, Xi'an
.
Hu
B. Q.
2001
The interval extension assessment method of water environmental quality and its application
.
Strategic Study of CAE
3
(
06
),
53
56
.
Jia
C.
,
Xiao
S. F.
&
Liu
N.
2003
Application of extenics theory to evaluation of tunnel rock quality
.
Chinese Journal of Rock Mechanics and Engineering
22
(
05
),
751
756
.
Jiang
J.
2011
Fuzzy Comprehensive Evaluation Model Based on Entropy Weight and Variation Coefficient Combination Weighting Method
.
Capital Normal University, Beijing
.
Jin
Y. X.
1983
Accident analysis of the top Hub of the herringbone gate of the No.2 ship gate of gezhouba project
.
Port & Waterway Engineering
(
07
),
33
36
.
JTS 320-2-2018
.
2018
Technical Code of Maintenance for Navigation Structure
.
JTS 304-2-2019
.
2019
Technical Specification for Safety Detection and Assessment of Navigation Junction
.
Kolosov
M. A.
2002
Shipping Lock (SL) Safety
.
Lai
C. G.
,
Chen
X. H.
,
Chen
X. Y.
,
Wang
Z. L.
,
Wu
X. S.
&
Zhao
S. W.
2015
A fuzzy comprehensive evaluation model for flood risk based on the combination weight of game theory
.
Natural Hazards
(
2
).
doi:10.1007/s11069-015-1645-6
.
Li
Y.
,
Hu
Y. A.
&
Xuan
G. X.
1999
Advances in study on hydraulics of navigation lock
.
Journal of Hydrodynamics
14
(
02
),
232
239
.
Li
J. M.
,
Lu
M.
,
Shu
X.
,
Xu
K.
&
Pan
S. F.
2019
Application of combination weighting method in comprehensive benefit evaluation on water-saving irrigation district
.
Henan Science
37
(
1
),
70
77
.
Li
M. C.
,
Si
W.
,
Ren
Q. B.
,
Song
L. G.
&
Liu
H.
2020a
An integrated method for evaluating and predicting long-term operation safety of concrete dams considering Lag effect
.
Engineering with Computers
37
,
1
15
.
(prepublish)
.
Li
M. X.
,
Sun
J.
,
Liu
D. H.
,
Li
Y.
,
Li
K. D.
,
Liu
W.
,
Xiao
J. L.
&
Hu
J. N.
2020b
A model for the optimization of the Shale Gas horizontal well section based on the combination of different weighting methods in the frame of the game theory
.
Fluid Dynamics & Materials Processing
16
(
5
),
993
1005
.
Lin
J.
2008
Analysis of causes of damage to gate panels of Huai'an ship lock
.
China Water Transport (Second Half of the Month)
8
(
01
),
29
30
.
Lu
H. Y.
2019
Research on safety evaluation method of urban rail transit operation
.
Management Observer
(
16
),
88
92
.
Nabipour
N.
,
Mosavi
A.
,
Hajnal
E.
,
Nadai
L.
,
Shamshirband
S.
&
Chau
K. W.
2020
Modeling climate change impact on wind power resources using adaptive neuro-fuzzy inference system
.
Engineering Applications of Computational Fluid Mechanics
14
(
1
),
491
506
.
Razavi
R.
,
Sabaghmoghadam
A.
,
Bemani
A.
,
Baghban
A.
,
Chau
K. W.
&
Salwana
E.
2019
Application of ANFIS and LSSVM strategies for estimating thermal conductivity enhancement of metal and metal oxide based nanofluids
.
Engineering Applications of Computational Fluid Mechanics
13
(
1
),
560
578
.
Senitskiy
Y. E.
&
Kuzmin
N. Y.
2012
The oscillations of ship lock bottom
.
Magazine of Civil Engineering
30
(
4
),
17
24
.
Sharafati
A.
,
Masoud
H.
,
Tiwari
N. K.
,
Bhagat
S. K.
,
Al-Ansari
N.
,
Chau
K. W.
&
Yaseen
Z. M.
2021
Performance evaluation of sediment ejector efficiency using hybrid Neuro-Fuzzy models
.
Engineering Applications of Computational Fluid Mechanics
15
(
1
),
627
643
.
Shen
B.
2007
The Application Research of Extension Method on Enterprise Performance Evaluation
.
