Climate change is one of the main consequences of anthropogenic activities. Since the 1950s, gradual changes and an increase in climate warming have been observed. Previous research has been indicating potential associations between climate warming and spatiotemporal changes in precipitation. Moreover, the regional patterns of precipitation have a key role in the continuous monitoring of climate characteristics and natural hazards such as floods and droughts. Therefore, precise and accurate measurements of precipitation concentration and spatiotemporal variability in their patterns are very crucial. In this study, a new method for measuring precipitation concentration is developed and applied to 54 meteorological stations in Pakistan. Furthermore, to assess the precipitation patterns, the proposed method provides solid evidence for considering the effect of temperatures under climate warming. Furthermore, using the spatial correlation between the proposed method and its competitor, a comparative analysis is made to evaluate the performance of the proposed method. Moreover, the spatial variability structure in various precipitation patterns is assessed and compared using spatial predictive maps. Outcomes associated with this research show significant deviations between the proposed method and the existing one. In this paper, regression analysis revealed that the additional input can potentially improve the precipitation estimates under the appropriate sampling estimator. This is the first study that has documented the impact of climate warming on measuring precipitation concentration. These findings can contribute to a better understanding of precipitation concentration in relation to climate warming.

  • Develop a new method (RCTIPC) for precipitation modelling.

  • Comparison between PCI and RCTIPC for precipitation modelling.

  • Analyzing regional precipitation variability with climate change impact.

  • Spatial variability structure in various precipitation patterns is assessed and compared using spatial predictive maps.

Among several environmental processes, spatiotemporal variability in precipitation has an important role in regional climatology (Coffel & Horton 2015; Khan et al. 2021; Wolski et al. 2021). In recent years, the perpetual increase in climate warming threatens to deteriorate the role of flood and drought mitigation, climatic, ecological, and regional environmental policies (Perkins-Kirkpatrick & Gibson 2017). Similar to the other socioeconomic and financial sectors, extreme temperature and high concentration in rainfall have direct severe negative effects on agricultural economics (Powell & Reinhard 2016). In particular, extreme events such as floods and droughts badly affect crop growth and yield production seasons. For instance, the US economy bears $220 million in losses in 2010 and 2012 due to high night-time temperatures and warm winter (Melillo 2014). In recent research, Azad et al. (2022) assessed the patterns of monsoon precipitation in 29 stations of Bangladesh. Islam et al. (2020) discovered the spatiotemporal trend in precipitation under various statistical models. Therefore, the accurate quantification of precipitation with its variability patterns aids in making long-term policy and climate monitoring modules.

Accordingly, the regional distribution of extreme temperature has significant importance for defining regional climatology and watersheds (Courty et al. 2018). Hence, the simultaneous study of these hydrological factors increases hydrological research's impact and reliability. In several previous research, time-series data of precipitation and rainfall are jointly configured to make inferences in climate research and forecasting (Coles & Tawn 1991; Guler et al. 2007; Mahdian et al. 2009; Diacono et al. 2013; Xu et al. 2014; Rahman & Islam 2019; Praveen et al. 2020). Recently, Saunders et al. (2017) have considered spatial distributions of rainfall using the max-stable spatial model in South-East Queensland, Australia. Baek et al. (2017) have made a joint analysis of the seasonal climatic variation using the correlation between precipitation and temperature. Other recent studies include Gehman et al. (2018), Dado & Takahashi (2017), Longman et al. (2018), Zscheischler et al. (2017), etc.

Besides the use of advanced statistical and geospatial tools, precise estimates and accuracy in reporting any random phenomenon are the key factors for reliable inferences and conclusions. In previous research, numerous studies are based on the precise estimation of climatic variables (Gabella & Notarpietro 2004; Germann & Joss 2004; Ahmad et al. 2017) and studying their temporal changes (Carrera-Hernández & Gaskin 2007). However, to improve and update the rainfall statistics, the role of auxiliary information on the recording and reporting stage of rainfall data is not considered in the literature.

For developing countries, it is essential to review the standard monitoring and data recording modules (Mirza 2003; Hussein et al. 2013). From these perspectives, precise quantification of precipitation and other climate factors using optimized gauge monitoring networks present a challenge (Chebbi et al. 2013). However, the existence of and setting of severally available optimized gauge networks reduces the scope of the optimization approaches. Contrarily, geospatial analysis and prediction using geostatistical tools are the alternative way to explore and infer. One drawback of these methods is the use of raw data. That is, no remedy is suggested or made for unreliable and unrepresentative data. This leads to an increase in uncertainty about the results of these models.

In order to increase the precision and accuracy of precipitation estimates, integrated auxiliary information-based sampling estimators are proposed (Cochran 2007; Mauro et al. 2017; West 2017). Several studies have developed various efficient estimators that utilize auxiliary information under different sampling strategies (Sahai & Ray 1980; Lohr & Prasad 2003; Hou et al. 2017). Furthermore, many researchers have used auxiliary variables in various statistical models (Zhu & Lin 2010; Apaydin et al. 2011; Paloscia et al. 2013).

In previous research, Oliver (1980) developed a coefficient of variation-based index called the Precipitation Concentration Index (PCI). The PCI characterizes and classifies the behavior of precipitation of its annual variability structure. Several studies have used the PCI and extended its methodologies in various regional studies in recent years. These include Huang et al. (2015, 2018), Li et al. (2017) and Bartolini et al. (2018). The PCI explores the yearly distribution of rainfall at a single station. In the original and later modified versions of the PCI, no external sources of variation were addressed in their estimation procedure. Moreover, rainfall data does not account for the prolonged behavior of precipitation (Montazerolghaem et al. 2016) and the size of the catchment. Furthermore, many other meteorological factors such as temperature, wind speed and runoff are also neglected.

Pakistan is considered one of the most three countries with the highest levels of water stress in the world (Farooqi et al. 2005). The average value of rainfall in Pakistan is 287.75 mm. The water shortage in Pakistan is reaching an alarming level that is posing a serious threat to the stability of the country. Accordingly, drought hazards due to the water shortage and the periodic drought events are the serious challenges (El Kharraz et al. 2012; Lal 2018). There are a number of people that lost their lives due to the drought events that occurred in the Tharpaker district (Rana & Naim 2014). Moreover, the water scarcity and drought phenomena effect of the agriculture and livestock sectors and caused a problem in hydropower energy generation. Consequently, the country bears severe economic crises and a shortfall in Gross Domestic Product (GDP). These crises are transpired due to a huge disparity between the demand and supply of energy. Although the development of a large number of the water reservoirs is being progressed. Nevertheless, the climate change and global warming have been formed several other challenges that related the existing water reservoirs in Pakistan.

The objective of this research is the precise and accurate measurement of precipitation concentration and spatiotemporal variability in their patterns. Using an auxiliary information-based sampling estimator, we postulated that the use of temperature as auxiliary information can be used to improve precipitation estimates. This is logical, as many authors have provided evidence of the use of auxiliary information. In our recent research, we have used a number of information-based auxiliary estimators to analyze drought in Pakistan (Ali et al. 2020a, 2021a, 2021b; Jiang et al. 2020). By acknowledging the positive role of auxiliary information in the estimation phase, this study is based on integrating extreme (minimum and maximum) temperature as an auxiliary variable to improve the estimation of precipitation. The specific questions which drive the research are: (1) How can we improve the raw rainfall data by modeling the relationship between temperature and rainfall in the context of global warming and (2) how to examine and assess the patterns of precipitation. In this article, a new technique of measuring precipitation-related statistics such as mean and its variability is provided. The proposed technique uses improved time-series data of precipitation estimates for defining precipitation patterns. Consequently, this research proposed a new formula for measuring precipitation variability: The Regional Contextual Temperature Index of Precipitation Concentration (RCTIPC). To illustrate all the steps involved in estimating RCTIPC, time-series data of monthly total precipitation, minimum temperature and maximum temperature of 54 meteorological stations of Pakistan have been considered. The proposed method's performance is compared with PCI using spatial correlation and spatial predictive maps of various precipitation patterns under the spatial Poisson Log Normal (PLN) model.

Study area and data collection

Meteorological data of 54 stations located in the distinct regions of Pakistan as shown in Figure 1 have been used to apply the proposed criterion. In the current research, secondary time-series data of varying indicators, including precipitation and temperature (ranging from January 1971 to December 2017) are collected from the Karachi Data Processing Center (KDPC) (http://www.pmd.gov.pk/rmc/RMCK/Services_Climatology.html). Furthermore, before dispatching data, issues interrelated to the tabulation, removal of errors, adjusting outliers, quality control, and missing values are performed by RClimDex (Zhang & Yang 2004). Consequently, the data bank fulfils the requirement of Word Meteorological Organization (WMO). Table 1 provides the climatological and geographical information of precipitation in the selected meteorological stations.
Table 1

Climatological and geographical information of the selected meteorological stations

Meteorological stationsLatitudeLongitudeElevation (m)Mean precipitation (mm)Mean minimum. temperature (mm)Mean maximum temperature (mm)
Astore 35.57 74.63 2,168 39.21 4.099 15.754 
Badin 24.65 68.85 18.31 20.284 33.291 
Bahawal Pur 29.35 71.69 110 15.19 18.332 33 
Bahawalnagar 30 73.24 163 19.8 18.76 32.605 
Balakot 34.55 73.36 3,199 131.7 12.107 25.189 
Barkhan 29.9 69.57 1,097 34.24 14.912 28.382 
Bunji 35.66 74.6 1,372 13.33 11.321 23.856 
Cherat 33.82 71.89 1,372 51.17 12.967 21.341 
Chhor 25.51 69.78 19.09 18.058 35.046 
Chilas 35.42 74.09 1,250 15.73 14.311 26.426 
chitral 35.77 71.77 1,497.8 37.78 8.55 23.462 
Dalbadin 28.89 64.4 843 6.72 13.897 32.032 
DIK 31.86 70.9 171.2 26 16.908 31.563 
Dir 35.2 71.87 1,375 115.47 7.917 23.03 
Drosh 35.57 71.8 1,463.9 47.45 11.051 24.185 
Faisalabad 31.45 73.14 185.6 32.43 17.088 31.06 
Garhi Dupatta 33.52 73.92 813.5 123.15 12.341 26.104 
Gilgit 35.28 71.84 1,460 11.65 7.646 24.053 
Gupis 36.23 73.43 2,156 15.83 6.425 18.839 
Hyderabad 25.4 68.36 28 12.9 21.047 34.279 
Jacobabad 28.28 68.45 55 11.04 20.187 34.169 
Jhelum 32.94 73.73 287.19 73.1 16.816 30.613 
Jiwani 25.05 61.77 58 8.63 21.212 30.305 
Kakul 34.19 73.26 1,308 110.97 10.684 23.074 
Kalat 29.05 66.59 2,015 15.46 5.811 22.186 
Karachi 24.9 67.17 22 15.38 21.006 32.159 
Khanpur 28.63 70.66 88.41 10.5 17.373 33.362 
Khuzdar 27.82 66.61 1,231 21.14 14.879 28.9 
Kohat 33.59 71.44 489 47.39 16.965 29.62 
Kotli 34.23 73.62 614 103.65 15.387 28.437 
Lahore 31.5 74.36 216.15 55.66 18.57 30.682 
Lasbella 25.87 66.71 87 14.66 18.564 35.725 
Mianwali 32.58 71.54 210 45.74 16.905 31.633 
Multan 30.16 71.52 121.95 17.81 18.377 32.532 
Murree 33.91 73.39 2,291 145.16 8.672 17.419 
Muzaffarabad 34.36 73.47 838 124.05 13.509 27.638 
Nawabshah 26.24 68.39 37 11.95 18.17 35.606 
Nokkundi 28.83 62.75 682 2.99 17.231 32.64 
Padidan 26.77 68.29 46 9.72 18.227 34.881 
Panjgur 26.73 64.15 968 8.24 15.051 30.181 
Parachinar 33.9 70.09 1,725 81.53 7.796 21.034 
Pasni 25.25 63.42 8.27 20.252 31.302 
Peshawar 34.02 71.52 327 40.1 16.211 29.644 
Quetta 30.18 66.98 1,719 21.45 8.038 24.978 
Rawalpindi 33.61 73.1 508 102.72 14.689 28.796 
Risalpur 34.08 71.99 308 55.5 14.671 29.778 
Rohri 27.67 68.89 66 9.01 19.814 34.228 
Sakardu 35.3 75.62 2,317 19.08 4.822 18.78 
Sargodha 32.07 72.69 187 39.88 17.343 31.509 
Sialkot 32.49 74.52 255.1 83.53 16.432 29.477 
Sibbi 29.55 67.88 133 14.02 19.374 35.156 
Zohub 31.35 69.47 1,405 23.38 12.033 26.58 
Meteorological stationsLatitudeLongitudeElevation (m)Mean precipitation (mm)Mean minimum. temperature (mm)Mean maximum temperature (mm)
Astore 35.57 74.63 2,168 39.21 4.099 15.754 
Badin 24.65 68.85 18.31 20.284 33.291 
Bahawal Pur 29.35 71.69 110 15.19 18.332 33 
Bahawalnagar 30 73.24 163 19.8 18.76 32.605 
Balakot 34.55 73.36 3,199 131.7 12.107 25.189 
Barkhan 29.9 69.57 1,097 34.24 14.912 28.382 
Bunji 35.66 74.6 1,372 13.33 11.321 23.856 
Cherat 33.82 71.89 1,372 51.17 12.967 21.341 
Chhor 25.51 69.78 19.09 18.058 35.046 
Chilas 35.42 74.09 1,250 15.73 14.311 26.426 
chitral 35.77 71.77 1,497.8 37.78 8.55 23.462 
Dalbadin 28.89 64.4 843 6.72 13.897 32.032 
DIK 31.86 70.9 171.2 26 16.908 31.563 
Dir 35.2 71.87 1,375 115.47 7.917 23.03 
Drosh 35.57 71.8 1,463.9 47.45 11.051 24.185 
Faisalabad 31.45 73.14 185.6 32.43 17.088 31.06 
Garhi Dupatta 33.52 73.92 813.5 123.15 12.341 26.104 
Gilgit 35.28 71.84 1,460 11.65 7.646 24.053 
Gupis 36.23 73.43 2,156 15.83 6.425 18.839 
Hyderabad 25.4 68.36 28 12.9 21.047 34.279 
Jacobabad 28.28 68.45 55 11.04 20.187 34.169 
Jhelum 32.94 73.73 287.19 73.1 16.816 30.613 
Jiwani 25.05 61.77 58 8.63 21.212 30.305 
Kakul 34.19 73.26 1,308 110.97 10.684 23.074 
Kalat 29.05 66.59 2,015 15.46 5.811 22.186 
Karachi 24.9 67.17 22 15.38 21.006 32.159 
Khanpur 28.63 70.66 88.41 10.5 17.373 33.362 
Khuzdar 27.82 66.61 1,231 21.14 14.879 28.9 
Kohat 33.59 71.44 489 47.39 16.965 29.62 
Kotli 34.23 73.62 614 103.65 15.387 28.437 
Lahore 31.5 74.36 216.15 55.66 18.57 30.682 
Lasbella 25.87 66.71 87 14.66 18.564 35.725 
Mianwali 32.58 71.54 210 45.74 16.905 31.633 
Multan 30.16 71.52 121.95 17.81 18.377 32.532 
Murree 33.91 73.39 2,291 145.16 8.672 17.419 
Muzaffarabad 34.36 73.47 838 124.05 13.509 27.638 
Nawabshah 26.24 68.39 37 11.95 18.17 35.606 
Nokkundi 28.83 62.75 682 2.99 17.231 32.64 
Padidan 26.77 68.29 46 9.72 18.227 34.881 
Panjgur 26.73 64.15 968 8.24 15.051 30.181 
Parachinar 33.9 70.09 1,725 81.53 7.796 21.034 
Pasni 25.25 63.42 8.27 20.252 31.302 
Peshawar 34.02 71.52 327 40.1 16.211 29.644 
Quetta 30.18 66.98 1,719 21.45 8.038 24.978 
Rawalpindi 33.61 73.1 508 102.72 14.689 28.796 
Risalpur 34.08 71.99 308 55.5 14.671 29.778 
Rohri 27.67 68.89 66 9.01 19.814 34.228 
Sakardu 35.3 75.62 2,317 19.08 4.822 18.78 
Sargodha 32.07 72.69 187 39.88 17.343 31.509 
Sialkot 32.49 74.52 255.1 83.53 16.432 29.477 
Sibbi 29.55 67.88 133 14.02 19.374 35.156 
Zohub 31.35 69.47 1,405 23.38 12.033 26.58 
Figure 1

