In this study, data mining using box plots and multivariate statistical analysis using factor analysis are employed for a spatio-temporal analysis of coastal water quality data from Tolo Harbour, Hong Kong. The analysis of box plots reveals pronounced spatial heterogeneity of the parameters studied. The spatial analysis clearly shows monitoring station TM2 in the Harbour Subzone to be most susceptible to eutrophication with the highest nutrient and algal biomass concentrations. The factor analysis brings to light dominant parameters to the ecological system under the coastal marine environment. The temporal analysis confirms the considerable decline in nutrient levels in recent years. In spite of this decline, the factor analysis indicates that nutrient processes play an important role even in recent years, suggesting an adequate supply of nutrients. It seems that they are being released from sources other than known point sources, possibly from nutrients accumulated in the sediments, necessitating steps to be undertaken for their control also. This study demonstrates the use of data mining techniques in the ecological system in Tolo Harbour.
Skip Nav Destination
Article navigation
Research Article|
October 01 2007
Data mining and multivariate statistical analysis for ecological system in coastal waters
Kwok-wing Chau;
1Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
Tel: +852 2766 6014; E-mail: [email protected]
Search for other works by this author on:
Nitin Muttil
Nitin Muttil
1Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
Search for other works by this author on:
Journal of Hydroinformatics (2007) 9 (4): 305–317.
Citation
Kwok-wing Chau, Nitin Muttil; Data mining and multivariate statistical analysis for ecological system in coastal waters. Journal of Hydroinformatics 1 October 2007; 9 (4): 305–317. doi: https://doi.org/10.2166/hydro.2007.003
Download citation file: