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Evaluation of data-driven models to downscale rainfall

parameters from global climate models outputs: the case

study of Latyan watershed

Reza Haji Hosseini, Saeed Golian and Jafar Yazdi
ABSTRACT
Assessment of climate change in future periods is considered necessary, especially with regard to

probable changes to water resources. One of the methods for estimating climate change is the use of

the simulation outputs of general circulation models (GCMs). However, due to the low resolution of

these models, they are not applicable to regional and local studies and downscaling methods should

be applied. The purpose of the present study was to use GCM models’ outputs for downscaling

precipitation measurements at Amameh station in Latyan dam basin. For this purpose, the

observation data from the Amameh station during the 1980–2005 period, 26 output variables from

two GCM models, namely, HadCM3 and CanESM2 were used. Downscaling was performed by three

data-driven methods, namely, artificial neural network (ANN), nonparametric K-nearest

neighborhood (KNN) method, and adaptive network-based fuzzy inference system method (ANFIS).

Comparison of the monthly results showed the superiority of KNN compared to the other two

methods in simulating precipitation. However, all three, ANN, KNN, and ANFIS methods, showed

satisfactory results for both HadDCM3 and CanESM2 GCMmodels in downscaling precipitation in the

study area.
doi: 10.2166/wcc.2018.191

om http://iwaponline.com/jwcc/article-pdf/11/1/200/677617/jwc0110200.pdf

4

Reza Haji Hosseini
Saeed Golian (corresponding author)
Department of Civil Engineering,
Shahrood University of Technology,
Shahrood,
Iran
E-mail: s.golian@shahroodut.ac.ir

Jafar Yazdi
Faculty of Civil, Water and Environmental
Engineering,

Shahid Beheshti University,
Tehran,
Iran
Key words | artificial intelligence, CanESM2, climate change, downscaling, GCM, HadCM3
INTRODUCTION
According to the Intergovernmental Panel on Climate

Change (IPCC), the climate of the planet is changing

(IPCC ). Assessments and research show that the

reason for this change is the increase of greenhouse gas

emissions, especially CO2. Some studies have estimated an

average global temperature increase between 0.76 and

6.4 �C until 2100 under the A2 emission scenario (IPCC

). Also, Table 1 (Xu & Xu ) contains temperature

changes under the RCP scenarios over the entire globe for

the Fifth Assessment Report (AR5) scenarios.

The multimodel ensemble of the Coupled Model Inter-

comparison Project, Phase 5 (CMIP5) and its predecessors

provide critical inputs to the assessment reports produced
within the IPCC framework and are also used as input for

further investigations of climate change and its impacts

(Bring et al. ).

General circulation models (GCMs) are commonly

applied in climate change studies. Although GCMs are

capable of representing the primary features of global atmos-

pheric circulation very well, their resolution is not high

enough to reproduce regional climatic details (Syed et al.

). To provide an appropriate logical relationship

between GCM outputs and the requirements for climate

impact studies, a variety of downscaling methods and

regional climate models have been developed. In these

methods, statistical relationships are explored between the
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Table 1 | Temperature changes under the RCP scenarios over the globe (AR5)

RCP 2.6 RCP 4.5 RCP 8.5

2011–2040 0.75 0.78 0.88

2041–2070 1.07 1.44 2.07

2070–2100 1.06 1.8 3.55
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variables simulated by GCMs that make empirical–statistical

relationships between independent variables (Predictor) and

dependent variables (Predictant).

Although linear regression has been most widely used

(Mahani ; Campozano et al. ), recently, nonlinear

methods have emerged (Shahverdi et al. ). The interest

in nonlinear regression methods, for example artificial

neural networks (ANNs), is increasing because of their

high capability to simulate the complex, nonlinear, and

time-varying characteristics of atmospheric variables at

different scales (Duhan & Pandey ; Tue Vu et al. ).

In addition to the ANN, we have used two other nonlinear

methods, namely, KNN and ANFIS, to compare the quality

of downscaling methods.

Mahani () used ANN for evaluating the effects of cli-

mate change on Polrud River using two GCM models,

namely, HadCM3 and CGCM3, on three hydroclimatologic

variables: temperature, precipitation, and peak discharge.

The results showed an increase in all three parameters, but

the results of the CGCM3 model showed regular and more

increase compared with HadCM3.

Tue Vu et al. () applied ANN as a statistical down-

scaling model (SDSM) on GCMs during the rainy season

at some meteorological gauges in Bangkok, Thailand. The

predictors were first selected over different grid boxes sur-

rounding the Bangkok region and then screened by using

principal component analysis (PCA) to filter the best corre-

lated predictors for ANN training. The reanalysis

downscaled results of the present day climate showed

good agreement against station precipitation with a corre-

lation coefficient of 0.8 and a Nash–Sutcliffe efficiency of

0.65.