Geographical locations of study area.

Figure 1

Geographical locations of study area.

Close modal

The RCTIPC

This section configures the role of temperature as an auxiliary variable in the estimation process of precipitation. First, we describe the geostatistical settings of environmental variables and their estimation process. Second, we use Mukerjee et al. (1987) estimator to configure extreme temperature as auxiliary information for estimating regional precipitation. Mukerjee et al. (1987) estimator is a generic method that utilizes multiple auxiliary information in the estimation process in which the marginal effect and temporal fluctuation of related variables are accounted.

Here, we recall the definition of geostatistical data. Let be the location points in a certain region. In geo-statistics and geospatial analysis, such data are often collected at spatially sampled locations of continuous phenomenon of a discrete set of locations at particular regions (Diggle et al. 1998). To assemble these settings in rainfall recordings, let z be the total monthly precipitation measured at a certain location . In the theory of survey sampling (Cochran 2007) this z can be considered as a sample information of the whole region for which we are going to generalize the findings. Therefore, the selection of this location point should be well spatially representative (Henry & Cassidy 1978; Joss et al. 1990; Thornton & Running 1999; Eslamian 2014).

Furthermore, let Tmin and Tmax and R be the values of the minimum temperature, maximum temperature, and total precipitation mapped over a specific region, which are recorded monthly. As the time-series meteorological data are based on a single observatory, the annual mean precipitation can be greatly dispersed from the original values. However, it is impossible to measure the precipitation record at all the points. In this context, efforts can be made to include auxiliary information to minimize the gap between observed and true values. Hence, if there are positive correlation between rainfall and auxiliary information, the mean of study variable can be obtained with a more accurate way. Hence, under the rationale of Mukerjee et al. (1987) estimator, we suggest the following equation for precipitation improvement.
(1)
where is the improved annual mean of the precipitation, and are the regional mean maximum and minimum temperature, b1 and b2 are the slopes coefficient between precipitation and temperature, Tmax and Tmin are the overall mean maximum and minimum temperature. In this study, we assume that compared to precipitation, the spatial variations in extreme temperature are significantly low. Our experimental results show that minimum and maximum temperatures are strongly correlated with total monthly recorded rainfall. For generalization, we used time-series data of four meteorological stations having different climatology (see Table 2). Here we observed significant changes in simple precipitation estimates from those estimated from regression estimation settings.
Table 2

Summary statistics of four stations for numerical illustration

Station nameSialkotSargodhaJhelumSakardu
Latitude 32.4945° N 32.0740° N  32.0740° N 32.0740° N 
Longitude 74.5229° E 72.6861° E 73.7257° E 75.6166 ° E 
Mean minimum temperature 16.438 17.392 16.822 4.807 
Mean maximum temperature 29.4483 31.51 30.607 18.829 
Correlation minimum temperature 0.445 0.429 0.467 0.166 
Correlation maximum temperature 0.204 0.254 0.204 0.272 
Slope with minimum temperature 7.4812 2.821 5.75 −0.512 
Slope with maximum temperature 3.7532 1.93 2.813 −0.714 
Overall mean of precipitation 84.0427 40.054 73.841 19.321 
Regression mean using two auxiliary variables 57.853 22.557 48.372 8.426 
Station nameSialkotSargodhaJhelumSakardu
Latitude 32.4945° N 32.0740° N  32.0740° N 32.0740° N 
Longitude 74.5229° E 72.6861° E 73.7257° E 75.6166 ° E 
Mean minimum temperature 16.438 17.392 16.822 4.807 
Mean maximum temperature 29.4483 31.51 30.607 18.829 
Correlation minimum temperature 0.445 0.429 0.467 0.166 
Correlation maximum temperature 0.204 0.254 0.204 0.272 
Slope with minimum temperature 7.4812 2.821 5.75 −0.512 
Slope with maximum temperature 3.7532 1.93 2.813 −0.714 
Overall mean of precipitation 84.0427 40.054 73.841 19.321 
Regression mean using two auxiliary variables 57.853 22.557 48.372 8.426 
To analyze the pattern of precipitation data, Oliver (1980) has developed a coefficient of variation-based PCI. The PCI characterizes and classifies the behavior of precipitation of their annual variability structure. The PCI formula utilizes monthly recorded data of precipitation of a specified gauge station. Equation (2) describes the estimation procedure of PCI values.
(2)
Here, Equation (2) can be written as
(3)
where , Pi represents the amount of monthly precipitation in the ith month and is the average annual precipitation. The PCI less than 10 indicates a uniform pattern, and the PCI greater than 20 is classified as high concentration, whereas its inner range classifications are defined in Table 3.
Table 3

Classification of the PCI and RCTIPC

Values of PCI and RCTIPC Pattern
 Uniform pattern 
 Moderate concentration 
 Irregular concentration 
 High concentration 
Values of PCI and RCTIPC Pattern
 Uniform pattern 
 Moderate concentration 
 Irregular concentration 
 High concentration 

To assess the effect of the auxiliary variable, we extended and analyzed the results of precipitation estimates to check the precipitation variability. Therefore, instead of using a simple average in the denominator of Equation (3), we suggest a regression estimation method for precipitation average. Using this proposal, dissemination of regional variation and classification will incorporate more regional representativeness, reduce sampling error, and account for the effect of extreme temperature. We hypothesize that a more efficient estimator gives more information. The efficiency measures extracted information in terms of variance of an unbiased estimator, which means smaller variance and greater efficiency. Without using the mathematical theory, here we use the traditional mean and the mean of regression estimator proposed by Mukerjee et al. (1987) on real datasets. In this research, the minimum temperature is used as the first auxiliary variable, and the maximum temperature is used as a second.

Therefore, in line with Oliver (1980), we suggest a RCTIPC technique.
where is the mean precipitation estimates while considering the regional effect of extreme temperature under regression estimation settings.

RCTIPC measures the annual precipitation variability within a single monitoring station. However, RCTIPC is based on regionally improved mean precipitation under global warming contest, unlike simple precipitation mean. Similar to PCI, the classification of various patterns can be configured by classifying the range of RCTIPC. Table 3 shows the range and corresponding patterns of annual precipitation distribution.

Numerical illustrations

This section aims to illustrate the efficiency of the proposed index through numerical examples and comparisons. The main objective is to show that the proposed index is more sensitive to climate warming than the existing one. Here, we consider the time-series data of rainfall and temperature of district Jhelum for the year 2017. Table 4 shows the summary statistics of the regression model. We observed that precipitation is strongly correlated with minimum and maximum temperatures. That is, the study variable has a correlation value (r = 0.6635) with minimum temperature and (r = 0.4356) with maximum temperature. And the least square multiple regression lines are significant (P-value = 0.00497 with 9 degrees of freedom) (see Table 4). In this example, the estimated quantitative values of rainfall (66.44167) and PCI (17.77721) observed irregular behavior in the year 2017. In contrast, the proposed estimator produced high concentration patterns with an improved rainfall estimate of 59.671 and RCTIPC values of 22.0404 (see Table 2). This indicates that the high variability in annual precipitation is observed after employing extreme temperature. In Table 5, the detailed summary of the Jhelum station is shown with regression and correlation coefficient of the study variable and auxiliary variables. We observed that the sum of a square and mean value of the study variable for each year from 1971 to 2017 have random behavior. And the effect of minimum temperature is positive with high slope and correlation values between rainfall and minimum temperature (see Table 2). On the other hand, the maximum temperature has less slope value than the minimum temperature for all year. Also, there is a low correlation between the study variable and maximum temperature. Finally, minimum temperature has more effect on rainfall than the maximum temperature. In the last two columns of Table 5, results of PCI and RCTIPC are given for all years 1971–2017. In general, significant differences in PCI and RCTIPC have been observed each year.

