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ABSTRACT

General circulation models suggest that changes in climatic parameters will have an effect on food production globally. Therefore, this study

assessed the impact of climate change on wheat–maize rotation areas in the Huang–Huai–Hai Plain (3H Plain). The projections generated

suggest an increase in precipitation during the wheat growth period (WGP) by 1.33–4.16% (2.6–8.3 mm) and 3.13–8.16% (6.2–18.0 mm)

under RCP4.5 and RCP8.5, respectively, relative to the base period (1981–2016). Across the 3H Plain, the mean temperature during the

WGP is projected to increase between 1.17–1.21 and 1.17–1.28 °C under RCP4.5 and RCP8.5, respectively. The projections during the

maize growth period (MGP) indicate an increase in the temperature between 1.29–1.92 and 1.84–2.08 °C under RCP4.5 and RCP8.5, respect-

ively. During the MGP, precipitation is also projected to increase by 7.41–9.73% (33.6–45.1 mm) and 6.63–14.78% (29.8–72.7 mm) under

RCP4.5 and RCP8.5 scenarios, respectively. For each 1% change in climatic factors, the comprehensive effect on yield was projected to

be 0.65 and 0.58% for wheat and �1.08 and �1.11% for maize, under RCP4.5 and RCP8.5, respectively, when other factors were kept con-

stant. The change in water resources will be insignificant during the WGP and more pronounced during the MGP. The study provides an

overview of changes in meteorological parameters and scientific evidence for climate change adaptation in the wheat–maize cropping

system.
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HIGHLIGHTS

• The temperature and precipitation are projected to increase under RCP4.5 and RCP8.5 for both winter wheat and summer maize.

• The change in climate variables is projected to be beneficial for wheat yield under both emission scenarios with the highest increase in

Shandong and parts of Henan.

• The summer maize yields are estimated to decrease due to increased temperature, particularly in the north 3H region.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY-NC-ND 4.0), which permits copying and

redistribution for non-commercial purposes with no derivatives, provided the original work is properly cited (http://creativecommons.org/licenses/by-nc-nd/4.0/).

://iwaponline.com/jwcc/article-pdf/13/8/2847/1094192/jwc0132847.pdf

https://orcid.org/0000-0003-4389-3358
https://orcid.org/0000-0002-5982-4093
mailto:meixurong@caas.cn
http://orcid.org/
http://orcid.org/0000-0003-4389-3358
http://orcid.org/0000-0002-5982-4093
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.2166/wcc.2022.202&domain=pdf&date_stamp=2022-07-19


Journal of Water and Climate Change Vol 13 No 8, 2848

Downloaded fr
by guest
on 24 April 202
GRAPHICAL ABSTRACT
1. INTRODUCTION

The increase in greenhouse gas emissions due to anthropogenic activities is no doubt an undisputable contributor to global
climate change. The International Panel on Climate Change (IPCC) issued a warning in 2018 about anthropogenic warming,

indicating an increase of 1.5 °C in global temperature between the years 2032–2052, without major cuts in carbon dioxide
(CO2) emissions (IPCC 2018). Agriculture and food systems are likely to be most affected by climate change and variability
because of their high dependence and sensitivity to climatic conditions (Motha & Baier 2005). There are also concerns that

climate change may lead to a loss in water and consequently will negatively affect crop yields of staple cereals such as wheat,
rice, and maize to varying degrees depending on regions and latitudes. The IPCC special report ‘Climate Change and Land’
(IPCC 2019) has reported adverse impact of observed climate change on wheat and maize yields in many lower-latitude

regions in recent decades, unlike higher latitudes where yields have generally increased. Maize and wheat projection statistics
at the global level confirm this trend, showing a yield increase for wheat and maize at high latitude and a decrease at low
latitude by the end of the century (Rosenzweig et al. 2014).

Agriculture in China, particularly Northeast China, has been one of the most sensitive areas to climate change in the
country during the last five decades (Lv et al. 2015). It is projected that climate change will have a significant impact on
China’s agriculture, as with each degree-Celsius increase in global mean temperature, the loss in yield is estimated to be
about 8.0% for maize and 2.6% for wheat for the period 2071–2100 in comparison with the 1981–2010 baseline. Considering

the global projections, it is important to analyze the impact of climate change on wheat and maize yield in the Huang–Huai–
Hai (3H) Plain, which is one-sixth (23.3 million ha) of China’s total cultivated area (134.86 million ha).

Climatic parameters, such as temperature and precipitation, have a direct impact on crop yield. The rising temperatures can

also affect crop production negatively due to shortened growing seasons and decreased photosynthetic accumulation in
plants (Lobell & Field 2007). Another effect of heat stress is the increased transpiration resulting in higher plant water
demand. Similarly, changes in rainfall patterns also affect yield, particularly in rain-fed cropping areas. The comprehensive
om http://iwaponline.com/jwcc/article-pdf/13/8/2847/1094192/jwc0132847.pdf
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effect of climate change on plant productivity understandably depends on the interaction of all these factors. Therefore, to

ensure suitable site-specific adaptation measures in the 3H Plain, it is critical to quantitatively estimate the impact of changes
in all climatic variables on agricultural production and to map the spatiotemporal variability of crop yield to empower the
resource managers with the information to ensure best management strategies.

Several studies in China have conducted statistical downscaling and employed process-based crop models to study the
impact of climate change on crop yield and change in irrigation demand (Tang et al. 2018; Liu et al. 2021). The relationship
between climate variability and crop yield has been confirmed in many studies using statistical approaches. To simulate crop
yield using process-based models, climate inputs are required at a finer spatial resolution, and therefore, global or regional

scale projections are not adequate. Therefore, crop models in combination with downscaled future climate data from
global circulation models (GCMs) are an important tool to assess the crop response to various climate scenarios, irrigation
regimes, and agronomic management conditions.

Even though a lot of research has been done in China related to statistical downscaling and the impact of change in climatic
variables on meteorological patterns, the impact of climatic changes has been least studied in crop rotation systems, particu-
larly wheat and maize. Therefore, there is a need to quantify and assess the impact of climate change on yield to further

expand the knowledge for climate adaptation potential in agricultural applications. The goal of this study was to understand
the impact of climate change in the wheat–maize cropping system at 90 study locations in the 3H Plain. The specific objec-
tives of the study were to (1) produce downscaled climate data for the selected study sites; (2) explore the change in

temperature and precipitation during winter wheat and summer maize crop growth periods, and (3) understand the
impact of climatic changes on the wheat and maize yield in the 3H Plain. The impact of climate change results has been pro-
duced for medium (RCP4.5) and high (RCP8.5) emission scenarios (2016–2030, 2031–2070, and 2071–2099). To simulate the
crop yields, the AquaCrop Model was used for historical and future timelines.

