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A hydrological modelling-based approach for vulnerable

area identification under changing climate scenarios
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ABSTRACT
The hydrologic behaviour of the Brahmani River basin (BRB) (39,633.90 km2), India was assessed for the

base period (1970–1999) and future climate scenarios (2050) using the Soil and Water Assessment Tool

(SWAT). Monthly streamflow data of 2000–2009 and 2010–2012 was used for calibration and validation,

respectively, and performed satisfactorily with Nash-Sutcliffe Efficiency (ENS) of 0.52–0.55. The projected

future climatic outcomes of the HadGEM2-ES model indicated that minimum temperature, maximum

temperature, and precipitation may increase by 1.11–3.72 �C, 0.27–2.89 �C, and 16–263 mm,

respectively, by 2050. The mean annual streamflow over the basin may increase by 20.86, 11.29, 4.45,

and 37.94% under representative concentration pathway (RCP) 2.6, 4.5, 6.0, and 8.5, respectively,

whereas the sediment yield is likely to increase by 23.34, 10.53, 2.45, and 27.62% under RCP 2.6, 4.5, 6.0,

and 8.5, respectively, signifying RCP 8.5 to be the most adverse scenario for the BRB. Moreover, a ten-

fold increase in environmental flow (defined as Q90) by the mid-century period is expected under the RCP

8.5 scenario. The vulnerable area assessment revealed that the increase in moderate and high erosion-

prone regions will be more prevalent in the mid-century. The methodology developed herein could be

successfully implemented for identification and prioritization of critical zones in worldwide river basins.
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INTRODUCTION
Water is becoming one of the scarcest natural resources in

densely populated countries such as India despite the fact

that they are endowed with many seasonal and perennial

rivers often causing flood havoc. This warrants close

attention of policy makers and implementing agencies

responsible for the implementation of sustainable water

conservation and management practices. For efficient

management of water resources in various sectors such as

domestic, irrigation, and industrial sectors, and to improve

flood control, drainage, and water quality, an accurate
forecast of streamflow is essential. The need for manage-

ment activities becomes intense in case of severe alteration

in the climate and land use pattern of a region. A little varia-

bility in the rainfall pattern may cause a substantial impact

on agriculture and allied sectors by alteration of the

supply-demand scenario in agriculture with changes in

streamflow and sediment yield.

The increased weather extremes and uncertainties under

climatic change scenarios may render natural resources

extremely vulnerable. Though the climate change projec-

tions are moderate for the tropical region, the impact of

climate change is likely to be adverse, mainly because of

the over-dependency on natural resources for ecosystem

services, and prevailing relative narrow range of base
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temperature (Kumar et al. ). Streamflow, environmental

flow (e-flow), potential soil erosion, and irrigation require-

ment are susceptible to change under changing climate,

and their estimation is crucial for future planning and

management of water resources (Adhikary et al. ).

Streamflow in Brahmani River basin (BRB) is reported to

be more sensitive to the variation in rainfall than the vari-

ation in temperature (Islam et al. ). Islam reported a

significant likely decrease in winter streamflow (i.e. from

October to February), which may affect the Rabi/winter

crop seasons, and subsequently reduce water availability

for summer crops. Increased streamflow projected for the

monsoon season may lead to extensive flooding conditions.

The quantification of soil erosion and identification of

critical areas are the prerequisite for the adoption of best

management practices to control soil erosion and sustain

agricultural production under both present and future

climate scenarios. There is an urgent need to quantify the cli-

mate change impacts in order to formulate sustainable

adaptive measures (Whitehead et al. ). Temperature

extremes are predicted to increase by the end of this century,

and a similar trend is expected for precipitation extremes

also, particularly over the western part of Central India

(IPCC ). The projected temperature change under four

different representative concentration pathways (RCPs) is

likely to vary between 0.5 and 5 �C by the end of this century

(IPCC ).

For the appraisal of hydrological fluxes, especially under

projected climate scenarios, adoption of hydrological

models seems to be the only feasible option. The correct

choice of model depends on the structure of the model,

the purpose of application and availability of model

inputs. During the initial phase of hydrological modelling,

hydrological processes were reproduced by traditional

lumped, conceptual rainfall-runoff models through simpli-

fied mathematical equations and for a single layer of

storage. A large number of calibration parameters are

associated with those models; for example, the Stanford

Watershed Model IV (Crawford & Burges ) has 16

parameters, and the SACRAMENTO model (Burnash

et al. ) has 21 parameters. These models do not account

for various complex phenomena happening inside the basin,

and are therefore unable to represent the realistic hydrologic

behaviour of the study area.
om http://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2020.202/866131/jwc2020202.pdf
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These drawbacks encouraged the modellers to develop

physically based hydrological models such as the SHE

model (Abbott et al. ), Soil and Water Assessment

Tool (SWAT; Arnold et al. ), and the Variable Infiltra-

tion Capacity model (VIC; Liang et al. ). These

models are capable enough in representing the physical pro-

cesses happening inside the catchment with utmost

accuracy. However, the poor availability of input datasets

at desired spatio-temporal scale remained the primary bot-

tleneck for physically based modelling studies. The SWAT

model has emerged as a viable catchment scale modelling

tool for quantifying various hydrological fluxes and their

influence on corresponding management aspects over a

large heterogeneous watershed in a limited data availability

scenario (Tripathi et al. ; Hassan et al. ; Dash et al.

). This model is getting continuous support from the

United States Department of Agriculture (USDA), Agricul-

tural Research Service (ARS) at the Grassland Soil and

Water Research Laboratory, Texas and has become a popu-

lar public domain hydrological model. The SWAT model

works on the principle of disintegrating the watershed first

into sub-watersheds and then into Hydrologic Response

Units (HRU) to make it computationally efficient. A better

understanding of the calibration parameters describing

catchment dynamics may lead to an excellent simulation

output with reduced model uncertainty (Lenhart et al. ).

In the current state-of-the-art, although there are many

hydrological modelling-based climate studies in the litera-

ture (Hassan ; Padhiary et al. ), no such study is

capable of fully mapping the variability in precipitation

and temperature of the BRB under changing climate

scenarios. Therefore, widespread knowledge about the

hydrological fluxes with acceptable certainty can be

implemented for possible future impact assessment of

BRB. In this study, the output of the HadGEM2-ES climate

model is adapted for flow simulation, which is an implemen-

tation of CMIP5 centennial simulations.

The BRB is a traditional hub of agricultural activities,

but it is converting into an industrial hub as a consequence

of rapid urbanization, resulting in significant increase in

demand for water. Historically, without prior potential

hydrological analysis, the major portion of the available

inflow was allocated to less important sectors (Guntner

et al. ). This leads to a significant reduction in the
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flow volume at the outlet and intensified water demand at

the downstream of the reservoir. Thus, it is necessary to

identify the vulnerable areas from the perspective of water

demand and severe hydrological alterations. Attempts have

been made to quantify the flood hazard (Dash et al. )

and potential soil erosion-prone regions (Chen et al. )

individually. The vulnerable areas are a combination of

flood and erosion-prone regions because of the complex

degree of association between them, which was not

addressed in previous studies.

In light of the above research gaps, this study has been

carried out with the following specific objectives: (i) to esti-

mate the streamflow and sediment yield fluxes over the BRB

under four future climate scenarios; and (ii) to identify the

vulnerable sub-basins of the BRB by analysing the stream-

flow and sediment yield under both present and future

climate scenarios. The outcomes of this study will be of

great interest to policy makers in selecting the locations

for implementing best management practices (BMPs), in

order to develop a sustainable operational plan for manage-

ment of water resources in future climate change scenarios.

This paper is organized as follows: In the next two sections

information is presented about the study area and the meth-

odology followed in this study is described. The important

outcomes of this research are then presented (Results).

The paper concludes with important discussions pertaining

to the results obtained.
STUDY AREA

The Brahmani River basin is encompassed between longi-

tude 83� 520 to 87� 300 E and latitude 20�280 to 23� 350 N

and constitutes an area of 39,269 km2 (Figure 1). The

basin covers three major Indian states and covers an area

of 22,516 km2 (57%), 15,406 km2 (39.23%), and 1,347 km2

(3.77%) in Odisha, Jharkhand, and Chhattisgarh state,

respectively. The basin receives input in the form of rainfall

as the only natural source and from irrigation as an artificial

source. The basin experiences an average annual rainfall of

1,305 mm and about 70% is concentrated during the mon-

soon period (June–October). The maximum and minimum

temperature of 47 �C and 4 �C, respectively, is indicative of

the presence of wide ecological variability in the basin.
://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2020.202/866131/jwc2020202.pdf
The elevation in the basin ranges between 1 and 1,169 m

above mean sea level (MSL) with an area weighted average

elevation of 341 m (Figure 1). The basin is characterized by

an undulating topography, the average slope being 0.06% in

the central part of the basin. Croplands are the major land

use class of the basin and comprise 52.04% of the total

basin area with permanent water bodies as the lowest land

cover class (2.95%). Agriculture is the primary source of live-

lihood for the people living in this basin and paddy is the

major crop cultivated in the basin. The basin is character-

ized by five major soil groups: loamy soil is the dominant

soil group covering 37.2% of the total area followed by

clay loam (27.81%), sandy loam (22.17%), sandy clay loam

(7.50%), and clay (5.25%) soil (Figure 2(b)).
METHODOLOGY

Hydrological model: SWAT

In SWAT, the inherent spatial heterogeneity involved with

the study area is conceptualized through distinct processing

units known as sub-basins, and subsequent discretization of

these sub-basins results in uneven shaped processing units,

Hydrologic Response Units (HRUs). These HRUs are the

consequence of the overlay of exclusive land use, soil, and

slope classes present in the study area. The effect of various

catchment-scale parameters such as available moisture

content, hydraulic conductivity, pollutant loading, and man-

agement practices on streamflow generation is simulated

along the individual HRUs. Further, utilizing appropriate

weighted average techniques, the HRU-scale outputs are

stacked into sub-basin-scale outputs. The sub-basin-scale

hydrological entities are further routed along the complete

river reach using two inbuilt routing approaches, variable sto-

rage and Muskingum routing techniques. Channel routing is

accomplished by the variable storage and Muskingum routing

approaches, which are the consequences of the kinematic-

wave model (Chow et al. ). The Muskingum and variable

storage routing approach was adopted in SWAT to carry out

the channel routing. Vertical soil water characterization is

accomplished by four zonal distributions: snow deposition

(surface soil), soil water storage, shallow aquifer storage, and

deep aquifer storage. Surface runoff estimation in SWAT is



Figure 1 | Study area.

436 S. S. Dash et al. | Vulnerable area identification under changing climate scenarios Journal of Water and Climate Change | 12.2 | 2021

Downloaded fr
by guest
on 24 April 202
performed by two basic approaches: Soil Conservation

Services (SCS) curve number (CN) approach (USDA Soil

Conservation Service ) and the Green-Ampt infiltration

method (Green & Ampt ). Moreover, the peak runoff

rate is computed using the modified rational formula. SWAT

performs the basic water balance to estimate the different

flux components and given by Neitsch et al. ():

SWt ¼ SW0 þ
Xt

i¼1

(Rdaily �Qsur � Ea �Wseep �Qgw) (1)

where SWt is the final soil water content at period t (mm);

SW0 is the initial soil water content (mm); t is the time

(no. of days); Rdaily is the amount of precipitation on ith

day (mm); Qsur is the amount of surface runoff on ith day
om http://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2020.202/866131/jwc2020202.pdf
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(mm); Ea is the amount of evapotranspiration on ith day

(mm); Wseep is the amount of water as recharge to ground-

water from the soil profile on ith day (mm); Qgw is the

amount of return flow on ith day (mm).

In SWAT, various hydrological processes are character-

ized over multiple soil layers describing the role of complex

sub-surface dynamics of catchment hydrology. The percola-

tion loss is quantified by considering the types of crop grown

and available soil water content in the subsequent soil

layers. Under the saturated condition, the water moves

downward to the underlying unsaturated soil layers and

subsequently reaches the deep aquifer layers. The model

individually computes evaporation from the soil and plant

canopy surface. Soil water evaporation is an explicit func-

tion of the potential evapotranspiration (PET) and leaf



Figure 2 | (a) Land use land cover map; (b) soil map of the study river basin.
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area index (LAI); that is, the ratio of plant leaf area to soil

surface area. The PET of the catchment could be modelled

with the inbuilt Penman-Monteith (Monteith ),

Priestley–Taylor (Priestley & Taylor ), or Hargreaves

(Hargreaves and Samani ) approach as per the input

data availability; this study uses the Penman-Monteith

approach to compute the PET. The catchment-scale sedi-

ment yield in SWAT is estimated by the modified universal

soil loss equation (MUSLE), which was originally developed

by Wischmeier and Smith (). The deposition and degra-

dation of sediment processes occur simultaneously over the

basin and are the basic driving units of sediment routing.

Routing of sediments across the flow channel is carried

out by using improved Bagnold’s equation (Bagnold ).
Data sources

ASTER digital elevation model (DEM; Figure 1) of 30-m res-

olution was downloaded from the USGS EarthExplorer
://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2020.202/866131/jwc2020202.pdf
website (https://earthexplorer.usgs.gov/) and used for water-

shed delineation. Soil information was obtained from the

National Bureau of Soil Survey and Land Use Planning

(NBSS&LUP), Nagpur, Maharashtra. The soil physical

properties required for model simulation include bulk

density, saturated hydraulic conductivity, soil texture infor-

mation, and available moisture content (AWC) given by:

Available moisture content (AWC)

¼ Field capacity (FC)–Wilting point (WP) (2)

Though the SWAT model can accommodate the soil

information of ten layers as input, due to data unavailability,

information of only two layers was used in this study. The

land use data prepared by National Remote Sensing

Centre (NRSC) at a spatial scale of 1:250,000 was utilized

as input for HRU delineation. Observed weather data, pre-

cipitation (mm), minimum and maximum temperature

(�C), wind speed (m/s), solar radiation (MJ/m2), and relative

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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humidity (in percentage) for BRB at a daily time scale, was

accessed from the Global Weather database for SWAT

(https://globalweather.tamu.edu/). According to availability,

eight weather stations were selected inside the basin and

data for the period 1980–2013 was used in model simu-

lation. Some missing information was generated through

statistical simulation in SWAT by the SWAT-WGEN stat-

istics. Daily streamflow data for the time period 1980–

2013 was obtained from the Central Water Commission

(CWC), Bhubaneswar for two surface flow gauging stations

located at Panposh and Gomlai sub-basin and subsequently

adopted in model calibration.

Model setup

Three basic GIS layers are required for running the SWAT

model: DEM, land use/land cover, and soil map. These

input layers were prepared in raster format or shape file

format using the ERDAS IMAGINE 2014 and Arc GIS

10.1. The NRSC prepared map with 18 classes was re-

sampled to a spatial resolution of 30 m (Figure 2(a)). For

the preparation of the soil input layer, soil mapping units

showing different soil classes were digitized (Figure 2(b)).

Different soil properties were estimated from the FAO soil

database and NBSS&LUP soil map for the individual map-

ping unit. The desired parameters were updated in the

SWAT user soil database before the model simulation. All

spatial data were projected to UTM 45N, datum WGS

1984 for the overlay of multiple spatial layers.

Individual sub-basin outlets and main catchment outlet

were defined and 126 sub-basins were delineated. Land

use and soil layers were reclassified as per the user-defined

classes. Slope was obtained from the input DEM layer.

Five slope classes were defined for the reclassification pur-

pose. The HRU thresholds were defined as 10% for land

use, 15% for soil, and 10% for slope classes to limit the

number of HRUs and improve computational efficiency of

the model. After overlaying these three layers with the pre-

defined unique thresholds, 2,286 HRUs were generated.

Six weather parameters, namely, precipitation, minimum

and maximum temperature, solar radiation, wind speed,

and relative humidity were provided as input on a daily

basis. The data for the period 1980–2013 obtained from

eight meteorological stations (i.e. Altuma, Gomlai, Panposh,
om http://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2020.202/866131/jwc2020202.pdf
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Indupur, Jenapur, Talcher, Tilga, and Jarikela) were used as

the inputs.

The model simulation was carried out for a period of 34

years, starting from 1 January 1980 to 31 December 2013.

Three years of warm-up period was included for improving

the simulation performance. To account for the hetero-

geneous distribution of rainfall over the study area, a

skewed normal distribution pattern of rainfall was preferred.

The parameterization approach was followed to account for

spatial heterogeneity conceptually. Some model parameters,

which could not be obtained directly from the present data-

base, were estimated by the model calibration process. It

facilitated understanding of the system behaviour as well

as evaluating the applicability of the model (van Griensven

et al. ). The Latin Hypercube Sampling and One-At-a-

Time (LHS-OAT) technique was adopted to carry out the sen-

sitivity analysis of model parameters using the results of

simulation at different gauging stations. Sensitive parameters

were identified and ranked accordingly. Initially, 22 par-

ameters for runoff simulation were considered for sensitivity

analysis. Pictorial representation of the adopted methodology

for SWAT model simulation is shown in Figure 3.

Model calibration and validation

Instead of manual calibration, which is more time consum-

ing and often fails to identify the inter-parameter sensitivity,

an automatic calibration approach of SWAT-CUP tool

(http://swat.tamu.edu/software/swat-cup/) was used. The

Sequential Uncertainty Fitting (SUFI-2) algorithm was

adopted for the calibration. An initial two years (1998–

1999) was used as warm-up period and a period of ten

years (2000–2009) was considered for model calibration.