Campozano et al. () presented the downscaling of

monthly precipitation estimates of the NCEP/NCAR reana-

lysis 1 applying the SDSM, ANNs, and the least squares

support vector machines (LS-SVM) approach. Downscaled
://iwaponline.com/jwcc/article-pdf/11/1/200/677617/jwc0110200.pdf
monthly precipitation estimates after bias and variance cor-

rection were compared to the median. A preliminary

comparison revealed that both artificial intelligence

methods, ANN and LS-SVM, performed equally. Results dis-

closed that the ANN and LS-SVM methods depict, in

general, better skills in comparison to SDSM.

Wu et al. () studied the application of K-nearest

neighbor (KNN) to derive local precipitations based on

NCEP Climate Forecast System (CFS) seasonal forecasts

and historic rainfall observations. Their study focused on

the semiarid area along the southeastern Mediterranean

coast. This region is strongly influenced by the Mediterra-

nean climate and complex terrain. This study constructed

60 ensemble members for probabilistic estimates. The

KNN algorithm demonstrated its robustness when validated

with NCEP/DOE reanalysis from 1981 to 2009 as hind casts

before being applied to downscale CFS forecasts. The down-

scaled predictions show fine-scale information, such as

station-to-station variability. The verification against obser-

vations shows improved skills of this downscaling utility

relative to the CFS model.

Emamgholizadeh et al. () investigated the potential

of two intelligence models, namely, ANN and adaptive

neuro-fuzzy inference system (ANFIS) in estimating the

groundwater level of the Bastam Plain in Iran. The results

showed that the ANN and ANFIS models can estimate

GWL accurately. Also, it was found that the ANFIS model

(with root-mean-square-error (RMSE) 0.02 m and determi-

nation coefficient (R2) of 0.96) performed better than the

ANN model with RMSE¼ 1.06 m and R2¼ 0.83. Djamil

& Aldrian () investigated the use of multi-variable

ANFIS in assessing daily rainfall using several surface

weather parameters as predictors. The data used in that

study came from automatic weather station data collected

in Timika airport from January until July 2005 with a 15-

minute time interval. Talei et al. () investigated the

effect of inputs used on event-based runoff estimating by

ANFIS. Fifteen ANFIS models were compared, differen-

tiated by the choice of rainfall and/or discharge inputs used.

In this study, we assess the precipitation changes and cli-

matic parameters simulated from two GCMs, namely,

HadCM3 and CanESM2, and compare them with par-

ameters derived from observed precipitation in the study

area. Three data-driven methods, namely, ANN, KNN, and
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ANFIS, will be applied to downscale the outputs of GCM

models. According to the conducted literature survey, the

ANFIS method has not been used so far for precipitation/

temperature downscaling, although it has been one of the

widely used data-driven models for estimating purposes in

other applications of hydrology. The performance of the

downscaling method on outputs of two widely used GCM

models from two different IPCC modeling exercises, i.e.,

CMIP4 and CMIP5, will be assessed at a study area in

Iran. From the fourth generation, the HadCM3 model has

been shown to perform satisfactorily for many parts of

Iran (e.g., Samadi et al. ; Farzaneh et al. ), while

from the fifth IPCC modeling exercise, CanESMs2 is one

of the most widely used models over Iran (e.g., Hesami &

Zeynolabedini ; Rouhani et al. ).

The performance of three widely used data-driven

models, namely, KNN, ANN, and ANFIS in downscaling

GCM outputs will be evaluated to select the superior

method for GCM downscaling. As far as the authors

know, this comparison has not been done in other studies

and thus is the contribution made by this research.
CASE STUDY

The Latyan watershed is situated northeast of Tehran

between latitudes 35�450N and 36�150N and longitudes
Figure 1 | Location of the Latyan dam watershed and detailed map of the subbasin upstream
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51�200E and 51�550E. This basin is generally divided into

nine sub-basins and Amameh is considered as one of its

sub-basins. Amameh River is one of the branches of the

Jajrood River that reaches to the dam of Latyan. This

dam supplies a large proportion of the water demands of

Tehran city. Thus, hydro-climatic studies on this river are

of major importance. In Figure 1, the location of the

area of interest in Tehran province, and also separately,

is shown.

In this study, observed daily precipitation data (1980–

2005) are fed to the data-driven models as output (target)

data. The output parameters for the same period from

HadCM3 and CanESM2 were also downloaded from the

Canadian Climate Data and Scenarios website (www.

cccsn.ec.gc.ca). These parameters are described in

Table 2. These data are fed as input data to the data-

driven models. In this study, 85% of the data (1980–

2001) was allocated for model calibration (train and vali-

dation phases) and 15% (2002–2005) to validate (test)

the models.

Long-term time series of standardized daily values of

parameters are extracted into a one column text file per

grid cell (box). The 128 × x64 grid cells cover a global

domain according to T42 Gaussian grid. This grid is uni-

form along the longitude with horizontal resolution of

2.8125� and nearly uniform along the latitude of roughly

2.8125�.
of Amameh station.

http://www.cccsn.ec.gc.ca
http://www.cccsn.ec.gc.ca


Table 2 | Climate predictor variables for the HadCM3 and CanESM2 models

Row Evaluator variable Definition Description

1 P5_f Geostrophic airflow velocity at 500 hPa Geostrophic flow velocity at 500 hectopascal

2 P5_u Horizontal wind at 500 hPa Horizontal wind at 500 hPa

3 P5_v Zonal wind at 500 hPa Wind area of 500 hPa

4 P5_z Vorticity at 500 hPa Vorticity at 500 hPa

5 P5th Wind direction at 500 hp Wind at 500 hPa

6 P5zh Divergence at 500 hPa Divergence at 500 hPa height

7 P500 Geopotential height at 500 hPa Geopotential height at 500 hPa

8 R500 Relative humidity at 500 hPa Relative humidity at 500 hPa

9 P_f Surface geostrophic airflow Geostrophic air flow surface

10 P_u Surface horizontal wind Surface horizontal wind

11 P_v Surface zonal wind Wind surface area

12 P_z Surface vorticity A measure of the air vorticity

13 P_th Surface wind direction Surface wind direction

14 P_zh Surface divergence Surface divergence

15 P8_f Geostrophic airflow velocity at 850 hPa Geostrophic flow velocity at 850 hPa

16 P8_u Horizontal wind at 850 hPa Horizontal wind at 850 hPa

17 P8_v Zonal wind at 850 hPa Wind region at 850 hPa

18 P8_z Vorticity at 850 hPa Vorticity at 850 hPa

19 P8th Wind direction at 850 hp Wind direction at 850 hPa

20 P8zh Divergence at 850 hPa Divergence at 850 hp

21 P850 Geopotential height at 850 hPa Geopotential height at 850 hPa

22 R850 Relative humidity at 850 hPa Relative humidity at 850 hPa

23 Mslp Mean sea level pressure Medium pressure from sea level

24 Prcp Total precipitation Total precipitation

25 Shum Near surface specific humidity Humidity near the surface

26 Temp 2 m air temperature 2 m air temperature
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METHODOLOGY

The proposed framework for the downscaling process of this

study is shown in Figure 2. The whole process is performed

for outputs of both HadCM3 and CanESM2 GCM

models. The PCA method is also used for selection of the

most informative inputs (predictors) for data-driven

models. The advantage of PCA is that by using a small

number of principal components it is possible to represent

the variability of the original multivariate data set. At the

same time, the principal components are uncorrelated and

therefore there is no redundant information (Shashikanth

& Ghosh ).
://iwaponline.com/jwcc/article-pdf/11/1/200/677617/jwc0110200.pdf
Artificial neural network

The ANN has shown a good performance as a widely used

method, in modeling and assessing nonlinear and unstable

time series for processes that have no explicit solution and

explicit recognition and description of them (Zohdi ).

The neural network has the ability to recognize the

pattern, and establishes a good relationship between

input and output data. Compared to other methods,

ANN has less sensitivity relative to input errors. ANN

after training can evaluate system responses without the

need for any explicit mathematical relationship (Bustami

et al. ).



Figure 2 | Suggested algorithm for precipitation downscaling.
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The input layer is used to enter the data into the

network, the output layer to generate the appropriate

responses of the inputs, and one or more intermediate

layers composed of processor nodes which in fact are the

locations of data processing. The number of neurons in

the input and output layers is determined by the nature of

the problem under consideration. Likewise, the number of

hidden layers and the number of neurons in each hidden

layer is usually determined by trial-and-error method in
om http://iwaponline.com/jwcc/article-pdf/11/1/200/677617/jwc0110200.pdf
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order to reduce the amount of network error (Trafalis

et al. ). However, it is recommended that the number

of hidden layers be as low as possible. Therefore, the net-

work is trained by one hidden layer first and in case of

inappropriate performance, the number of layers are

added. This method is also applied to determine the

number of neurons in each hidden layer so that a smaller

number of neurons is considered first and if the results are

not satisfactory, they will be increased. The nodes of
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adjacent layers in the network are fully interconnected

(Satish et al. ). Inputs of each node are the values of

input variables or output of other nodes. Each node has

an activation function. Figure 3 shows a schematic view of

the multi-layered ANN. The most widely used activation

functions are: sigmoid tangent function, linear and sigmoid

logarithm (demo and bile) functions.

The inputs are in the form of X (X1, X2,…,Xn) vector and

each input is related to a processor node by a weight, and

finally, a string of the weights as W(W1,W2,…,Wn) is related

to the considered node. The output of the node, which is

called y, is calculated by the following equation:

Y ¼ f(X:W � b) (1)

In the above relationship, X is the vector of input vari-

ables, W is the weight vector, and b is called bias.

Generally, neural networks are divided into two types of

backward and forward. The difference is that in backward net-

works, there is at least one return signal from a neuron to the

same neuron or neurons of the same layer or previous layer. In

most cases, backward neural networks can be very useful.