2. MATERIAL AND METHODS

2.1. Study area

This study focused on the 3H Plain, which lies within latitudes 31 °140N to 40 °250N and longitudes 112 °330E to 120 °170E
(Li et al. 2017), and covers approximately 350,500 km2. The 3H Plain includes the area of five provinces (Shandong,

Hebei, parts of Henan, and northeastern parts of Anhui and Jiangsu) and two municipalities (Beijing and Tianjin) (Wang
et al. 2018). The croplands in this region constitute around one-sixth (23.3 million ha) of China’s total cultivated area (134.86
million ha) and contribute more than 70% of the winter wheat and 30% of the summer maize production to China’s total

harvest (Li et al. 2017). The 3H Plain is an alluvial plain formed by the intermittent flooding of the Huang He (Yellow
River), Huai He, and Hai He rivers. The climate of the region falls in the East Asian Temperate Monsoon Climate zone
(Li et al. 2017), with an annual mean temperature and precipitation varying between 8 and 15 °C and from 430 to

1,390 mm, respectively, which decreases gradually from the southeast to the northwest. The region follows a wheat (early
October to early June of the subsequent year) and maize (mid-June to late September) crop rotation system (Wang et al.
2018). Since summer (June–September) receives 60–80% of the annual precipitation in the region, abundant water is avail-
able for the summer maize but severe water shortages are experienced during the winter wheat season. A total of 90 study

sites (32 in Hebei, 32 in Shandong, 13 in Henan, 4 in Jiangsu, and 3 each in Beijing, Tianjin, and Anhui) were selected for
this study (Figure 1).

2.2. Climate data

The data used in this study included meteorological data (1978–2018) and GCM data (2016–2100). The meteorological data
used in this study were the China Meteorological Forcing Dataset (CMFD) developed by the National Tibetan Plateau Data
Center (TPDC), Beijing, China. This data had a spatial and temporal resolution of 0.1° and 3 h, respectively, which were
updated and evaluated regularly by the TPDC (He et al. 2020). The dataset was released in 2019 and made through a com-

bination of remote sensing products, a reanalysis dataset, and in situ observation data at weather stations. The daily mean,
maximum, and minimum temperatures and precipitation data for the period of 1979–2018 were used to generate future cli-
mate predictions. The data from the TPDC climate forcing product were extracted using China Meteorological

Administration (CMA) ground weather observation station locations issued in its list available at the CMA website (http://
data.cma.cn/). The TPDC data have shown a high correlation with the data available from the ground observation stations
of the CMA and can be used for a wide range of applications at a finer resolution.
://iwaponline.com/jwcc/article-pdf/13/8/2847/1094192/jwc0132847.pdf
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Figure 1 | Location map of study sites in the 3H Plain for which downscaled products (precipitation and maximum and minimum temp-
eratures) were produced and crop growth simulations were carried out.
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The second-generation Canadian Earth System Model (CanESM2) consists of the physical coupled atmosphere-ocean
model CanCM4 coupled to a terrestrial carbon model (CTEM), and an ocean carbon model (CMOC) was used for the
period 2016–2100. CanESM2 predictor’s data were developed by the Canadian Centre for Climate Modeling and Analysis

(CCCma) of Environment and Climate Change Canada representing the IPCC Fifth Assessment Report (AR5). The predictor
data were available in the 128�64 grid cells covering the global domain according to the T42 Gaussian grid at the uniform
horizontal resolution of 2.8125° along the longitude and the latitude (available at http://climate-scenarios.canada.ca). The

National Centers for Environmental Prediction (NCEP) reanalysis climatic data were used to identify appropriate atmos-
pheric variables and calibrate and validate the model predictions in historical time, and CanESM2 climatic data were
used to generate RCP4.5 and RCP8.5 scenario datasets.
om http://iwaponline.com/jwcc/article-pdf/13/8/2847/1094192/jwc0132847.pdf
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2.3. Statistical downscaling model

Statistical Downscaling Model (SDSM) 4.2, open-source software, which is a decision support tool to assess the local climate
change impacts using a robust statistical downscaling technique, was used in this study. The SDSM supports the creation of

multiple, low-cost, and site-specific scenarios from daily weather variables, such as maximum and minimum temperatures,
precipitation, and humidity under current and future regional climate forcing. The SDSM also produces a range of statistical
parameters such as variances, frequencies of extremes, and spell lengths. The statistical software provides the support for pre-
dictor (weather station historical data) pre-screening, calibration, diagnostic testing, statistical analysis, and graphing of the

climate data. The SDSM has been applied in various geographical settings across the globe to produce high-resolution climate
change future scenarios including various parts of China. In this study, the SDSM was used to downscale the climate data of
each station by establishing the statistical relationship between predictors and predictands using multi-linear regression and

stochastic bias correction techniques.
2.4. Data processing

The data processing was divided into five steps, namely, predictor selection, the calibration of daily weather predictands using

selected GCM predictors, the generation of model predictions for the historical period (1979–2018), the validation of the
model predictions with observed data, and the generation of the future downscaled weather series based on the best-identified
predictors. Before any data processing, quality control of observed data for all weather variables was done for each study

location and ensured that there were no data gaps.
First, the empirical relationship between the CMFD predictands (e.g. temperature and minimum and maximum tempera-

tures) and the NCEP predictors (e.g. specific humidity, precipitation, geopotential height, and mean sea level pressure) was
identified, which varied over space and time. NCEP predictors showed a high correlation with the observed historical

weather data; therefore, they were used for calibration and validation of the SDSM output results.
Suitable NECP predictors (from Table 1) were first selected based on the strength of their empirical relationship with pre-

dictands (temperature and precipitation). Correlation matrix, partial correlation, and p-value statistics were used to define

the strength of the relationship between predictor and predictand, which varied over space and time. The probable predic-
tors displaying significant correlation at 95% confidence level with the observed data were selected. Furthermore, the
exploration of predictor and predictand relationship was also carried out using scatter plot analysis. In this study, weather

data for 90 locations were screened for three weather variables (precipitation and maximum and minimum temperatures).
Therefore, 26 large-scale predictors were analyzed more than 7,020 times (90 stations� 26 large-scale predictors� 3
predictands).
Table 1 | List of 26 large-scale predictors and their corresponding variable names