Out of the 22 parameters selected for sensitivity analysis

results, only 15 parameters were chosen for carrying out

the model calibration. Streamflow data at a daily scale of

two gauging stations located at Panposh and Gomlai sub-

basins were used as inputs for the calibration. For validation,

a period of three years (2010–2012) was considered and the

final fitted calibrated parameters were adopted for the same.

The several parameters related to streamflow were

added to the calibration process; additional parameters to

conceptualize the naturally occurring phenomena in the

study area were also considered. The hydrological model,

https://globalweather.tamu.edu/
https://globalweather.tamu.edu/
http://swat.tamu.edu/software/swat-cup/
http://swat.tamu.edu/software/swat-cup/


Figure 3 | Flow chart for SWAT model setup for simulation.
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SWAT, was calibrated and validated using monthly average

streamflow data. The streamflow calibrated model can be

used for simulating sediment yields provided that the

outcomes of rainfall and runoff meet the specified

(Nash and Sutcliffe coefficient of efficiency (ENS) >0.4

and R2> 0.5) criteria. The acceptable limit of percentage

bias (PBIAS) was kept below 15% as defined by Moriasi

et al. ().

Climate change impact assessment

The impact of climate change on hydrology and streamflow

regime was quantified by using the calibrated and validated

SWAT model for four different future climate scenarios

assuming unchanged land use, soil type, and agricultural

management practices for the study basin. The output of

the HadGEM2-ES (Hadley Centre Global Environmental

Model, Version 2, Earth System), which is an atmosphere-

ocean general circulation model (AOGCM) with atmos-

pheric resolution of N96 (1.875� × 1.25�) with 38 vertical

levels and an ocean resolution of 1� (increasing to ⅓� at
://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2020.202/866131/jwc2020202.pdf
the equator) and 40 vertical levels, was used for climate

change impact analysis for the mid-century period (2050)

(Collins et al. ). The future climate data for all four

RCPs (i.e. 2.6, 4.5, 6.0, and 8.5) were analysed in this

study. A low radiative forcing value, expected to reach a

peak of 3.1 Wm�2 in the mid-21st century, and further

decline to 2.6 Wm�2 by the end of the 21st century, is

characterized by the RCP 2.6 scenario (Van Vuuren et al.

). The RCP 2.6 scenario can only be achieved through

highly controlled greenhouse gas (GHG) emissions. In the

case of RCP 4.5, a series of suitable adaptive measures

might limit the radiative forcing value to 4.5 Wm�2 by the

end of 2,100. RCP 8.5 being the highest emission scenario

would raise the radiative forcing value to 8.5 Wm�2 by the

end of 2,100 and tend to impact the ecosystem in the most

adverse manner. The desired projected weather parameters

were extracted for all 126 sub-basins at their respective cen-

troid locations. The previously calibrated and validated

SWAT model (base period) was further subjected to the

future climate inputs for quantifying the desired hydrologi-

cal fluxes.



Table 1 | Criteria for identification of critical sub-basins

Vulnerability index Vulnerability classes

<0.16 Slight

0.16–0.33 Low

0.33–0.49 Moderate

0.49–0.65 High

>0.65 Extreme
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Environmental flow assessment

Environmental flow (e-flow) is the minimum streamflow

required to sustain the downstream river ecosystem (mor-

phology, surface–groundwater interaction, groundwater

recharge, aquatic life, and pollution by dilution, etc.). Out

of numerous existing methods in the literature, the flow dur-

ation curve (FDC) approach was used to estimate e-flow.

FDC is the graphical representation of river discharge

(magnitude) in Pth percentile of daily, monthly, annually,

or any other time interval versus exceedance probability

(frequency). An integrated approach of 1-day, 7-days, and

30-days mean is generally used for developing the FDCs

(Efstratiadis et al. ; Sahoo et al. ). In this study,

30-days mean was chosen for developing the FDC for the

BRB. Q95 and Q90 are treated as the low flow index for esti-

mating environmental flow (Sahoo et al. ), whereas

(Q50/Q90) represents the variability of low-flow discharges.

Ratio (Q90/Q50) can be interpreted as an index representing

the contribution of groundwater sources towards the stream-

flow, excluding the effects of catchment area, and Q95 is rated

as the best index that corresponds to minimum ecological

flow requirement (Jha et al. ). Streamflow was calculated

at Q50, Q90, and Q95 percentile for identifying the e-flow

under present and future climate change scenarios.

Vulnerability assessment

For identification of vulnerable sub-basins in order to pro-

pose effective conservation practices, it is necessary to

recognize those sub-basins with a higher peak and average

runoff and sediment yield. Sub-basin-wise average runoff

and sediment yield value were normalized in the range

from 0 to 1, to nullify the effect of multiple units as suggested

by Jeong & Kim (). Equal weight (0.5) was assigned to

both runoff and sediment yield for assessment of their com-

bined effect for identifying the critical zone, represented by

the vulnerability index value. Five vulnerable classes were

categorized, slight, low, moderate, high, and extreme

(Table 1), to classify the erosion-prone regions.

Goodness of fit assessment

The calibrated parameters were updated in the raw model

database and subsequently the simulated outputs were
om http://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2020.202/866131/jwc2020202.pdf
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compared with the observed streamflow values for goodness

of fit assessment. The extent of statistical significance

between simulated and observed values was assessed using

three popular statistical indicators: ENS (Nash & Sutcliffe

), one of the popular objective functions used in

hydrology studies (Willmott et al. ); coefficient of deter-

mination (R2); and PBIAS. The mathematical expression of

ENS, R2, and PBIAS are presented in Equations (3)–(5),

respectively.

ENS ¼ 1�

Pn
i¼1

(Oi � Pi)
2

Pn
i¼1

(Oi �O0)2
(3)

Moreover, co-linearity between simulated and observed

values was interpreted using the R2, and it ranges from

�1 to 1.

R2 ¼

Pn
i¼1

(Oi �O0)(Pi � P0)
� �2

Pn
i¼1

(Oi �O0)2
Pn
i¼1

(Pi � P0)2

8>>><
>>>:

9>>>=
>>>;

(4)

PBIAS ¼

Pn
i¼1

(Oi � Pi)

Pn
i¼1

Oi

× 100 (5)

where n is total number of observed data, Oi and Pi are

observed and simulated data at time i, O0 and P0are the

mean of observed and simulated data. The nearer the

value of ENS and R2 to 1, the better the model tends to

perform in modelling and capturing the dynamics. ENS

generally lies between �∞ and 1; more positive values
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indicate that the model reproduced the observed values with

utmost accuracy both spatially and temporally. However, a

PBIAS value between �25 and þ25% is treated as accepta-

ble in hydrological modelling studies.
RESULTS

Sensitivity analysis

Model calibration and validation were performed on a

monthly time scale for the Panposh and Gomlai sub-water-

sheds for the years 2000–2009. Sensitivity analysis results

of the parameters and the calibrated values of streamflow

parameters of the ArcSWAT model are presented in

Table 2. Sensitivity analysis operation was performed for

both the calibration and warm-up periods. Four iterations

were performed in the SWAT-CUP. Out of 22 parameters,

ten were found most sensitive during the calibration pro-

cesses and were ranked according to the objective

function value; that is, P-value and absolute t-stat between

observed and simulated streamflow values. Streamflow

was found to be impinged by both surface water and ground-

water parameters of the study basin (Table 2) indicating

diverse hydrological variability in the study area.

The most important baseflow calibration parameter is

baseflow alpha factor (ALPHA_BF), which explains the con-

tribution of groundwater flow to variation in the recharge.
Table 2 | Model parameters range and fitted value during calibration period

Parameter Rank

Bound Auto-calibration result

Lower Upper Fitting value Method

RCHRG_DP 1 0.03 0.5 0.15 Replace

SOL_K 2 0.28 0.65 0.60 Relative

CH_N2 3 0.02 0.2 0.02 Replace

SOL_AWC 4 �0.12 0.12 �0.02 Relative

ALPHA_BF 5 0.2 1 0.92 Replace

SLSUBBSN 6 0.06 0.14 0.08 Relative

ALPHA_BNK 7 0.28 0.52 0.33 Replace

GW_SPYLD 8 0.16 0.28 0.23 Replace

GW_DELAY 9 0.87 1.79 1.12 Replace

GWQMN 10 2,878 4,660 4,234 Replace

://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2020.202/866131/jwc2020202.pdf
ALPHA_BF also bears a direct relation with another

groundwater calibration parameter, groundwater recession

constant. A higher value of these two parameters indicates

a quick response to groundwater recharge in the basin.

Due to lack of knowledge regarding the basin hydrology,

the complete calibration ranges of ALPHA_BF (i.e. 0–1)

was considered in this study. The Manning’s n-value for

main channel (CH_N2) was found to be the third most sen-

sitive parameter indicating variable topography of the basin.

Sub-basin slope parameter (SLSUBBSN) was another sensi-

tive parameter that affects the flow properties to a greater

extent. The SOL_K, an indicator of ease of water movement

inside the sub-surface soil strata was also a sensitive par-

ameter. High runoff may be attributed to the existence of

some seasonal (intermittent) tributaries which contribute

flow to the main river. A moderate value of river-bank

flow recession constant (ALPHA_BNK) suggests the move-

ment of water between some regions of bank storage and

adjacent unsaturated zones due to severe water stress. The

higher GW_DELAY value indicates the increased resting

time of water over the soil surface resulting in a significant

increase in surface runoff. The reduced GW_SPYLD value

also would have added the higher value of streamflow.

The sensitivity of various parameters suggested that the sur-

face runoff characteristics of the BRB are affected by both

surface and sub-surface flow control parameters. This

could be due to joining of different intermittent streams

from different locations to the main stream.

Uncertainty analysis

The magnitude of P-factor and R-factor were found to be

different for different gauging locations (Table 3). During

the calibration process, the value of P-factor and R-factor

at two different gauging stations was slightly higher than

0.5 which indicates the close agreement between observed

and simulated values. The 95% prediction uncertainty

(95-PPU) band is relatively narrower as suggested by the

R-factor value. During the validation period, P-factor was

0.58 for both stations and R-factor was 0.20 and 0.26 for

the respective gauging stations Panposh and Gomlai. The

higher value of the P-factor compared with the calibration

period and R-factor close to 0 indicate that validation was

adequate. The parameters used in calibration and validation



Table 3 | Statistics for runoff simulation during calibration and validation periods

Gauging location Sub-basin number

Calibration Validation

P-factor R-factor ENS R2 PBIAS P-factor R-factor ENS R2 PBIAS

Panposh 54 0.49 0.50 0.54 0.51 13.7 0.58 0.20 0.44 0.71 9.2

Gomlai 68 0.48 0.51 0.52 0.52 11.7 0.58 0.26 0.55 0.72 7.4
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were obtained by the regional approach of river flow predic-

tion at the gauging stations. Therefore, they were not

affected by any water storage structures or reservoirs located

in the upstream. The unavailability of consistent data of

reservoir inflow-outflow at a daily timescale for simulation

of runoff was a constraint and main reason for uncertainty.
Model calibration and validation

The initial simulation showed an ENS value of 0.12 and R2 of

0.26 at Panposh and ENS 0.06 and R2 0.23 at Gomlai

between simulated and observed streamflow. Successive

simulations and subsequent alteration in the parameter

values resulted in significant improvement in streamflow

prediction. The final calibration and validation statistics

are presented in Table 3. The comparison between daily

observed and simulated streamflow at both the gauging

stations, Panposh and Gomlai, are shown in Figures 4 and

5, respectively.

During the earlier years (2000 and 2001), the model con-

tinuously underestimated the observed streamflow. With the

advancement of the calibration process, the same trend was

also observed in August 2005 and 2006. This may be due to

the high amount of rainfall in August which could not be

adequately addressed by the model. Towards the end of

the calibration period, the model was able to simulate the

observed values with reasonable accuracy (Figure 4).