Table 4

Example data of actual rainfall at 1-month timescale (Jhelum: for 1 year 2017)

dfSSMSFSignificance F
Regression 41,564.18 20,782.09 10.12697 0.00496891 
Residual 18,469.37 2,052.152   
Total 11 60,033.55    
dfSSMSFSignificance F
Regression 41,564.18 20,782.09 10.12697 0.00496891 
Residual 18,469.37 2,052.152   
Total 11 60,033.55    
Table 5

Time-series data of the PCI and RCTIPC for district Jehlum

YearsPCIRCTIPC
1971 105,023.7 64.67 16.41 31.58 4.88 2.85 0.6 0.29 17.44 18.17 
1972 82,853.13 51.91 16.28 31.25 5.28 4.47 0.67 0.4 21.35 21.83 
1973 62,614.74 52.03 16.35 30.94 3.85 2.48 0.58 0.36 16.06 15.72 
1974 261,649.8 81.92 17.03 30.48 7.56 4.11 0.5 0.24 27.08 28.39 
1975 61,342.83 45.98 16.31 30.95 3.53 1.55 0.52 0.22 20.15 19.42 
1976 326,375.4 103.2 16.01 30.45 11.9 8.11 0.73 0.42 21.25 17.77 
1977 344,041.2 86.93 15.98 29.97 8.59 2.22 0.43 0.1 31.62 26.77 
1978 195,575.8 74.97 16.93 30.53 8.47 6.12 0.6 0.34 24.17 25.06 
1979 323,594.5 97.46 16.75 30.33 8.64 3.38 0.52 0.19 23.66 23.4 
1980 168,011.7 78.1 16.65 30.7 6.08 2.37 0.49 0.18 19.13 19.08 
1981 145,289.2 79.63 17.04 30.95 6.28 3.68 0.62 0.35 15.91 17.34 
1982 146,982.9 69.73 16.29 30.47 4.02 −0.18 0.36 −0.01 21 20.09 
1983 212,170.1 89 16.28 29.17 3.07 0.29 0.23 0.02 18.6 17.92 
1984 198,857.3 90.74 15.74 28.98 6.73 5.51 0.57 0.38 16.77 12.22 
1985 164,211.5 70.45 16.27 30.48 6.63 3.37 0.59 0.26 22.98 20.95 
1986 90,763.92 51.5 16.78 31.38 3.75 1.35 0.39 0.13 23.76 25.06 
1987 131,211.7 77.67 16.1 29.59 5.01 2.92 0.52 0.28 15.11 13.01 
1988 88,884.94 54.42 16.5 30.95 4.29 3.07 0.48 0.29 20.84 20.94 
1989 295,555.6 82.83 17.27 31.36 7.57 2.21 0.42 0.11 29.91 34.74 
1990 98,175.92 55.7 16.19 30.68 4.73 2.26 0.5 0.23 21.98 20.3 
1991 214,421.1 99.37 17.23 30.38 2.88 −0.35 0.24 −0.03 15.08 15.59 
1992 162,396.3 82.19 16.41 29.88 6.17 3.83 0.55 0.32 16.69 14.96 
1993 205,957.7 94.53 16.59 29.45 3.61 0.34 0.29 0.02 16 15.75 
1994 121,461 63.48 16.52 31.18 4.99 2.25 0.49 0.2 20.93 21.17 
1995 307,584 83.29 17.08 30.53 9.31 3.78 0.51 0.19 30.79 33.35 
1996 481,962.9 96.49 16.62 30.01 9.28 3.6 0.41 0.15 35.95 33.85 
1997 165,023.4 82.43 16.68 30.11 2.86 0.47 0.21 16.87 16.25 
1998 416,530 111.3 16.69 28.8 10.76 8.81 0.56 0.38 23.35 17.78 
1999 185,227.4 80.12 17.11 30.59 6.19 3.83 0.51 0.28 20.04 21.29 
2000 74,819.59 52.36 17.77 31.44 3.73 0.65 0.47 0.08 18.95 22.73 
2001 152,943.9 70.03 17.4 31.22 6.3 3.71 0.57 0.3 21.66 26.4 
2002 109,862.5 62.23 16.91 31.61 6.93 6.51 0.77 0.56 19.7 25.75 
2003 50,743.94 44.38 17.76 31.81 3.42 2.46 0.57 0.36 17.89 24.59 
2004 159,427.6 80.13 17.46 30.16 4.97 2.15 0.45 0.19 17.25 18.51 
2005 162,976.7 71.58 17.82 31.4 5.29 2.7 0.41 0.19 22.09 28.02 
2006 82,656.94 55.18 17.08 30.25 2.63 0.35 0.34 0.04 18.85 19.47 
2007 393,410.5 102.7 18.35 30.94 9.09 4.12 0.45 0.18 25.88 36.59 
2008 117,859.8 69.39 17.1 30.53 3.6 1.36 0.39 0.13 17 17.66 
2009 102,923 68.85 17.23 30.23 4.34 3.57 0.54 0.36 15.08 15.46 
2010 53,203.38 45.18 17.27 31.44 3.48 2.37 0.54 0.33 18.1 21.68 
2011 125,387.8 65.94 17.28 31.48 5.8 3.84 0.59 0.32 20.02 24.79 
2012 106,754.6 62.36 16.96 30.78 5.32 3.36 0.6 0.32 19.06 20.28 
2013 126,872.1 59.78 16.55 31.17 4.66 2.55 0.46 0.22 24.65 25.23 
2014 169,726.4 76.48 17.03 30.72 6.23 4.05 0.54 0.31 20.15 21.47 