No. Short variable name Predictor names No. Short variable name Predictor names

1 mslpgl Mean sea level pressure 14 p5zh 500 hPa Divergence of true wind

2 p1_f 1,000 hPa Wind speed 15 p850 850 hPa Geopotential

3 p1_u 1,000 hPa Zonal wind component 16 p8_f 850 hPa Wind speed

4 p1_v 1,000 hPa Meridional wind component 17 p8_u 850 hPa Zonal wind component

5 p1_z 1,000 hPa Relative vorticity of true wind 18 p8_v 850 hPa Meridional wind component

6 p1th 1,000 hPa Wind direction 19 p8_z 850 hPa Relative vorticity of true wind

7 p1zh 1,000 hPa Divergence of true wind 20 p8th 850 hPa Wind direction

8 p500 500 hPa Geopotential 21 p8zh 850 hPa Divergence of true wind

9 p5_f 500 hPa Wind speed 22 Prcp Total precipitation

10 p5_u 500 hPa Zonal wind component 23 s500 500 hPa Specific humidity

11 p5_v 500 hPa Meridional wind component 24 s850 850 hPa Specific humidity

12 p5_z 500 hPa Relative vorticity of true wind 25 shum 1,000 hPa Specific humidity

13 p5th 500 hPa Wind direction 26 temp Air temperature at 2 m

://iwaponline.com/jwcc/article-pdf/13/8/2847/1094192/jwc0132847.pdf
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The second step was the calibration of the SDSM using the selected predictors for a specific predictand at each of the study

locations (Figure 1). For each predictand, the model was calibrated under an unconditional process for maximum and mini-
mum temperatures and a conditional process for precipitation on a monthly scale. Unconditional processes follow as a direct
link between large-scale predictands and local-scale predictors, while conditional processes depend on an intermediate vari-

able between predictands and predictors. Therefore, the temperature was modeled as unconditional and precipitation as a
conditional process.

In this study, the downscaling process was carried out for all 90 study locations (Figure 1), and 20 ensembles were produced
for each variable and location. The mean of 20 ensembles has been taken by writing the code in R for further use in the study

(Supplementary material S1). Ideally, the model is calibrated using part of the observed available data, withholding the
remainder of the data for independent model validation. In this study, the observed data were available for the period
1979–2018 (40 years). Half of the data (1979–1998) were used for calibration and the remainder was held for independent

model validation.
In the third step, for the validation period, the weather generator produced ensembles of synthetic daily weather series,

given observed predictor variables and regression model weights produced in the calibration. As a fourth step, performance

analysis of the observed and modeled data was carried out through analyzing the unconditional and conditional statistics of
both observed and model datasets. The data for both periods were plotted on line and bar graphs to compare and decide if the
model predicted accurate results. The results were compared on a monthly basis to have a better understanding. Bias correc-

tion was then applied to correct the model bias. In the SDSM, stochastic techniques are included to improve the model
performance in reproducing the observed data by artificially inflating the variance of the model output. In the final step,
after checking the validation results, the calibrated model was used to generate future scenarios using the CanESM2 predic-
tors available under RCP4.5, and RCP8.5 from 2016 to 2099. Figure 2 shows the downscaling workflow of the SDSM used in

this study.

2.5. Use of crop model and projected potential yield

For the historical period (2008–2016), the growth of winter wheat and summer maize was simulated based on the soil data,
field management, and crop phenology data obtained from the published literature for the Xiaotangshan County in Beijing

(Jin et al. 2014); Luancheng County in Hebei (Umair et al. 2017); Xinxiang County in Henan (Tang et al. 2018); Taian County
in Shandong (Bian et al. 2016) and Guangde County in Anhui (Chen et al. 2016). The literature also provided sufficient
Figure 2 | Schematic workflow of the SDSM to generate daily climate data.
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information regarding sowing and harvesting dates, irrigation timing, amounts, and other management measures needed for

calibration and validation of the AquaCrop Model (Shirazi et al. 2021) (Table 2). The calibration process also involved adjust-
ing the non-conservative parameters, which included initial canopy cover CCo (%), canopy growth coefficient (CGC),
coefficients for triggering water stress affecting leaf expansion, and canopy senescence until a close match between observed

and simulated yield and biomass was obtained. The performance was evaluated by comparing the simulated grain yield
results and the observed grain yield data obtained from the literature under full irrigation for both winter wheat and
summer maize during the 2011–2016 period. The AquaCrop model was then used to simulate the potential yield of winter
wheat and summer maize using downscaled data for future scenarios for the period 2016–2099.
2.6. Projected climate and yield data analysis for the wheat and maize growth period

The projected changes in the weather variables (precipitation and maximum and minimum temperatures) and potential yield
for both future climate scenarios (RCP4.5 and RCP8.5) were analyzed for three timelines: 2030s (2016–2040), 2050s (2041–

2070), and 2080s (2071–2099). Under both RCP4.5 and RCP8.5 scenarios, the increase in precipitation and mean, maximum,
and minimum temperatures was projected relative to the base period (1981–2016). The period from early October to mid-
June is considered as the winter wheat growth period (WGP) and mid-June to the end of September as the summer

maize growth period (MGP) as this cycle is widely practiced in wheat and maize rotation areas across the 3H Plain, but
in the lower regions of the 3H Plain, the maize harvest is around mid-September. In this study, we considered wheat and
maize crop cycles based on actual agronomic conditions that varied between different provinces in the 3H Plain. The ordin-
ary Kriging method was used to analyze the changes by generating spatial distribution maps for all variables in ArcGIS-

V10.1.
2.7. Evaluation of model performance

The monthly model results for precipitation and maximum and minimum temperatures were evaluated within the SDSM

model as it offers conditional and unconditional statistical methods to assess the results by comparing observed and
model outputs. For further evaluation, the statistical indices chosen in this study include the coefficient of determination
(R2), root mean square error (RMSE), mean absolute error (MAE), percent deviation, and index of agreement (d) using

Equations (1)–(5). The performance of the model outputs from both the SDSM and the AquaCrop models was evaluated
using the above-mentioned indices. The evaluation results of the SDSM model for all 90 locations have been provided in
Table 2 | Parameters used in the AquaCrop model to simulate winter wheat and summer maize cropping during the calibration and
validation period

Province Beijing Hebei Henan Shandong Anhui Hebei

County Xiaotangshan Luancheng Xinxiang Taian Guangde Wuqiao

Crop type WW WW WW WW WW SM

Cultivar type Jingdong8 Kenong199 Bainong207 Jimai22 Yangmai20 Zhengdan958

Sowing date 25 Sep 2011 10 Oct 2012 18 Oct 2015 7 Oct 2014 28 Oct 2014 16 June 2015

Harvest date 9 June 2012 11 June 2013 5 June 2016 9 June 2015 3 June 2015 4 Oct 2015

Calibration year 2011–2012 2012–2013 2015–2016 2014–2015 2014–2015 2015

Validation year 2008–2009 2011–2012 – 2013–2014 – 2014, 2013

Plants (ha) 333,000 250,000 250,000 250,000 250,000 75,000

Harvest index 46 48 52 48 41 53

Physiological maturity
(GDD)

2,198 1,953 2,327 2,498 2,135 1,925

Irrigation (mm) 273 369 240 120 – 75

Reference literature Jin et al.
(2014)

Umair et al.
(2017)

Tang et al.
(2018)

Bian et al.
(2016)

Chen et al.
(2016)

Wang et al.
(2018)
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Supplementary material (S2).
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where Pi indicates predicted values, Oi indicates observed values, and �O and �P indicate the mean of observed and predicted

data, respectively.
For R2, the results closer to 1 indicate a perfect fit. For RMSE, a result close to zero indicates a better fit of the model. MAE

measures the absolute value of the difference between the simulated value and the observed value. The values can range from

0 to infinite. Lower values represent a better agreement between predicted and observed values. Index of Agreement (IOA)
measures how well the model produced the estimates, the value of 1 indicates a perfect match between observed and pre-
dicted and 0 indicates no agreement at all.

We also used multiple regression analysis to examine the relationship between forecasted yield and climate predictors

downscaled for the future time period. The strength of the relationship between dependent (yield) and independent (precipi-
tation and maximum and minimum temperatures) variables was determined, and the importance of each of the climatic
predictors to the relationship was assessed with the effect of other predictors statistically eliminated. Using linear regression,

we tried to understand the change in forecasted yield, given one-unit change in precipitation and temperature. We specified
the formula for multiple linear regressions as followed in Equation (6). We also linearized the equation by taking the logar-
ithm of both sides as shown in Equation (7).

y ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ 1 (6)

ln(y) ¼ b0 þ b1ln(X1)þ b2ln(X2)þ b3ln(X3)þ 1 (7)

where β0 is the intercept when all X are set to zero, β1 to β3 are regression coefficients for the climatic parameters and ɛ is the
model error. We denoted X1 to precipitation, X2 to maximum temperature, and X3 to minimum temperature.
3. RESULTS

3.1. Technical validation and evaluation

3.1.1. Statistical Downscaling Model

The monthly observed and modeled results were compared in the SDSM model by generating summary statistics such as
monthly mean, maximum, 95th percentile, and variance. An explanatory example of observed and modeled output compari-

son of monthly mean, maximum, and 95th percentile during the validation period for three representative sites (selected
based on their weather conditions representative of other study sites) has been provided in Figure 3, indicating the modeling
precision for all 12 months. However, over- and underestimations are evident in modeling the monthly maximum values of
om http://iwaponline.com/jwcc/article-pdf/13/8/2847/1094192/jwc0132847.pdf
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Figure 3 | Observed and modeled output comparison of monthly mean, maximum, and 95th percentile of maximum temperature (a-c),
minimum temperature (d-f), and precipitation (mm) (g-i) for three representative sites in the 3H Plain. (Continued).
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both maximum and minimum temperatures, which can be due to the presence of outliers in the observed data. The results
show that the model accuracy is higher for maximum and minimum temperatures as compared to precipitation, mainly
because local temperatures are largely interconnected with regional climate forcing, whereas precipitation is affected by
://iwaponline.com/jwcc/article-pdf/13/8/2847/1094192/jwc0132847.pdf



Figure 3 | (Continued).
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many local factors such as prevailing winds, seasonal winds, presence of mountains, and mean sea level pressure at a

given site.
The model results of the bias-corrected weather data for the validation period (1999–2018) were evaluated based on the R2,

RMSE, MAE, percent bias, and IA. For the mean monthly sum of the precipitation, R2 (0.925–0.993), RMSE (0.237–1.007),

MAE (0.237–1.007), percent bias (+3.7%), and IA (0.954–0.996) were in the acceptable range at 0.05 significance level,
which indicated that the model had the feature of high fitting precision.

The R2 (0.993–0.999), RMSE (0.355–1.110), MAE (0.264–0.967), percent bias (�0.1 to �1.007%), and IA (0.996–0.999) for

the mean monthly maximum temperature also showed model results fitting with higher accuracy with the observed data. The
statistical evaluation results for the mean monthly minimum temperature were as follows: R2 (0.997–0.999), RMSE (0.223–
2.120), MAE (0.163–1.823), percent bias (�3 to �4%), and IA (0.990–0.999) indicate the results range for all study locations.

The correlation between mean monthly observed and simulated results of precipitation and maximum and minimum temp-
eratures has also been provided separately in Figure 4 at the monthly level for the validation period (1999–2018). The results
of R2, RMSE, MAE, percent bias, and IA used to evaluate the model performance have been provided in the Supplementary
material (S2) for all study locations and selected variables.
3.1.2. The AquaCrop model

Crop yields were simulated for both winter wheat and summer maize using agronomic practices mentioned in Table 2 (sec-

tion 2.5), which are widely used across the 3H Plain. For all locations of winter wheat, the percent deviation of grain yield
estimates from the observed data was between 0.42 and �11.0% for both the calibration and validation stages. Similarly, for
summer maize, the percent deviation of grain yield estimates from the observed data varied between �1.44 and �8.90% for

both calibration and validation stages, respectively. The RMSE between the observed and simulated grain yield was 0.12–
1.01 t ha�1 for winter wheat, while it was 0.50–0.53 t ha�1 for summer maize. Overall, the calibration results show a reason-
ably close match between the observed and those simulated by the model for both winter wheat and summer maize.
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Figure 4 | Correlation between mean monthly observed and simulated results of climatic variables, i.e., Precipitation, Maximum temperature
(Tmax), and minimum temperature (Tmin) for the validation period (1999-2018) at all 90 study sites. (Each data point represents a mean
monthly value of one station location.)
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3.2. Change in temperature and precipitation trends

Figure 5(a) and 5(b) shows the change in precipitation (mm), and Figure 5(c) and 5(d) shows the increase in mean tempera-
ture (°C) projected for the 2030s (2016–2040), 2050s (2041–2070), and 2080s (2071–2099) relative to the baseline period of
1981–2016 for the medium emission scenario (RCP4.5) and the high-emission scenario (RCP8.5) for winter WGP and

summer MGP, respectively.
The mean temperature during the winter WGP is projected to increase by 0.90–1.85 °C under RCP4.5 and 0.90–2.34 °C

under RCP8.5 across the 3H Plain from 2016 to 2099, relative to the baseline period (1981–2016). The mean temperature

during the summer MGP will increase by 0.90–3.13 °C under RCP4.5 and 0.90–3.58 °C under RCP8.5 across the 3H Plain
from 2016 to 2099, relative to the baseline period. Parts of Shandong and Henan provinces will experience the most warming
during both crop growing periods (Figures 6 and 7). In terms of the whole study area, the mean temperature is projected to

experience a rise of about 1.25 °C for RCP4.5 and 1.35 °C for RCP8.5 during the winter WGP and 1.85 °C for RCP4.5 and
1.92 °C for RCP8.5 during the summer MGP for the period 2016–2099 with significant spatial variations.