During the calibration process, the model did not overesti-

mate the observed values for a single period, indicating the

groundwater contribution towards the streamflow gener-

ation process. Similar trends were also observed during

the validation period of BRB. The close agreement between

observed and simulated streamflow during the validation

period indicated improved model performance, consistency,

and capability in producing good output with future chan-

ging climatic scenarios.
om http://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2020.202/866131/jwc2020202.pdf
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Climate change impact assessment

Projected precipitation and temperature

The variation in rainfall is found to be maximum in RCP 8.5,

whereas a marginal increase is expected under RCP 2.6 and

RCP 4.5 with respect to the base period rainfall of

1,644 mm. The maximum increase in rainfall is projected

during July and August for all the RCP scenarios. For all

the RCPs, rainfall increases over the space, except a few

areas where a significant decrease in rainfall was observed.

About 60% of total basin area would experience 5–10%

increased rainfall across all the RCPs, whereas about 30%

of the area would experience 10–15% increase in rainfall,

except for RCP 4.5. In RCP 8.5, an average rainfall of

450 mm might occur during August. Increase in projected

temperature over BRB indicated that RCP 8.5 would corre-

spond to an extreme climate scenario. The temperature

might go beyond 45 �C with an increase of 3.7 �C in mini-

mum temperature and 2.9 �C in maximum temperature

during April. The spatio-temporal analysis shows a gradually

increasing pattern of temperature for all four RCPs. The

Mann-Kendall trend tests (parametric trend analysis

approach) statistics indicated an average increase in temp-

erature at the rate of 0.3 �C per year in the projected

future scenarios compared with the baseline scenario.
Alteration in flow duration curve

FDC indicates a substantial and significant alteration in flow

regime under projected climate compared with the base

period. A relatively small but significant difference is also

observed among different RCPs, except between RCP 4.5

and 6.0. The maximum increase in the streamflow is under

RCP 8.5 (Figure 6). Q50 is likely to be doubled by

mid-century compared with the base period, whereas a



Figure 4 | Time series plot of measured and predicted monthly runoff at (a) Panposh and (b) Gomlai during calibration and validation periods.
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ten-fold increase in Q90 is predicted for the same period

(Table 4). The e-flow is necessary for maintaining a balanced

ecosystem and can be easily fulfilled with such increased

streamflow scenarios in the future climate. The increased

water availability in streams under future climate may be

managed to fulfil various requirements, such as irrigation

water supply, hydropower plant projects, and ongoing

urbanization. However, to actualize the benefit of increased

water flow, existing water storage structures or reservoirs

need to be upgraded and some new water conservation

structures need to be constructed in the BRB.
://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2020.202/866131/jwc2020202.pdf
Sub-basin-wise variation in streamflow and sediment
yield

To conserve soil and water by implementing best manage-

ment practices (BMPs), it is essential to identify and

prioritize the critical sub-basins. The impact of climate

change on hydrology was quantified by comparing the cali-

brated SWAT model outputs of base periods (1970–1999)

and mid-century period, 2050. The preliminary assumption

of this study was that land use, soil type, and agricultural

practices remained unchanged in the study area for the



Figure 5 | Scatter plots of monthly observed and simulated streamflow during calibration at (a) Panposh and (b) Gomlai; and for validation (c) Panposh and (d) Gomlai.
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analysis period, and the change occurs only due to the

change in climatic input variables. In the present study, cli-

mate data of the Intergovernmental Panel on Climate

Change (IPCC), AR-5 were used. Data of the four RCPs

(2.6, 4.5, 6.0, and 8.5) for the mid-century were given as

input to the previously calibrated model. The resulting

changes in the streamflow values of the BRB are in the

order of 20.86, 11.29, 4.45, and 37.94% under RCP 2.6,

4.5, 6.0, and 8.5, respectively, while for sediment yield the

percentage increase becomes 23.34, 10.53, 2.45, and
om http://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2020.202/866131/jwc2020202.pdf

4

27.62% under RCP 2.6, 4.5, 6.0, and 8.5, respectively. The

contrasting results for the streamflow for RCP 6.0 could

be attributed to the high evapotranspiration loss as a

consequence of highest temperature increase (5.51 �C),

subsequently lowering the streamflow component of the

water balance. Certainly, the lowest increase in streamflow

caused reduced sediment yield from the BRB in the RCP

6.0 scenario. These results are expressed as the sub-basin-

wise percentage variations in runoff and sediment yield,

respectively for each RCP (Figures 7 and 8). As per the



Figure 6 | Comparison of FDC of 30-days mean streamflow for present and future climate change scenarios.

Table 4 | Environmental flow (m3/s) variation in base period and climate change scenarios

Q50 Q75 Q90 Q95

Base period 82.43 22.7 4.462 1.69

2050-RCP 2.6 148.70 73.14 39.69 28.52

2050-RCP 4.5 149.8 71.28 39.32 28.23

2050-RCP 6.0 162.80 73.67 40.89 30.58

2050-RCP 8.5 157.40 77.57 40.34 30.07
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value of proposed vulnerability using an equal weight

approach for runoff and sediment yield, sub-basins were

categorized into five vulnerability classes such as slight,

low, moderate, high, and extreme. The areas under five vul-

nerability classes were calculated sub-basin-wise for both

present and future climate change scenarios and are pre-

sented in Table 5. During the base period, the area under

extreme and high vulnerability classes were 3.5% and no

substantial change is found under projected climate

change scenarios.