2015 137,672.2 78.6 16.47 29.63 5.65 3.1 0.63 0.28 15.48 13.88 
2016 138,549.4 86.75 16.95 30.19 3.63 0.57 0.38 12.79 12.68 
2017 113,007.5 66.44 17.2 31.43 6.21 4.56 0.66 0.44 17.78 22.04 
YearsPCIRCTIPC
1971 105,023.7 64.67 16.41 31.58 4.88 2.85 0.6 0.29 17.44 18.17 
1972 82,853.13 51.91 16.28 31.25 5.28 4.47 0.67 0.4 21.35 21.83 
1973 62,614.74 52.03 16.35 30.94 3.85 2.48 0.58 0.36 16.06 15.72 
1974 261,649.8 81.92 17.03 30.48 7.56 4.11 0.5 0.24 27.08 28.39 
1975 61,342.83 45.98 16.31 30.95 3.53 1.55 0.52 0.22 20.15 19.42 
1976 326,375.4 103.2 16.01 30.45 11.9 8.11 0.73 0.42 21.25 17.77 
1977 344,041.2 86.93 15.98 29.97 8.59 2.22 0.43 0.1 31.62 26.77 
1978 195,575.8 74.97 16.93 30.53 8.47 6.12 0.6 0.34 24.17 25.06 
1979 323,594.5 97.46 16.75 30.33 8.64 3.38 0.52 0.19 23.66 23.4 
1980 168,011.7 78.1 16.65 30.7 6.08 2.37 0.49 0.18 19.13 19.08 
1981 145,289.2 79.63 17.04 30.95 6.28 3.68 0.62 0.35 15.91 17.34 
1982 146,982.9 69.73 16.29 30.47 4.02 −0.18 0.36 −0.01 21 20.09 
1983 212,170.1 89 16.28 29.17 3.07 0.29 0.23 0.02 18.6 17.92 
1984 198,857.3 90.74 15.74 28.98 6.73 5.51 0.57 0.38 16.77 12.22 
1985 164,211.5 70.45 16.27 30.48 6.63 3.37 0.59 0.26 22.98 20.95 
1986 90,763.92 51.5 16.78 31.38 3.75 1.35 0.39 0.13 23.76 25.06 
1987 131,211.7 77.67 16.1 29.59 5.01 2.92 0.52 0.28 15.11 13.01 
1988 88,884.94 54.42 16.5 30.95 4.29 3.07 0.48 0.29 20.84 20.94 
1989 295,555.6 82.83 17.27 31.36 7.57 2.21 0.42 0.11 29.91 34.74 
1990 98,175.92 55.7 16.19 30.68 4.73 2.26 0.5 0.23 21.98 20.3 
1991 214,421.1 99.37 17.23 30.38 2.88 −0.35 0.24 −0.03 15.08 15.59 
1992 162,396.3 82.19 16.41 29.88 6.17 3.83 0.55 0.32 16.69 14.96 
1993 205,957.7 94.53 16.59 29.45 3.61 0.34 0.29 0.02 16 15.75 
1994 121,461 63.48 16.52 31.18 4.99 2.25 0.49 0.2 20.93 21.17 
1995 307,584 83.29 17.08 30.53 9.31 3.78 0.51 0.19 30.79 33.35 
1996 481,962.9 96.49 16.62 30.01 9.28 3.6 0.41 0.15 35.95 33.85 
1997 165,023.4 82.43 16.68 30.11 2.86 0.47 0.21 16.87 16.25 
1998 416,530 111.3 16.69 28.8 10.76 8.81 0.56 0.38 23.35 17.78 
1999 185,227.4 80.12 17.11 30.59 6.19 3.83 0.51 0.28 20.04 21.29 
2000 74,819.59 52.36 17.77 31.44 3.73 0.65 0.47 0.08 18.95 22.73 
2001 152,943.9 70.03 17.4 31.22 6.3 3.71 0.57 0.3 21.66 26.4 
2002 109,862.5 62.23 16.91 31.61 6.93 6.51 0.77 0.56 19.7 25.75 
2003 50,743.94 44.38 17.76 31.81 3.42 2.46 0.57 0.36 17.89 24.59 
2004 159,427.6 80.13 17.46 30.16 4.97 2.15 0.45 0.19 17.25 18.51 
2005 162,976.7 71.58 17.82 31.4 5.29 2.7 0.41 0.19 22.09 28.02 
2006 82,656.94 55.18 17.08 30.25 2.63 0.35 0.34 0.04 18.85 19.47 
2007 393,410.5 102.7 18.35 30.94 9.09 4.12 0.45 0.18 25.88 36.59 
2008 117,859.8 69.39 17.1 30.53 3.6 1.36 0.39 0.13 17 17.66 
2009 102,923 68.85 17.23 30.23 4.34 3.57 0.54 0.36 15.08 15.46 
2010 53,203.38 45.18 17.27 31.44 3.48 2.37 0.54 0.33 18.1 21.68 
2011 125,387.8 65.94 17.28 31.48 5.8 3.84 0.59 0.32 20.02 24.79 
2012 106,754.6 62.36 16.96 30.78 5.32 3.36 0.6 0.32 19.06 20.28 
2013 126,872.1 59.78 16.55 31.17 4.66 2.55 0.46 0.22 24.65 25.23 
2014 169,726.4 76.48 17.03 30.72 6.23 4.05 0.54 0.31 20.15 21.47 
2015 137,672.2 78.6 16.47 29.63 5.65 3.1 0.63 0.28 15.48 13.88 
2016 138,549.4 86.75 16.95 30.19 3.63 0.57 0.38 12.79 12.68 
2017 113,007.5 66.44 17.2 31.43 6.21 4.56 0.66 0.44 17.78 22.04 