The change in mean monthly maximum and minimum temperatures has been provided in Figure 8(a) and 8(b) for winter

WGP and summer MGP, respectively, for the 2030s, 2050s, and 2080s under RCP4.5 and RCP8.5 compared to the base
period. The difference in the changes under RCP4.5 is relatively lower as compared to RCP8.5. A significant increase is pro-
jected in the mean monthly temperature from October to December and May to September during both crop growth periods.
The maximum temperature and minimum temperature will increase significantly from June to September in the summer

MGP and October to December during the winter WGP. However, the monthly mean maximum temperature from January
to April in the winter WGP will not increase significantly. The month of June is the maturity and harvest for winter wheat and
planting of summer maize. The greatest increase in the maximum temperature (2.0 °C) is anticipated in the month of October,

while the greatest increase in the minimum temperature (2.07 °C) is projected in the month of June during the winter WGP
under the RCP8.5 scenario in the 2080s. During the summer MGP, the months of August and September are projected to face
greater warming in the 2080s under RCP8.5.
://iwaponline.com/jwcc/article-pdf/13/8/2847/1094192/jwc0132847.pdf



Figure 5 | Projected changes in the sum of the precipitation (mm) (a,b) and mean temperature (°C) (c,d) during the winter WGP and the
summer MGP for the scenario period 2030s, 2050s, and 2080s under RCP4.5 and RCP8.5, relative to the mean for the base period (red dashed
line). Please refer to the online version of this paper to see this figure in colour: http://dx.doi.org/10.2166/wcc.2022.202.
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Figure 6 | Centigrade (°C) increase during the winter WGP from 2016 to 2099, relative to the base period (1981–2016) across the 3H Plain in
2030s, 2050s, and 2080s under RCP4.5 (a–c) and RCP8.5 (d–f), respectively.

Journal of Water and Climate Change Vol 13 No 8, 2859

Downloaded from http
by guest
on 24 April 2024
The changes in precipitation results shown in Figures 9 and 10 also suggest that there will be an increasing trend in the

precipitation, with summer maize receiving more increase as compared to winter wheat. Shandong province is projected
to experience more precipitation during both crop growth periods. In terms of the whole study area, during the winter
WGP, the increase in precipitation is 1.33, 3.19, and 4.17% in the 2030s, 2050s, and 2080s, respectively, for RCP4.5 and

3.13, 6.13, and 8.61% in the 2030s, 2050s, and 2080s, respectively, for RCP8.5, relative to the base period (191 mm)
(Figure 5(a)). For the summer MGP, the increase in precipitation is 7.41, 9.21, and 9.73% in the 2030s, 2050s, and 2080s,
respectively, for RCP4.5 and 6.63, 10.19, and 14.78% in the 2030s, 2050s, and 2080s, respectively, for RCP8.5, relative to

the base period (419 mm) (Figure 5(b)). The precipitation increment is higher under RCP8.5 as compared to RCP4.5.

3.3. Impact of temperature and precipitation variables on wheat and maize yield

To better understand the functional relationship between independent variables (precipitation and maximum and minimum
temperatures) and dependent variable (yield), we conducted multiple regression analysis to know the strength of the relation-

ship (Table 3) and the projected change in yield with the change in climatic factors. The analysis was carried out to better
understand the relevant contribution of each of the independent variables to the total variance for yield. The results in
Table 3 show the strength of relationship between the wheat and maize yield and independent climatic variables and their

significance under both RCP4.5 and RCP8.5. The relationship of winter wheat was significant (p� 0.05) with precipitation
and maximum and minimum temperatures under both RCPs for all time periods. For summer maize, the negative relationship
of yield is prominently significant (p� 0.05) with minimum and maximum temperatures under both RCP scenarios.
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Figure 7 | Centigrade (°C) increase during the summer MGP from 2016 to 2099, relative to the base period (1981–2016) across the 3H Plain in
the 2030s, 2050s, and 2080s under RCP4.5 (a–c) and RCP8.5 (d–f), respectively.
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The summary of the entire regression model can be seen in Table 4, which shows that a significant amount of variation in
yield can be explained by the change in our independent climatic variables.

The regression coefficients were produced to understand the effect of change in independent variables on yield under

RCP4.5 and RCP8.5 (Table 5). Finally, to better understand the perspective, we used the climate estimates (precipitation
and maximum and minimum temperatures) under RCP4.5 and RCP8.5, and analyzed the effects of changes on yield separ-
ately and combined for all time periods (Table 6). For winter wheat, irrigation is widely applied and has a significant effect on

crop yield; therefore, we included irrigation as part of the analysis.
For winter wheat, an increase of every 1% in precipitation is contributing to increase the yield by 0.68%, while the increase

in maximum temperature gives a decrease of 0.72% of yield under RCP4.5. The increase in 1% minimum temperature is
increasing the wheat yield by 0.39% under RCP4.5, while the increase is merely 0.13% under RCP8.5, which indicates

that the inhibitory effect of increased maximum temperature is more pronounced as compared to the minimum temperature.
With every 1% increase in irrigation, the increase in wheat yield is 0.30% under RCP4.5 and 0.20% under RCP8.5. In terms of
the comprehensive effect of 1% change in climatic variables and irrigation is beneficial to the wheat yield by an increase of

0.65% under RCP4.5 and 0.54% under RCP8.5.
We used estimates of climate change to obtain the effects on the projected yield under RCP4.5 and RCP8.5 (Table 6) for

both winter wheat and summer maize. For winter wheat, an increase in the maximum temperature gives a decrease in yield,
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Figure 8 | Mean monthly changes in the projected maximum temperature (a) and the minimum temperature (b) with respect to the base
period under RCP4.5 and RCP8.5 scenarios during the winter WGP and the summer MGP.
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while an increase in precipitation and minimum temperature increases the yield under RCP4.5 for the whole study area. A
similar effect has been observed under RCP8.5, but this increase is relatively less as compared to RCP4.5. The comprehensive

effect of an increase in all climatic variables will benefit wheat yield with an increase under both RCP scenarios. The positive
effect of the increase in climatic variables will increase gradually from the 2030s to 2080s, and the study area experiences a
substantial increase in precipitation counteracting the negative effect of rising temperatures during the winter WGP.