Xi'an University of Architecture and Technology, Xi'an
.
Su
H. Z.
,
Wu
Z. R.
,
Dai
H. C.
&
Wen
Z. P.
2005
Multiple-index assessment for global stability of high-steep rock slope of the Three Gorges Project Permanent Shiplock
.
Chinese Journal of Rock Mechanics and Engineering
24
(
1
),
23
32
.
Sun
X. L.
,
Chu
J. D.
,
Ma
H. Q.
&
Cao
S. L.
2007
Improvement and application of matter element extension evaluating method
.
Journal of China Hydrology
27
(
01
),
4
7
.
Teng
K.
2011
The Research of Navigation Security Problem Related to Shiplock and Countermeasures
.
Wuhan University of Technology, Wuhan
.
Wang
S.
2015
AHP-based college students aerobics teaching method reformation development research
.
The Open Cybernetics & Systemics Journal
9
(
1
),
2194
2199
.
Wang
S. J.
&
Lee
C. F.
2001
Global quality of rock works for permanent shiplock of the three gorges project on Yangtze River, China
.
Chinese Journal of Rock Mechanics and Engineering
20
(
05
),
589
596
.
Wang
Y. H.
,
Huang
Y. K.
&
Li
M.
2013
Evaluation of urban rail transit line operational safety based on combination weighting method
.
Journal of Tongji University (Natural Science)
41
(
8
),
1243
1248
.
Wang
X. J.
,
Ai
P.
&
Ding
Q. Y.
2015
Application of fuzzy matter-element model based on combined weights in evaluation of water resources modernization
.
Journal of China Three Gorges University (Natural Sciences)
37
(
2
),
1
5
.
Xi
R. B.
,
Huang
P.
,
Lai
X. M.
&
Zheng
Q. F.
2010
Discussion on the method of determining weight by combination weighting method
.
China Collective Economy
(
19
),
75
76
.
Xing
W. T.
2016
Research on Quality Evaluation Index System of Water Transport Engineering
.
Zhejiang University of Technology, Hangzhou
.
Xu
H. F.
2007
Analysis on Space Structure and Research on Safety Evaluation of Miter Gate Lock
.
Hohai University, Nanjing
.
Yang
C. Y.
&
Cai
W.
2000
Study on extension engineering
.
Strategic Study of CAE
2
(
12
),
90
96
.
Yao
Z. M.
2003
Application of rock engineering system theory in the slope stability estimate
.
Journal of Anhui University of Science and Technology (Natural Science)
23
(
04
),
23
27
.
Zeng
J. J.
2014
Diagnosis of Vulnerability of Urban Water Sources in Yunnan Plateau Basin
.
Yunnan Normal University, Kunming
.
Zhang
C. H.
2001
Numerical Modelling of Concrete Dam-Foundation-Reservoir Systems
.
Tsinghua University Publishing House, Beijing
.
Zhang
Y. E.
2013
Safety Test Technology and Evaluation Method Study on Miter Gates of Ship Lock
.
Zhejiang University, Hangzhou
.
Zhang
Z.
&
Li
Y.
2020
Coupling coordination and spatiotemporal dynamic evolution between urbanization and geological hazards – a case study from China
.
Science of The Total Environment
728
,
1
12
.
Zhang
Y. D.
,
Guo
J.
,
Dai
X. C.
&
Zou
B.
2013
Operation safety risk evaluation of train control system based on multilevel extensible evaluation method
.
China Railway Science
34
(
05
),
114
119
.
Zhang
Z.
,
Li
Y.
,
Wang
X.
&
Li
H.
2021
Assessment of river health based on a novel multidimensional similarity cloud model in the Lhasa River, Qinghai-Tibet Plateau
.
Journal of Hydrology
603
,
1
18
.
Zhang
Z.
,
Li
Y.
&
Wang
X.
2022a
Investigating river health and potential risks using a novel hybrid decision-making framework with multi-source data fusion in the Qinghai-Tibet Plateau
.
Environmental Impact Assessment Review
96
,
1
20
.
Zhang
Z.
,
Liu
Y.
&
Li
Y.
2022b
Lake ecosystem health assessment using a novel hybrid decision-making framework in the Nam Co, Qinghai-Tibet Plateau
.
Science of the Total Environment
808
,
1
19
.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

Supplementary data