Abstract
In this study, the impact of inter-seasonal climate variability on rainfed maize (Zea mays) production over the Wami-Ruvu basin of Tanzania is evaluated. Daily high-resolution climate simulations from the Coordinated Regional Climate Downscaling Experiment_Regional Climate Models (CORDEX_RCMs) are used to drive the Decision Support System for Agro-technological Transfer (DSSAT) to simulate maize yields. Climate simulations for the base period of 35 years (1971–2005) are used to drive DSSAT to simulate maize yields during the historical climate. On the other hand, climate projections for the period 2010–2039 (current), 2040–2069 (mid), and 2070–2099 centuries for two Representative Concentration Pathway (RCP45 and 85) emission scenarios are used to drive DSSAT to simulate maize yields in respective centuries. Statistical approaches based on Pearson correlation coefficient and the coefficients of determination are used in the analysis. Results show that rainfall, maximum temperature, and solar radiation are the most important climate variables that determine variation in rainfed maize yields over the Wami-Ruvu basin of Tanzania. They explain the variability in maize yields in historical climate condition (1971–2005), present century under RCP 4.5, and mid and end centuries under both RCP 4.5 and RCP 8.5.