The ‘Bajo Grande’ Wastewater Treatment Plant has a design capacity of 2.78 m3/s, and discharges into the Suquia River (Córdoba, Argentina). The river has an average flow rate of 10 m3/s, with lower values during the summer. Currently, the treatment plant does not have an accurate discharge-measurement system prior to the discharge into the river, which makes it difficult to evaluate the dosing of the disinfection treatment. The outflow rate is measured in a straight flume. However, at the inlet section of the flume, a 180° sharp bend induces a complex turbulent flow with instabilities and low-frequency velocity fluctuations which are not appropriate for flow quantification. In this type of flow, most of the in situ flow discharge-measurement systems have great uncertainty. Therefore, in situ flow measurements with an Acoustic Doppler Current Profiler, Large-Scale Particle-Tracking Velocimetry techniques and a prototype-scale Detached Eddy Simulation model were combined to obtain a detailed characterization of the turbulent flow. The results provide flow rates, fields of mean flow velocity, temporal evolution, and characteristic parameters of the turbulence. This allowed a better understanding of the effects of turbulence and flow instabilities. The results provide a basis to validate numerical models used in the hydraulics design of contact chambers to improve the disinfection process.

  • The work focuses on the study of a complex turbulent flow, with flow instabilities and low-frequency fluctuations.

  • An Acoustic Doppler Current Profiler and Large-scale Particle Image Velocimetry (LS-PIV) were applied to characterize de turbulent flow in a prototype-scale contact chamber.

  • DES simulation was used to detailed characterization of a complex turbulent flow; particularly, the spatial and temporal evolution.

Graphical Abstract

Graphical Abstract
Graphical Abstract
This content is only available as a PDF.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).