However, in 80% of applications, forward neural networks
Figure 3 | Multi-layered artificial neural network.

://iwaponline.com/jwcc/article-pdf/11/1/200/677617/jwc0110200.pdf
are used. The multi-layer perceptron network is one of the

most widely used forward ANNs, especially in modeling cli-

matic elements in which each neuron in each layer is

connected to all neurons in the previous layer (Wang &

Sheng ).

To train neural networks, there are four conventional

training algorithms based on the layered perceptron

structure. The most widely used methods are Levenberg–

Marquardt and conjugate gradient. The Levenberg–

Marquardt algorithm has been recognized as the fastest

learning method for neural networks since 1993 to date.

In this study, we used the daily observation data of the

Amameh station as target data and the combination of the

daily data of 26 parameters of the HadCM3 and

CanESM2 models as input data during the 1980–2005 his-

torical period (according to Table 2). Also, to derive an

appropriate architecture for the ANN, the number of neur-

ons in the hidden layer increased from two up to 50

neurons, and the results were evaluated and compared

with each other. It was found that the best performance

was derived for 30 neurons in the hidden layer with sigmoid

and linear activation functions for the hidden and output

layers, respectively. We also allocated 85% of the data

(1980–2001) for model calibration (train and validation

phases) and 15% (2002–2005) to validate (test) the models.

K-nearest neighborhood (KNN)

Nonparametric estimation of probability densities and

regression functions is pursued through weighted local

averages of the dependent variable. This is the foundation

for nearest neighbor methods. KNN methods use the simi-

larity (neighborhood) between observations of predictors

and similar sets of historical observations (successors) to

obtain the best estimate for a dependent variable (Karlsson

& Yakowitz ; Lall & Sharma ).

Nonparametric regression is a form of regression analy-

sis in which the predictors do not take a predetermined form

but are constructed according to information derived from

the data. Nonparametric regression requires larger sample

sizes than regression based on parametric models because

the data must supply the model structure as well as the

model estimates. The KNN method imposes a metric on

the predictors to find the set of K past nearest neighbors
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for the current condition in which the nearest neighbors

have the lowest distance. The distance between the current

and historical condition can be calculated by the Euclidian

(Karlsson & Yakowitz ) or Mahalanobis distance

(Yates et al. ) between current and historical predictors.

The algorithmic procedure of a KNN regression is sum-

marized in Figure 4 and is presented as follows.

Determine the vector of current m independent vari-

ables also known as predictors, Xr� {x1r, x2r, x3r… xmr},

associated with the dependent variable, Yr.

Determine the matrix of n ×m predictors containing n

vectors of already observed predictors, Xt� {x1t, x2t, x3t…

xmt}; t¼ 1, 2…, n.

Calculate n distances between current predictors and

the observed predictors, Δrt. Select K sets of predictors/

dependent variables (Xk, Yk), which have the lowest

values of Δrt. Those sets are known as the K-nearest neigh-

bors. Next, a kernel function associated with each K-

nearest neighbor is calculated as follows:

fk(Δrk) ¼ 1=ΔrkPk
k�1 (1=Δrk)

(2)

Obviously,
Pk

k�1 fk(Δkr) ¼ 1. The unknown Y is finally

calculated as:

Yr ¼
Xk
k�1

fk(Δkr) × Yk (3)
Figure 4 | The schematic of KNN algorithm.
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The overall process for the KNN method is shown in

Figure 4.

The distance function is usually calculated by a Eucli-

dean distance or a Mahalanobis distance. A Euclidean

distance between ith and jth predictors is calculated as:

Δij �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(X1i �X2

1j) þ (X2i �X2
2j) þ . . .þ (Xmi �X2

mj)

q
(4)

where m is the dimension of the predictors. The Mahalano-

bis distance uses the following equation:

Δij �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Xi �Xj)C�1

t (Xi �Xj)
T

q
(5)

where C is the covariance matrix between X and Y.

Mahalanobis distance is a distance measure introduced

by Mahalanobis in 1936 (Mahalanobis ). It is based on

correlations between variables by which different patterns

can be identified and analyzed. It differs from Euclidean dis-

tance in that it takes into account the correlations of the

data set and is scale invariant.

Lall & Sharma () suggested that instead of the

kernel function of

fk(Δrk)� 1=ΔrkPk
k�1 (1=Δrk)

(6)

the following function could be used:

fk(j)� 1=jPk
j�1 1=j

(7)

where j is the order of the neighbors after sorting them in an

ascending order. Neighbors with higher distance get higher

orders and the lower contribution to the final output.

The KNN classifier is a very simple classifier that works

well on basic recognition problems.

After trial and error, the KNN model performs best with

K¼ 5. Also, the Euclidean method was considered as the

distance function.

Adaptive network-based fuzzy inference system

(ANFIS)

One of the methods that has been recently considered in

hydrology is modeling based on fuzzy rules. Fuzzy logic
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and the theory of fuzzy sets are used to describe human

thinking and reasoning in a mathematical framework.