For summer maize, the increase in precipitation and maximum and minimum temperatures is projected to decrease yields
under RCP4.5. The effect of increased precipitation under RCP8.5 becomes beneficial to increase the yields, but the increased
maximum and minimum temperatures are projected to decrease the yields. The comprehensive effect of all variables is pro-

jected to decrease maize yields under both RCP scenarios. The highest decrease in maize yields was projected in the 2080s
under both RCP scenarios.

When changes in climatic parameters (precipitation and maximum and minimum temperatures) were taken into account,

the spatial distribution of winter wheat yield tends to increase across all RCP scenarios and timelines (Figure 11). It is pro-
jected that climatic parameters will contribute to increase the wheat yield particularly in Shandong province and parts of
Henan province that are also expected to have more precipitation under RCP4.5 and RCP8.5 (Figure 9). The precipitation
patterns in the north 3H region will remain similar to present conditions, resulting in a slight increase in yield mainly due

to an increase in the minimum temperature.
Figure 12 shows the impact of change in climatic parameters on summer maize yield. The effect of increased temperature

during the summer MGP is attributing to the decrease in maize yields. Under RCP4.5, the decrease in maize yields has been

projected in Beijing, Tianjin and central Hebei with the highest decrease in the 2080s. Under RCP8.5, the decrease in maize
yields is much more evident in the 2050s and 2080s, and all parts of Hebei, Beijing, Tianjin and Shandong are estimated to
experience the effect of warming on maize yields up to 0.5 t ha�1 relative to the base period.
://iwaponline.com/jwcc/article-pdf/13/8/2847/1094192/jwc0132847.pdf



Figure 9 | Change in precipitation during the winter WGP from 2016 to 2099 relative to the base period (1981–2016) across the 3H Plain in
the 2030s, 2050s, and 2080s under RCP4.5 (a–c) and RCP8.5 (d–f), respectively.
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Figure 13 shows the impact of climate change on winter wheat potential yield under RCP4.5 (Figure 13(a)–13(d)) and
RCP8.5 (Figure 13(e)–13(h)) across the 3H Plain on an annual basis. A comprehensive effect of the three parameters on
the winter wheat yield is net positive in both scenarios; however, the yield demonstrates a stronger positive response
under the RCP4.5 scenario (Figure 13(d)) as compared to RCP8.5 (Figure 13(h)). Considering individual parameters such

as precipitation and minimum temperature can be observed to have a positive impact on yield, unlike maximum temperature,
which shows a negative correlation with yield under both RCP4.5 and RCP8.5. Effects of precipitation can be observed to be
more pronounced in the RCP8.5 scenario as compared to RCP4.5 (Figure 13(a) and 13(e)).

Figure 14 shows the impact of climate change on summer maize potential yield under RCP4.5 (Figure 14(a)–14(d)) and
RCP8.5 across the 3H Plain on an annual basis. A comprehensive effect of the three parameters on the summer maize
yield is net negative, unlike their effect observed on winter wheat in both scenarios; however, the yield demonstrates a stron-

ger negative response under the RCP8.5 scenario (Figure 14(d)) as compared to RCP4.5 (Figure 14(h)). Similarly, focusing on
the individual, precipitation, and maximum and minimum temperatures all impact the yield for summer maize negatively in
both RCP4.5 and RCP8.5 scenarios. The only exception observed is the effect of precipitation during RCP8.5 (Figure 14(e)),

which has a slight positive impact on summer maize yield.
The increase in temperatures has a direct effect on the reduction in growing seasons of the crops. Figure 15 shows the

impact of increased temperatures on the length of cropping season of winter wheat and summer maize. During the base
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Figure 10 | Change in precipitation during the summer MGP from 2016 to 2099 relative to the base period (1981–2016) across the 3H Plain in
the 2030s, 2050s, and 2080s under RCP4.5 (a–c) and RCP8.5 (d–f), respectively.

Table 3 | Pearson correlations among dependent (yield) and independent variables (precipitation and maximum and minimum
temperatures)

Crop RCP Scenario period

Prec. Max. temp. Min. temp.

r Sig. r Sig. r Sig.

Winter wheat RCP4.5 Sc. 2030 0.777 0.000 0.319 0.002 0.492 0.000
Sc. 2050 0.774 0.000 0.314 0.002 0.487 0.000
Sc. 2080 0.780 0.000 0.318 0.002 0.482 0.000

RCP8.5 Sc. 2030 0.723 0.000 0.349 0.001 0.450 0.000
Sc. 2050 0.717 0.000 0.324 0.001 0.430 0.000
Sc. 2080 0.714 0.000 0.323 0.002 0.394 0.000

Summer maize RCP4.5 Sc. 2030 0.147 0.098 �0.183 0.053 �0.904 0.000
Sc. 2050 0.187 0.050 �0.173 0.063 �0.903 0.000
Sc. 2080 0.172 0.065 �0.147 0.098 �0.901 0.000

RCP8.5 Sc. 2030 0.168 0.068 �0.140 0.109 �0.870 0.000
Sc. 2050 0.209 0.031 �0.146 0.099 �0.861 0.000
Sc. 2080 0.203 0.036 �0.155 0.084 �0.871 0.000
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Table 4 | Summary of the entire regression model for the yield

Crop RCP Scenario period R R2 Adj. R2 SE Sig.

Winter wheat RCP4.5 Sc. 2030 0.890 0.793 0.782 0.040 0.000
Sc. 2050 0.881 0.776 .0764 0.042 0.000
Sc. 2080 0.878 0.771 0.759 0.042 0.000

RCP8.5 Sc. 2030 0.779 0.607 0.586 0.054 0.000
Sc. 2050 0.800 0.640 0.622 0.052 0.000
Sc. 2080 0.801 0.641 0.622 0.053 0.000

Summer maize RCP4.5 Sc. 2030 0.908 0.824 0.817 0.010 0.000
Sc. 2050 0.908 0.824 0.817 0.010 0.000
Sc. 2080 0.904 0.818 0.811 0.010 0.000

RCP8.5 Sc. 2030 0.873 0.762 0.752 0.011 0.000
Sc. 2050 0.865 0.748 0.738 0.011 0.000
Sc. 2080 0.864 0.747 0.737 0.011 0.000

Table 5 | Predicted regression coefficients for winter wheat (WW) and summer maize (SM) yield with future climate under RCP4.5 and
RCP8.5

Crop

Every 1% incr. in Prec.
Every 1% incr. in max.
temp.