Identification of vulnerable area

The highest increase in area is indicated under the moder-

ately vulnerable class followed by the highly vulnerable

class. The area under the slight and low vulnerability classes

decreased from the initial value of 24.5–15.8% and 44.9–

29.8%, respectively, in the future climates. The result indi-

cates an increase in overall soil erosion potential for the

BRB under projected climate scenarios.
://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2020.202/866131/jwc2020202.pdf
During the base period, five critical sub-basins (sub-

basin number 1, 2, 16, 17, and 22) cover 3.5% of the total

basin area. Sub-basins 1 and 2 are largely encompassed

under village area and the majority of the land portion is

covered with agricultural lands. About 48% of the area

(12,719.8 ha) remains fallow throughout the year. However,

the fallow land may be covered with crops due to altered

rainfall patterns which is indicative of the improved hydro-

logic scenario in the future time period (Figure 7). More

than 50% of land area is situated on slope ranges of

8–33%. This land topography also corroborates the high

vulnerability of these two sub-basins. In case of sub-basin

16, 17, and 22, increased rainfall and high slope are favour-

able for the erosion and transportation of soil particles.

Approximately 30% of basin area comes under the moderate

to extreme vulnerability class and needs priority attention.

Only 5.5% of the area is categorized under severe and

high erosion-prone zone (Figure 9). Spatial heterogeneity

regarding projected climate change and hydrological altera-

tions in BRB is also corroborated from the predicted

reduction in the vulnerability of some patches against the

overall increased vulnerability.

In the projected climate condition, around 55% of the

total area is under the moderate to extremely vulnerable

class which is almost double that of the base scenario.

Though no considerable change is observed in case of

severe erosion-prone areas, an increase of around 12% is

observed in the case of high erosion-prone areas. The per-

centage of slight erosion-prone areas reduced from an

initial value of 24.5%–15.7%.



Figure 7 | Sub-basin-wise percentage changes in runoff with respect to base period for the four scenarios (a) RCP 2.6; (b) RCP 4.5; (c) RCP 6.0; and (d) RCP 8.5 for 2050.
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Figure 8 | Sub-basin-wise percentage changes in sediment yield with respect to base period for the four scenarios (a) RCP 2.6; (b) RCP 4.5; (c) RCP 6.0; and (d) RCP 8.5 for 2050.
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Table 5 | Vulnerable classes and percentage area under present and climate change

scenarios

Vulnerable
classes

Area (%) during
base period

Area (%) under changing
climate scenario

Slight 24.49 15.74

Low 44.87 29.79

Moderate 25.25 36.66

High 1.90 13.8

Extreme 3.48 3.65
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In the projected future climate scenario, maximum soil

erosion is observed in the case of sub-basin numbers 16,

20, 22, 104, and 118. This may be attributed to long patches

of fallow land in the two sides of Brahmani River and undu-

lating topography resulting in high levels of soil erosion

under increased flow in sub-basin 16. Hilly topography of

sub-basin number 20 under increased precipitation makes

the sub-basin extremely vulnerable. Hence, it is classified

under severe erosion-prone area. High rainfall (1,512 mm)
Figure 9 | Sub-basin-wise vulnerability classes for the period (a) 1970–1999 and (b) 2050–207

om http://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2020.202/866131/jwc2020202.pdf
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projected in sub-basin 22 during the period 2050–2079

along with high slope (15–33%) explains the high vulner-

ability of the concerned region. Sub-basins (104 and 118)

situated close to the outlet of Brahmani River basin are sub-

jected to high flow velocity of the main stream. Precipitation

in these areas is also projected to increase (about

1,650 mm), which explains their inclusion under severe

soil erosion-prone zones in future climate scenarios.
DISCUSSION

Flux variation under changing climate scenarios

The results of the present study are in line with the results

reported from similar climatic regions. A study carried out

by Pandey et al. () over the Godavari River basin,

India, which lies in a tropical region, found an increase in

the magnitude of various hydrological fluxes in both A2

and B2 scenarios. The increase in water yield during May
9.
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was nearly 16%. These results are found to be in line with

the results of the present study showing increased stream-

flow of 0–30%. The average increase in sediment yield of

18% over BRB is comparable with results reported by

Plangoen et al. () over a tropical watershed of northern

Thailand. The HadCM3 model indicated an increase in soil

erosion by 14% with 4% change in rainfall magnitude over

the region.

Contrasting results are also reported from a different type

of climatic region. Reduction in runoff by 39.2 and 41.25%, in

A2 and B2 scenarios, respectively, has been reported from the

humid region (Perazzoli et al. ). Net alteration in radi-

ation results in an increase in precipitation round the year,

and subsequently the forest canopy gets denser and controls

the average streamflow to a greater extent (Graham et al.

). The study over the tropical region and humid region

confirms that in future the pattern of streamflow is a

region/climate-specific phenomenon and largely depends

on the variation in meteorological parameters. In the case

of humid regions, a decrease in precipitation is reflected in

the reduced streamflow, whereas the opposite trend is

observed in tropical regions including the present study.

Effect of flux alteration over different water resource

sectors

Climate change impact and subsequent alteration in

hydrological fluxes has significant implications for the

sustainable planning of water resources. As runoff and sedi-

ment yield are the two important concerns of this study, an

attempt has been made to identify the soil erosion-prone

areas under changing climate scenarios. BRB is primarily

an agriculture-dominant river basin, with more than 40%

of the area covered with Kharif and Rabi crops. Apart

from agriculture, BRB plays a crucial role in electricity pro-

duction as it houses one of the major hydroelectric power

plants at Rengali reservoir. The hydroelectric power plant

has an installed capacity of 250 MW. It also assists two

basic water resource management strategies by protecting

an area of around 2,600 km2 from flood hazard and simul-

taneously providing irrigation to 270,000 hectares in the

downstream area. At present, the hydroelectric power

plant operates based on the run-of-the-river policy (ROR),

which indicates that the magnitude of hydropower
://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2020.202/866131/jwc2020202.pdf
generation is directly proportional to reservoir inflow

volume. The analysis of climate change impact in sub-

basin 62 indicated that Rengali reservoir and hydroelectric

power plant would experience more than 100% increase

in discharge under all RCP scenarios of 2050. This alarming

situation would need a plan and additional infrastructure for

additional flow management of Rengali reservoir. The

increased reservoir inflow may cause severe siltation pro-

blems in the reservoir, resulting in considerable reduction

in storage volume and elevated peak discharge. This challen-

ging situation offers an opportunity for increasing water

availability if the information generated is used for pre-

event policy planning for sustainable management.