Fuzzy modeling is called fuzzy inference system (FIS) and

its primary structure consists of three components: (a) the

law base contains a set of fuzzy rules, (b) the database that

defines the membership functions (MFs) used in fuzzy

rules, and (c) the mechanism of the argument, which,

according to the rules, relates the input pattern to the corre-

sponding output. Using some if-then rules describes a

nonlinear component relationship from the input space to

the output space.

The various combinations of membership functions

create the input and output variables of the rules and

these rules define a fuzzy region from the input space, and

finally, the output relationship determines the output of

the model. The efficiency of FIS depends on its parameters’

estimation which includes the parameters of the member-

ship functions and the output function of each rule. To

solve the problem of identifying the parameters in an FIS

in neuro-fuzzy models, a comparative network, which is

the general state of the multilayer forward neural network,

is used.

In this research, ANFIS, which is a fuzzy-neural model,

is used. The most common type of FIS that can fit in a

matching network is the Sugeno’s fuzzy system in which

output is a linear relationship and its parameters can be esti-

mated by combining the least error squares methods and the

back propagation error based on the gradient reduction. In

Figure 5, an example of a first-order Sugeno FIS with two

inputs x, y and output z is shown. For this FIS, a sample
Figure 5 | Sugeno fuzzy inference system (Alemzadeh et al. 2004).

://iwaponline.com/jwcc/article-pdf/11/1/200/677617/jwc0110200.pdf
of the fuzzy rule base containing two rules can be presented

as follows:

• First Law: If x equals A1 and y equals to B1, then f1¼ p1
xþ q1 yþ r1

• Second Law: If x equals A2 and y equals to B2, then

f2¼p2 xþ q2 yþ r2

where B2, B1 and A2, A1, are the membership functions for

input of y and x, respectively. r1, q1, p1, r2, p2 q2 are also

parameters of the output functions for the two defined

rules. An example of the usual architecture of the ANFIS

model is presented in Figure 6, in which the nodes of each

layer have the same function.

Layer 1: Each node in this layer produces the member-

ship classes of an input variable. The output is defined by

the following relationships:

OP1
i ¼ μAi(x) for i ¼ 1 , 2 (8)

OP1
i ¼ μBi(x) for i ¼ 3 , 4 (9)

where x (or y) is the input node, Ai or (Bi-2) is the fuzzy set

associated with this node, which is determined by the form

of the membership functions of this node, and any suitable

function that is continuous and fragmented, such as Gaus-

sian functions, trapezoidal and triangular, can be used as a

membership function. Assuming the Gaussian membership

function as a membership function, the output of OPi can

be calculated as follows:

OP1
i ¼ μAi(x) ¼ exp [� 0:5{(x� ci)=σi}

2] (10)



Figure 6 | The architecture of ANFIS model equivalent to the inference system discussed.
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where ci and σι are the mean and standard deviation of the

ith membership function, respectively.

Layer 2: Each node in this layer is multiplied by the

input signal, and the output that represents the power of

the excitation of a rule is calculated as follows:

OP2
i ¼ wi ¼ μAi(x)μBi(y) i ¼ 1 , 2 (11)

Layer 3: The ith node of this layer, which is denoted by

N, computes the normalized stimulant power:

OP3
i ¼ �wi ¼ wi

w1 þw2
i ¼ 1 , 2 (12)

Layer 4: The nodes i in this layer compute the ith-rule to

the output of the model using the following function node:

OP4
i ¼ �wifi ¼ �wi(pixþ qiyþ ri) (13)

where the output of layer 3 and {pi, qi, ri} are the set of

parameters of the linear function of the output of the i-th

rule.

Layer 5: The only node in this layer calculates the over-

all output of ANFIS as follows:

OP5
i ¼

X
i

�wifi ¼

P
i
wifiP

i
wi

(14)

The main function of the adaptive system is to optimize

the model parameters. Jang et al. () devised a hybrid

teaching method for the neuro-fuzzy model which is faster

and more accurate than the back-propagation method

based on gradient reduction in calculating model
om http://iwaponline.com/jwcc/article-pdf/11/1/200/677617/jwc0110200.pdf
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parameters. Combined training algorithm for ANFIS con-

sists of two alternating phases:

• Reducing the gradient that returns the generated error

signals from the output layer to the input layer. This

phase corrects the parameters of the front part of the

model (membership functions).

• The method of least squares corrects the parameters of

the model portion of the model (linear relationship

coefficients).

Principal component analysis (PCA)

PCA is a statistical procedure that uses an orthogonal

transformation using the Eigen value–Eigen vector decompo-

sition technique to convert a set of observations of possibly

correlated variables into a set of values of linearly uncorre-

lated variables called principal components (Noori et al.