Every 1% incr. in min.
temp.

Every 1% incr. in
irrigation

Comprehensive effect
(%)

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5

WW 0.68 0.58 �0.72 �0.37 0.39 0.13 0.30 0.20 0.65 0.54

SM �0.01 0.01 �0.19 �0.22 �0.85 �0.92 – – �1.08 �1.11

Table 6 | Effects of climate change on yield for different scenarios under RCP4.5 and RCP8.5

Crop Scenario period

Effects of
precipitation (%)

Effects of max. temp.
(%)

Effects of min. temp.
(%)

Comprehensive
effect (%)

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5

Winter wheat Sc. 2030 0.91 1.58 �4.22 �1.32 3.95 0.31 0.64 0.56
Sc. 2050 2.14 3.55 �3.97 �2.55 3.94 1.41 2.10 2.42
Sc. 2080 2.81 5.68 �3.88 �2.81 3.54 3.14 2.47 6.01
All 1.95 3.60 �4.02 �2.23 3.81 1.62 1.74 3.00

Summer maize Sc. 2030 �0.09 0.03 �0.53 �0.70 �3.32 �3.69 �3.93 �4.36
Sc. 2050 �0.08 0.12 �0.67 �0.88 �3.60 �4.56 �4.36 �5.32
Sc. 2080 �0.11 0.09 �0.81 �0.86 �4.13 �5.75 �5.05 �6.52
All �0.09 0.08 �0.67 �0.81 �3.68 �4.67 �4.44 �5.40
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period, the length of winter wheat crop cycle was 242 days, while the summer maize cycle was 110 days. The length of the

winter wheat crop cycle has decreased 1.8–2.6 and 5.0–6.5 days under RCP4.5 and RCP8.5, respectively, relative to the base
period. The length of summer maize crop cycle has decreased 2.8–5.6 and 5.2–9.6 days under RCP4.5 and RCP8.5, respect-
ively, relative to the base period.
4. DISCUSSION

It is noted that there are large uncertainties in projections generated by various models that stem from various sources, such

as downscaling models, methods and bias correction, emission scenarios, and time period considered in the study. Since agri-
cultural applications require higher precision to avoid the accumulation of error in the simulated yield from crop models,
these uncertainties make use of these downscaled products challenging in agricultural applications. Greater consensus
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Figure 11 | Impact of climatic variables on winter wheat yield in the 2030s, 2050s, and 2080s under RCP4.5 (a–c) and RCP8.5 (d–f),
respectively, relative to the base period.
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between predictors and climate models is expected to improve the forecast results. Therefore, this study dealt with the uncer-
tainty by evaluating the model performance using various evaluation methods and repeated the process several times to
improve the model performance and reduce the bias.

Downscaled climate change predictions in this study show a systematic increase in mean temperature and precipitation
during the growth period of both winter wheat and summer maize under all emission scenarios. The substantial increase
in all climatic variables is projected during the summer MGP as compared to the winter WGP. According to Ding et al.
(2007), under varied emission scenarios, China’s average annual temperature projected increase is 1.5–2.1 °C by 2020,
2.3–3.3 °C by 2050, and 3.9–6.0 °C by 2100, and an increase of 10–12% in precipitation relative to the base period 1961–
1990. It has also been analyzed that daily minimum temperature is projected to increase more rapidly than daily maximum
temperature, leading to an increase in daily mean temperature. This will result in a greater likelihood of extreme events and

can have detrimental effects on crop grain yield. Geng et al. (2019) projected an increase in precipitation in the 2060s during
the winter WGP by 17.31 and 22.22% under RCP4.5 and RCP8.5 in the North China Plain (NCP) region, while our results
show an increase of 1.33–4.17% under RCP4.5 and 3.13–8.61% under RCP8.5 for the period 2016–2099 for the winter wheat

growing season. The reason can be due to variation in the selection of different study sites. In general, various statistical
models indicate that northern China will have more precipitation in the future and significant warming during the 21st cen-
tury (Ding et al. 2007). An increase in precipitation is thought to be beneficial for wheat and maize growth, reducing the
://iwaponline.com/jwcc/article-pdf/13/8/2847/1094192/jwc0132847.pdf



Figure 12 | Impact of climatic variables on summer maize yield in the 2030s, 2050s, and 2080s under RCP4.5 (a–c) and RCP8.5 (d–f),
respectively, relative to the base period.
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irrigation burden, but an increase in temperature can reduce the yield. Since the mid-1990s, increasing climate warming in the
NCP has increased the probability of drought by an average of 10.1% (Hu et al. 2014). The warming trend will have a signifi-
cant effect on drought occurrence in the summer MGP in the NCP region (Hu et al. 2014). Such changes can cause

considerable changes in irrigation practices and grain yield for both of these crops in the NCP region.
The statistical models for China estimate that without climate adaptation, CO2 fertilization, and genetic improvements in

the crop cultivars, each degree-Celsius increase in global mean temperature will result in the loss of yield of 2.6+ 3.1% for

wheat and �8.0+ 6.1% for maize (Lobell & Field 2007). During the 1981–2016 period, in absolute terms, the contribution of
climatic factors to winter wheat yield was estimated to be around 0.76–1.92%, while the contribution of technological
advancements has been estimated to have a contributed 27.19–60.43% increase in agricultural yield (Geng et al. 2019),
which indicates the effective adaptation strategies already in place. In the case of summer maize, Xiao et al. (2020) suggest
that due to climate changes, maize yield will decrease in China by 2.3–2.4%, but water-use efficiency will increase by 11.8–
26.6% if no adaptive strategy is put in place. In most cases, warm temperature increases the crop phonological development
resulting in early senescence and reduced grain yield and biomass. The direct negative temperature impact on yield could be

additionally affected via indirect temperature impacts. For instance, increasing temperature will increase atmospheric water
demand, which could lead to additional water stress from increased water pressure deficits, subsequently reducing soil moist-
ure and decreasing yield. It is also suggested that increased temperature impacts the evapotranspiration rate, leading to a
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Figure 13 | Impact of climate change on winter wheat potential yield under RCP4.5 (a–d) and RCP8.5 (e–h).
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faster loss in soil moisture and an increased need for irrigation. So, the areas that are likely to get wetter during summer in the
MGP are also likely to experience temperature-driven drying.