The flow duration curve prepared for both base period

and future scenarios of all RCPs indicate a significant vari-

ation between these two projections. In general, Q50

corresponds to the flow required to maintain hydroelectric

power plant operations, which is predicted to increase by

50% in future projections. This brings a very good opportu-

nity for hydroelectric power generation in the mid-century

period. However, increased water availability for hydro-

power generation in future projections raises a serious

concern about maintaining the capacity of the hydroelectric

power plant. Similarly, the Q75 value in FDC corresponds to

the irrigation water supply to downstream areas for main-

taining crop water requirement throughout the growing

period. This value may increase three-fold under the future

scenario, which may have a positive impact on crop

growth and yield enhancement.

From the water availability aspect over BRB, an

improved situation is expected in the mid-century. However,

the real problem arises when erosion-prone areas come into

the picture. Though no appreciable change in the area suscep-

tible to severe erosion is predicted, there is a likelihood of an

increase in moderate and high erosion-prone areas. If not

attended properly, the increased erosion potential may

negate the positive effect of increased water availability for

crop production. Due to the adverse soil erosion potential

in the mid-21st century, a contradictory scenario would be

created when the benefit of a large amount of available

water for irrigation would not be actualized to a satisfactory

extent due to the reduced availability of fertile land.

As described earlier, the BRB is going to be an industrial

hub in the near future, causing a significant reduction of the
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existing crop lands. The rapid industrialization may further

aggravate population increase to greater extent. Under

such a contradictory scenario, the need to maintain the bal-

ance between food demand and existing crop land is

inevitable. Therefore, to increase crop productivity in the

BRB, the fallow land, wasteland, and eroded land need to

be treated properly before their use for agriculture. The out-

comes of the future climatic projections over BRB revealed

that the moderate and highly vulnerable areas may experi-

ence considerable increase over that of base period.

Hence, best management practices can be implemented in

the identified critical sub-basins in the future climate context

over BRB, such as bunding, terracing, and contour farming,

so that the crop yield and available agriculture land can be

optimized. Moreover, the identified extreme erosion-prone

regions can be managed properly so that soil erosion can

be reduced dramatically. The conversion of waste lands

and fallow lands to agriculture lands and reduced erosion

will alleviate the flood hazard and subsequently, the reser-

voir efficiency in fulfilling the water demand may be

further improved.

SWAT has been extensively used in water balance

studies, but the erosion perspective attempted in this study

using recently available climate change projection (IPCC

AR5) and the contribution of both streamflow and sediment

yield in erosion-prone area identification is the new

addition. The attempt to develop FDC using recently avail-

able climate change projections (AR5), using the SWAT

model for future climate projections to assess the water

availability and subsequent allocation to different water

resource sectors to maintain minimum ecological flow is

of its own kind in the BRB. A similar approach can be

extended to other river basins worldwide irrespective of

region and climate. The study highlighted the following

useful points that can improve the modelling efficiency

and accuracy to a greater extent in basin scale water

resources planning. Selection of appropriate climate model

and RCP scenarios has substantial implications for the

assessment of water resources. Moreover, the hydrological

modelling of catchments with a wide nexus of agriculture,

flood, drought, and hydropower generation necessitates

selection of appropriate hydrological models for a more rea-

listic assessment of water resources in future climate change

scenarios, and subsequent planning processes.
om http://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2020.202/866131/jwc2020202.pdf
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CONCLUSION

The hydrology of BRB was quantified for the baseline period

(1970–1999) as well as for future climate (mid-century, 2050).

The SWAT model could be successfully used for simulation

of BRB hydrology. Integration with the SWAT-CUP tool

and SUFI-2 algorithm for calibration and validation was

found to be very effective. A good agreement between

observed and simulated streamflow during calibration and

validation proves the applicability of the SWAT model at

river basin-scale under a limited data availability scenario.

Bias-corrected outputs of GCM (HadGEM2-ES) were

used to assess the impact of changes on runoff and

sediment yield. The variability of climatic factors is found

to be at a maximum during the RCP 8.5 scenario for the

mid-century.

Overall, runoff and soil loss are predicted to increase

under future climate change conditions. However, a

decrease in runoff and sediment loss is indicated from

some patches in upper catchments of the BRB. Increase in

runoff and sediment yield indicated from mid- and lower

catchments may be attributed to increased rainfall magni-

tude, altered rainfall pattern (Figure 6), interaction with

topography, and land use under future climate. An approxi-

mate ten-fold increase in environmental flow (Q90) is

expected under projected climate scenarios. The increased

flow can be managed to fulfil the ever-increasing demand

of various sectors and can be of great support for ongoing

urbanization. The area under moderate and high vulner-

ability classes is likely to increase from 25 to 37% and 2 to

14%, respectively, by the mid-century. A substantial area

under the low and slightly vulnerable classes is likely to be

converted to the moderate and highly vulnerable classes

under the changed climate. The area in need of soil and

water conservation treatment is likely to double (55% of

total area) under future climate change context. The critical

sub-basins identified in this study can be taken up as a pri-

ority for introducing best management practices (BMPs) to

sustain agricultural productivity and judicious water

resource management. Conclusively, the threat to hydroelec-

tric plants for power production is imminent due to climate

change scenarios across all the RCPs in BRB.

This study provides a generalized framework for the

identification of the vulnerable areas in a watershed/river
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basin in the context of climate change. The outcomes of this

research would act as a guiding tool for policy makers to

identify the locations where implementation of suitable

best management practices (BMPs) may alleviate future

adverse conditions to a greater extent. In future studies,

more complex frameworks can be integrated with the exist-

ing approach to identify the vulnerable regions in both

climate change and land use/land cover change scenarios.
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