). The number of distinct principal components is equal

to the smaller of the number of original variables or the

number of observations minus one. This transformation is

defined in such a way that the first principal component has

the largest possible variance (that is, accounts for as much

of the variability in the data as possible), and each succeeding

component in turn has the highest variance possible under

the constraint that it is orthogonal to the preceding com-

ponents. The resulting vectors are an uncorrelated

orthogonal basis set.

PCA is sensitive to the relative scaling of the original

variables. Working with these independent variables might

provide better accuracy of evaluation for the predictant vari-

able(s) depending on the problem at hand. When the

volume of information and input (predictor) variables are

relatively high, this may have negative effects on the accu-

racy of evaluation because of the noises imported to the

data-driven model.

In this study, 26 original variables (predictors) were con-

verted to the independent variables by PCA. Through the

PCA approach, independent variables are sorted from the

most important to the least in terms of the value of

information. A sensitivity analysis has been done and inde-

pendent variables were omitted from the last variables, one

by one, and in each round, the data-driven model was trained

and tested. The results showed that using 15 GCM
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independent variables, the best performance is achieved. It

should be noted that each independent variable (obtained

by PCA) is a linear function of all original 26 GCM variables.

Data normalization

Normalization scales all input variables in the same order

and often have a positive effect on evaluation accuracy.

Working with raw data can reduce network speed and accu-

racy. Therefore, by using the following equation, all input

and output data are initially normalized and then entered

into the neural network.

Xn ¼ Xi �Xmin

Xmax �Xmin
(15)

In the above relation, Xn is normalized data and the

indexes i, Xmin, Xmax are respectively the rows, minimum

and maximum of that data in their set.

Model evaluation

In order to evaluate the performance of ANN, KNN, and

ANFIS models, three statistical criteria, namely, Nash–

Sutcliffe model efficiency coefficient (NSE), relative mean

absolute error (RMAE), and correlation coefficient (R)

were used as follows:

E ¼ 1�
PT
t¼1

(Qt
m �Qt

o)
2

PT
t¼1

(Qt
o � �Q

t
o)

2
(16)

RMAE ¼ 1
M

XM
i¼1

jXi:m �Xi:oj
Xi:o

(17)

R ¼
M

PM
i¼1

Xi:m:Xi:o �
PM
i¼1

Xi:m:
PM
i¼1

Xi:offiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

PM
i¼1

X2
i:m � (

PM
i¼1

Xi:m)
2

" #vuut : M
PM
i¼1

X2
i:0 � (

PM
i¼1

Xi:0)
2

" #

(18)

where M is the total number of input data, Xim represents

the ith estimated data using one of the four above models,

and Xio represents the ith data.

To evaluate the performance of rainfall downscaling

from the CanESM2 and HadCM3 models, daily data at
://iwaponline.com/jwcc/article-pdf/11/1/200/677617/jwc0110200.pdf
Amameh station located above the Latyan dam were used.

In this research, five important meteorological variables

were studied to evaluate the performance of ANN, KNN,

and ANFIS in downscaling of the GCM model data. These

five parameters are: length of the longest sequence of dry

days in the month (days), maximum daily precipitation in

the month (mm), total precipitation in the month (mm),

number of dry days in the month, and average monthly pre-

cipitation (mm). For instance, Karamouz et al. () used

these parameters to evaluate ANN and SDSM methods for

downscaling GCM outputs. In other studies, such as those

of Fu et al. (), Verbist et al. (), Jones et al. (),

and Schoof & Pryor (), similar parameters were used

for the assessment of downscaling results. In this study,

the downscaling methods are compared with the same

parameters.
RESULTS

In this paper, we examine the climate change and downscal-

ing of GCMs for the upper basin of Latyan dam and sub-

basin of Emamah in the period between 1980 and 2005.

For this purpose, daily data were collected from 1980 to

2005. These data were fed into the device as output

(target). Furthermore, the data of two models of global cli-

mate, named HadCM3 and CanEM2, were downloaded

for the period between 1980 and 2005. These models con-

tain 26 parameters that are shown in Table 2. These data

are fed to the model as inputs.

Given the high number of input parameters, these 26

parameters are prioritized using the PCA method and simu-

lation was performed according to the priorities that derived

from the PCA method. After several experiments on the

data, the first 15 PCs eventually offer the best answers for

simulating climatic data. After preparing the input–output

data sets for simulation, the model’s training and validation

begin. As indicated before, in this study, 85% of the data

(1980–2001) was allocated for model calibration (training

and validation phases) and 15% (2002–2005) to validate

(test) the models.

In order to evaluate the accuracy of the downscaling

performance of three downscaling methods, namely, ANN,

KNN, and ANFIS based on outputs of two GCM models,



210 R. H. Hosseini et al. | Evaluation of data-driven models to downscale rainfall parameters of GCM models Journal of Water and Climate Change | 11.1 | 2020

Downloaded fr
by guest
on 25 April 202
i.e., HadCM3 and CanESM2, monthly datasets were calcu-

lated from daily data. Next, these data sets were analyzed

in the form of five important and fundamental parameters,

including length of the longest sequence of dry days in the

month (days), maximum daily precipitation in the month

(mm), total precipitation in the month (mm), number of

dry days in the month, and average monthly precipitation

(mm). The reason for selecting these parameters is that

they can present both the average and extreme hydroclima-

tological state of a region relating to precipitation.