The elevated temperatures are expected to accelerate the crop growth leading to shorter crop cycles (Salman et al. 2021).
On the provincial scale, changes in climatic factors can vary from North to South in the NCP region which can have a varying
effect on wheat yield. Geng et al. (2019) suggested that a 1% increase in mean temperature during the WGP can lead to a loss
://iwaponline.com/jwcc/article-pdf/13/8/2847/1094192/jwc0132847.pdf



Figure 14 | Impact of climate change on summer maize potential yield under RCP4.5 (a–d) and RCP8.5 (e–h).
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of 0.109% of winter wheat yield per unit area keeping other factors constant, and a 1% increase in precipitation will increase
the wheat yield by 0.186% to a point where it becomes harmful (Geng et al. 2019). However, the cumulative effect of temp-
erature and precipitation on winter wheat will be positive under RCP4.5 and RCP8.5 by 3.22 and 4.13%, respectively, for the
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Figure 15 | Change in the length of winter wheat and summer maize growing seasons under RCP4.5 and RCP8.5.
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period 2021–2050. The climatic factors will positively contribute to the winter wheat yield in the Jing–Jin–Ji region, Henan
and Shandong. Our results also show similar spatiotemporal changes and much of the increase in wheat yield is concentrated
in the central and south 3H region.

In another study, Tang et al. (2018) used the Decision Support System for Agrotechnology Transfer (DSSAT) model in the
3H Plain and estimated that the potential yield, crop water requirement (ETc), and effective precipitation during winter wheat
growing seasons might increase in the future under RCP4.5, while irrigation water requirements would decrease. The wheat

and maize crop productivity has also been estimated in a study based on the potential crop evapotranspiration and water
availability in the NCP. Under full irrigation when water demand is met, the wheat yield ranges from 6.9 to 10.2 t ha�1

and increases with latitude. Under rain-fed conditions, the wheat yield is much lower in all areas ranging from 0.6 to

5.2 t ha�1 and decreases in low-latitude areas due to decline in annual rainfall. Under full irrigation, the maize yield
ranges from 9.2 to 13.6 t ha�1, and under rain-fed conditions, it ranges from 6.1 to 13 t ha�1 with the lowest yield in the
middle of the NCP due to the lowest amount of rainfall (Wang et al. 2008). This is consistent with the results of the current
study where winter wheat yield increase is estimated largely in the central and lower 3H region, while summer maize yield is

projected to decline in areas with reduced rainfall, mainly in north parts of the region.
The seasonality of the climatic changes also points toward the change in the length of crop cycles for both wheat and maize.

The reduction of the wheat crop cycle from 242 days in the base period to 239 and 235 days under RCP4.5 and RCP8.5,

respectively, indicates the effect of 1.71–1.28 °C warming. The summer maize crop length has declined substantially from
110 days in the base period to 104 and 100 days under RCP4.5 and RCP8.5, respectively. Liu et al. (2021) has also shown
that the increase in accumulated thermal temperature will reduce the vegetative and reproductive growing period of

wheat in the 3H Plain. Sharafati et al. (2022) have projected the impact of climate change on the variability of crop cycle
length, crop yield, and water productivity in Iran. The results suggest an increase in wheat yield (14–54%), a decrease in
the crop cycle length (1–12%), and an increase in water productivity (9–96%) in the future (2021–2080) as compared to
the baseline period (1985–2016) (Sharafati et al. 2022).

In addition to temperature impacts, combined with the summer and autumn rainfall in the 3H region in the year 2021, the sea-
sonal rainfall in the maize harvest period was too frequent and strong, resulting in floods and seriously affecting the maize
production and also winter wheat sowing. According to the results of this study, the increase in precipitation may bring flood disaster

risk while alleviating the contradiction of water shortage in agricultural production. The change in water budget during the winter
WGP may not be very significant, but, during the summer MGP, it is expected to improve from 109 mm in the 2030s to 126 mm in
the 2080s under RCP4.5 and 107 mm in the 2030s to 163 mm in the 2080s under RCP8.5 (Shirazi et al. 2022). The study of climate

change impacts offers a good choice to change the cropping system for reducing the planting area of water-consuming crop (e.g.
winter wheat) in those over-pumping areas to balance groundwater use and crop yield. The timely devised adaptive and mitigation
strategies are the key to minimize the negative impacts of disasters on wheat and maize crops.
://iwaponline.com/jwcc/article-pdf/13/8/2847/1094192/jwc0132847.pdf
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5. CONCLUSION

The study employed a crop simulation model combined with future climate data downscaled at 90 study locations across the
3H Plain to simulate changes in temperature and precipitation and their impact on wheat and maize yield and the cropping
season within the region. The simulation results using the medium- and high-emission scenarios reveal that wheat and maize

yield is sensitive to changes in temperature and precipitation. The projected climatic data indicate an increase in the average
temperature throughout all RCP scenarios across the 3H Plain for both the winter WGP (1.17–1.21 °C under RCP4.5 and
1.17–1.28 °C under RCP8.5) and the summer MGP (1.29–1.92 °C under RCP4.5 and 1.84–2.08 °C under RCP8.5). The pro-

jected precipitation for both medium- and high-emission scenarios has been estimated to increase in the 2030s, 2050s, and
2080s during the WGP and the MGP. The comprehensive effect of an increase in all climatic variables will benefit wheat
yield with an increase up to 1.74% (0.25 t ha�1) and 3.00% (0.6 t ha�1) under RCP4.5 and RCP8.5, respectively. The positive

effect of the increase in climatic variables will increase gradually from the 2030s to the 2080s. It is likely that a substantial
increase in precipitation will counteract the negative effect of rising temperatures during the winter WGP, particularly in
Shandong and parts of Henan in comparison to other provinces. The northern areas of the 3H plain will have crop water

requirements similar to present conditions, leading to slight variations in wheat yield. For summer maize, the comprehensive
effect of all variables is projected to decrease the yield up to 4.44% (0.5 t ha�1) and 5.40% (0.6 t ha�1) under RCP4.5 and
RCP8.5, respectively, by the end of this century. The loss of maize yield is much more pronounced in the north 3H region
due to an increase in mean temperatures, despite any substantial change in precipitation. The highest decrease in maize

yields was projected in the 2080s under both RCP scenarios. The effect of increased thermal temperature for both winter
wheat and summer maize is projected to reduce the length of growth cycles in both vegetative and reproductive growing
periods. The projected changes suggest that the enhanced efforts for adaptation and mitigation strategies such as adjustments

in planting dates, cultivar improvements, enhanced soil fertility, better irrigation, and management practices are needed to
minimize the climate change impacts on reference crops. This study only covered the use of single GCM, and future work
could be extended to the use of multi-models or multi-model ensemble to generate future daily weather data. In addition,

we only used a single crop model. The use of multiple crop models and their response to ensembled climate data can also
reveal interesting findings.
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