Abstract
The impact of future climate change on streamflow in the Brahmani River basin, India has been assessed using a distributed parameter hydrological model Precipitation Runoff Modelling System (PRMS) and multi-model ensemble climate change scenarios. The multi-model ensemble climate change scenarios were generated using the Hybrid-Delta ensemble method for A2, A1B, and B1 emission scenarios for three different future periods of the 2020s (2010–2039), 2050s (2040–2069) and 2080s (2070–2099). There is an increase in annual mean temperature in the range of 0.8–1.0, 1.5–2.0 and 2.0–3.3 °C during the 2020s, 2050s, and 2080s, respectively. Annual rainfall is projected to change in the range of −1.6–1.6, 1.6–3.1, and 4.8–8.1% during the 2020s, 2050s and 2080s, respectively. Simulation results indicated changes in annual streamflow in the range of −2.2–2.5, 2.4–4.7, and 7.3–12.6% during the 2020s, 2050s, and 2080s, respectively. Simulation results showed an increase in high flows and reduction in low flows, but the frequency of both high and low flow increases during future periods. The results of this work will be useful in developing a water management adaptation plan in the study basin.