In this research, in order to use the neural network and

to derive an appropriate architecture for the ANN, the

number of neurons in the hidden layer was increased from

2 up to 50 neurons, and the results were evaluated and com-

pared with each other. It was found that the best

performance was derived for 30 neurons in the hidden

layer with sigmoid and linear activation functions for the

hidden and output layers, respectively.

In the KNN method also, after trial and error, the KNN

model performs best with K¼ 5. Also, the Euclidean method

was considered as the distance function.

The results of three downscaling methods, i.e., ANN,

KNN, and ANFIS, based on outputs of the HadCM3 and

CanESM2 models, are presented in Figures 7 and 8,

respectively.

As is shown in Figure 7, all three simulation methods

provide acceptable results for each of the five parameters.

As expected, the models’ performance is better in the cali-

bration phase compared to the test period. Also, it can be

seen that for the parameters which are directly related to

rainfall, i.e., maximum daily precipitation and total precipi-

tation in a month, all downscaling models reveal weaker

performance for the first four months of a year in addition

to November and December, i.e., winter and spring months,

and then the simulation graphs for all simulation methods

reveal similar behavior and very close to observation.

Also, in Figure 8, downscaling outputs of CanESM2

model data yielded satisfactory results compared to obser-

vation data. Again, for the two parameters, i.e., maximum

daily precipitation and total precipitation in the month,

the results from all downscaling methods deviated from

observation for winter and spring months.

In order to evaluate the performance of the ANN,

KNN, and ANFIS models, three statistical criteria,
om http://iwaponline.com/jwcc/article-pdf/11/1/200/677617/jwc0110200.pdf
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namely, Nash–Sutcliffe model efficiency coefficient

(NSE), relative mean absolute error (RMAE), and corre-

lation coefficient (R) were used, and their results for the

ANN, KNN, and ANFIS methods are presented in

Tables 3–5, respectively.

It can be seen that for both HadCM3 and CanESM2

models, the performance of all downscaling methods, i.e.,

ANN, KNN, and ANFIS, is acceptable for our study

region. However, with a slight difference, the KNN

method has more accurate results. For example, for total

precipitation in a month, the correlation values for the

CanESM2 model are 0.805, 0.874, and 0.789 and for the

HadCM3 model are 0.824, 0.835, and 0.784 for the ANN,

KNN, and ANFIS methods, respectively. The values of

RMAE are 0.36, 0.18, and 0.2 for the CanESM2 model

and 0.24, 0.17, and 0.3 for the HadCM3 model, for the

ANN, KNN, and ANFIS methods, respectively.

Based on Table 3, it has been seen that for all par-

ameters, the correlation values (R) resulting from

downscaling of HadCM3 model have better results com-

pared to CanESM2 model. Also, by examining RMAE

values, the error rate for HadCM3 in all parameters is less

than the CanESM2 model. Finally, with regard to the NSE

index, again, HadCM3 performed better compared to the

CanESM2 model, i.e., had higher NSE values.

Table 4 contains the results of KNN downscaling

method. It has been seen that for all parameters, R values

for CanESM2 are higher than the HadCM3 model. Also,

with regard to RMAE and NSE performance criteria, the

CanESM2 model exhibits better results compared to the

HadCM3 model, i.e., lower RMAE and higher NSE values.

Finally, from Table 5, one can see the downscaling per-

formance of the ANFIS method. Again, based on all

performance criteria, i.e., R, RMAE, and NSE indices,

downscaling the outputs of the CanESM2 model caused

better results compared to the HadCM3 model, i.e., higher

values of R and NSE and lower values for RMAE.

As one can see, there is a small difference between the

simulated and observed mean daily precipitation in all

three downscaling methods. It is also evident that the

simulation results of the ANN and especially the ANFIS

model have a good performance when there is no noise

in input data. Due to the considerable uncertainties in

GCM outputs, the performance of the ANFIS model is



Figure 7 | Observed vs. simulated values for HadCM3 model calculated from ANN, KNN, and ANFIS models. The graphs on the right are related to the calibration and the left graphs, are

related to the testing phases.
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not as satisfactory as that of the KNN and ANN models.

The credibility of the KNN model in noisy spaces has

already been confirmed by other researchers (e.g., Eum

et al. ). This is the case particularly for the maximum

dry period in Figure 7 which is an extreme variable com-

pared to other predictions.
://iwaponline.com/jwcc/article-pdf/11/1/200/677617/jwc0110200.pdf
CONCLUSION

The major goal of this research was to evaluate the perform-

ance of three data-driven models, namely, ANN, KNN, and

ANFIS in downscaling the outputs of the CanESM2 model

from the Fifth Assessment Report (AR5) and those of the



Figure 8 | Observed vs. simulated values for CanESM2 model calculated from ANN, KNN, and ANFIS models. The graphs on the left are related to the calibration and the right graphs are

related to the testing phases.
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HadCM3 model from the Fourth Assessment Report (AR4).

