Catchment water quality models have many parameters, several output variables and a complex structure leading to multiple minima in the objective function. General uncertainty/optimization methods based on random sampling (e.g. GLUE) or local methods (e.g. PEST) are often not applicable for theoretical or practical reasons. This paper presents “ParaSol”, a method that performs optimization and uncertainty analysis for complex models such as distributed water quality models. Optimization is done by adapting the Shuffled Complex Evolution algorithm (SCE-UA) to account for multi-objective problems and for large numbers of parameters. The simulations performed by the SCE-UA are used further for uncertainty analysis and thereby focus the uncertainty analysis on solutions near the optimum/optima. Two methods have been developed that select “good” results out of these simulations based on an objective threshold. The first method is based on χ2 statistics to delineate the confidence regions around the optimum/optima and the second method uses Bayesian statistics to define high probability regions. The ParaSol method was applied to a simple bucket model and to a Soil and Water Assessment Tool (SWAT) model of Honey Creek, OH, USA. The bucket model case showed the success of the method in finding the minimum and the applicability of the statistics under importance sampling. Both cases showed that the confidence regions are very small when the χ2 statistics are used and even smaller when using the Bayesian statistics. By comparing the ParaSol uncertainty results to those derived from 500,000 Monte Carlo simulations it was shown that the SCE-UA sampling used for ParaSol was more effective and efficient, as none of the Monte Carlo samples were close to the minimum or even within the confidence region defined by ParaSol.
Skip Nav Destination
Article navigation
Research Article|
October 01 2007
A global and efficient multi-objective auto-calibration and uncertainty estimation method for water quality catchment models
A. van Griensven;
1Environmental Sciences, University of California, Riverside, CA 92507, USA now at: UNESCO-IHE Water Education Institute, Department of Hydroinformatics and Knowledge Management, PO Box 3015, 2601 DA Delft, The Netherlands[email protected]and BIOMATH, Department of Applied Mathematics, Biometrics and Process Control, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
E-mail: [email protected]
Search for other works by this author on:
T. Meixner
T. Meixner
2Environmental Sciences, University of California, Riverside, CA 92507, USA Now at: College of Engineering, Department of Hydrology and Water Resources, University of Arizona, 845 North Park Avenue, Tucson, AZ 85721-0158, USATel: +1 520 626153 Fax: +1 520 6211422 [email protected]
Search for other works by this author on:
Journal of Hydroinformatics (2007) 9 (4): 277–291.
Citation
A. van Griensven, T. Meixner; A global and efficient multi-objective auto-calibration and uncertainty estimation method for water quality catchment models. Journal of Hydroinformatics 1 October 2007; 9 (4): 277–291. doi: https://doi.org/10.2166/hydro.2007.104
Download citation file: