The climate change impacts on drought in the Korean peninsula were projected using Global Climate Model (GCM) output reconstructed regionally by an artificial neural network (ANN) model. The reconstructed model outputs were subsequently used as an input to project drought severity evaluated by Standard Precipitation Index (SPI). The original GCM output corresponds to the CGCM3.1/T63 under the 20C3M reference scenario and the IPCC A1B, A2 and B1 projection scenarios. Because in general GCM shows limitation in capturing typhoon generation occurred at sub-grid scale, the training and validation of the ANN model utilized a precipitation data set with typhoon-generated rainfall eliminated for enhancing the ANN's computational performance. The non-stationarity characteristics of SPI was examined using the Mann–Kendall test. The projection was implemented for the near future period (2011–2040), mid-term (2041–2070) and long-term (2071–2100) future periods. The results indicated mitigated drought severity under all scenarios in terms of frequency, magnitude and drought spells even for the mildest B1 scenario. The SDF (severity-duration-frequency) curves illustrate the common patterns of alleviated drought severity for most future scenarios and elongated drought duration. The reconstructed GCM projection recovers the underestimated precipitation and provided more realistic drought projection even though there would be still uncertainties of spatial and temporal variability.
Skip Nav Destination
Article navigation
Research Article|
June 20 2014
Drought frequency projection using regional climate scenarios reconstructed by seasonal artificial neural network model
J. H. Lee;
J. H. Lee
1Department of Civil Engineering, Joongbu University, Kumsan-gun, Chungnam, Korea
Search for other works by this author on:
S. J. Moon;
S. J. Moon
2Department of Civil and Environmental Engineering, Dankook University, Yongin-si, Gyeonggi-do, Korea
Search for other works by this author on:
B. S. Kang
2Department of Civil and Environmental Engineering, Dankook University, Yongin-si, Gyeonggi-do, Korea
E-mail: [email protected]
Search for other works by this author on:
Journal of Water and Climate Change (2014) 5 (4): 578–592.
Article history
Received:
November 01 2013
Accepted:
May 16 2014
Citation
J. H. Lee, S. J. Moon, B. S. Kang; Drought frequency projection using regional climate scenarios reconstructed by seasonal artificial neural network model. Journal of Water and Climate Change 1 December 2014; 5 (4): 578–592. doi: https://doi.org/10.2166/wcc.2014.130
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
eBook
Pay-Per-View Access
$38.00