The Amameh Basin located at the upstream of the Latyan

Dam in northern Tehran was selected as the case study.

With regard to the high number of input parameters for
om http://iwaponline.com/jwcc/article-pdf/11/1/200/677617/jwc0110200.pdf
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data-driven downscaling methods, the 26 outputs of the

GCM models were prioritized using the PCA method.

With regard to the results, it is shown that except for the

maximum daily precipitation in the month (mm) and total



Table 3 | Results of ANN method for the two models of HadCM3 and CanESM2

GCM model

CanESM2 HadCM3

Evaluation criteria

R RMAE NSE R RMAE NSE

Calibration/Test Test Calibration Test Calibration Test Calibration Test Calibration Test Calibration Test Calibration

Length of the longest sequence of dry days in the
month (day)

0.9082 0.989 0.314 0.152 0.832 0.968 0.920 0.869 0.02 0.036 0.854 0.791

Maximum daily precipitation in the month (mm) 0.898 0.963 0.56 0.073 0.966 0.9528 0.966 0.9515 0.04 0.06 0.966 0.941

Total precipitation in the month (mm) 0.804 0.935 0.36 0.111 0.831 0.9390 0.824 0.946 0.24 0.059 0.871 0.934

Number of dry days in the month (#) 0.98 0.98 0.084 0.015 0.97 0.98 0.98 0.98 0.0003 0.0002 0.98 0.97

Average monthly rainfall (mm) 0.91 0.959 0.1 0.08 0.954 0.919 0.9658 0.959 0.001 0.001 0.991 0.969

Table 4 | Results of KNN method for the two models of HadCM3 and CanESM2

GCM model

CanESM2 HadCM3

Evaluation criteria

R RMAE NSE R RMAE NSE

Calibration/Test Test Calibration Test Calibration Test Calibration Test Calibration Test Calibration Test Calibration

Length of the longest sequence of dry days in the
month (day)

0.920 0.9897 0.01 0.01 0.865 0.968 0.8919 0.9013 0.05 0.03 0.85 0.834

Maximum daily precipitation in the month (mm) 0.901 0.98 0.17 0.003 0.96 0.93 0.8776 0.97 0.21 0.003 0.921 0.945

Total precipitation in the month (mm) 0.874 0.98 0.18 0.003 0.97 0.95 0.8353 0.97 0.17 0.003 0.841 0.93

Number of dry days in the month (#) 0.98 0.98 0.0003 0.0002 0.98 0.97 0.98 0.98 0.0003 0.0002 0.98 0.97

Average monthly rainfall (mm) 0.9623 0.96 0.04 0.06 0.975 0.952 0.9686 0.976 0.0008 0.0005 0.966 0.97
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precipitation in the month (mm) parameters, other par-

ameters, i.e., length of the longest sequence of dry days in

the month (days), number of dry days in the month, and

average monthly rainfall (mm) presented higher correlation

for both GCMmodels. With regard to the results obtained in

this research, i.e., the high accuracy of data-driven models in

calibration phase and also the low rate of errors for the test

period, it can be inferred that the application of all these

data-driven models for downscaling the outputs of GCM

models can be advised for our study area and also for

other case studies. It was shown that among three data-

driven methods, the KNN and ANN approaches presented

better results compared with ANFIS, while KNN had the

best performance.

For both the CanESM2 and HadCM3 GCM models,

it was shown that the performance of all downscaling

methods was satisfactory based on statistical indices,

but it was shown that the CanESM2 model exhibited

better performance compared to HadCM3. This could

be related to the fact that CanESM2 is a newer GCM

model with more updated data and modeling

approaches. Finally, it can be concluded that downscal-

ing the outputs of the CanESM2 general circulation

model by the KNN approach provided the best results

compared to all other combinations of GCM and down-

scaling methods.

According to the conducted literature survey, the

ANFIS method has not been used so far for precipitation/

temperature downscaling, although it has been one of the

widely used data-driven models for simulation of hydrologi-

cal variables. The accuracy of data-driven methods

employed in this research can be compared with other stat-

istical downscaling methods, e.g., LARS-WG, SDSM,

SOGDS and also dynamic models over this study area and

other regions.

Statistical downscaling of GCM data on climate change

is built on the implicit assumption that the statistical

relationships between the large-scale predictors and the

local predictants would not be affected by climate change.

On relatively short time scales (up to a few decades),

which was the case for our study, this problem should not

be too grave, as the anticipated (and GCM-simulated)

scale of change is still of the order of the natural interannual

and interdecadal variability. It should be noted that strong
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nonlinearity in climate change, on the other hand, could

crash any downscaling approach.
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