Spatial comparison under the PLN model

In recent research, a large number of applications related to the geostatistical count data are based on Gaussian random fields. The initial proposal of the PLN model mainly for the analysis of spatiality correlated count data (Aitchison & Ho 1989). By assuming the total number of various patterns of rainfall is spatially correlated variable, the use of the PLN model appears to the appropriate model for modeling the count of rainfall patterns. In this paper, the spatial PLN model was used for exploring the predictive distribution precipitation patterns observed from RCTIPC and PCI. This is due to the fact that the data of various categories is spatially counted. In previous research, Ali et al. (2020a, 2020b) used PLN to explore the various patterns of drought for Pakistan. A brief description on PLN is as follows:

Suppose the pairs (xi; yi) where xi is the reference points and yi is the observed value of the counts of patterns, where the spatial distribution of yin is abnormal. Diggle et al. (1998) introduced a class of generalized linear spatial models (GLSM): PLN and binomial logit normal spatial models for non-Gaussian spatial data sets. These models are helpful for modeling spatial count data sets when the spatially varying attribute of interest is functionally related to a realization of a non-Gaussian random field (Zhang 2002). Several studies used GLSM to model spatial count data in various disciplines (Cameron & Trivedi 2013). Royle & Wikle (2005) adopted the spectre parameterization of the spatial varied mean of a PLN model in order to obtain a maps of avian count data. Wakefield (2006) applied a general linear model with spatial autocorrelation for mapping the illness of esophageal cancer incidence data. They suggested that GLSM approach for modeling and mapping spatial counts of disease incidence is efficient and robust for inference. Furthermore, using the PLN spatial model is a naturally good candidate for modeling spatial count data (Jing & De Oliveira 2015). However, it is impossible to estimate the parameters and posterior sampling due to the high dimensional integral of likelihood. One solution is to employ numerical algorithms such as Markov chain Monte Carlo (MCMC) with the help of advanced methods such as Langevin–Hastings algorithms, data-based transformations, and group updating may incorporate in their estimation. In the current study, geo-count (Jing & De Oliveira 2015) and geoRglm (Christensen & Ribeiro 2002) R packages are employed to implement the model using MCMC algorithms. Moreover, the segregated maps of all patterns are prepared to compare the distributional behavior of RCTIPC and PCI.

The numerical illustration in Section 2.3 shows that auxiliary information is inevitable for improving precipitation data. In the light of this example, we performed the same analysis for all the stations. It has been observed that the proposed method provides quite different estimates from simple mean precipitation. Figure 2 shows the temporal difference between the estimated value of PCI and RCTIPC at Sargodha, Sialkot, and Skardu. Furthermore, the difference between the quantitative values of RCTIPC with PCI in all the stations can be seen from the bottom right graph of Figure 2. These preliminary results show significant variation between estimates under both of these methods. To assess and evaluate the effect of extreme temperature at regional level, the computations and inferences have been extended for all the 54 meteorological stations of Pakistan. Under PCI and RCTIPC, Table 6 gives the results on each frequency count of uniform and irregular patterns from 1971 to 2017. These outcomes show significant deviations in the counts of annual variability patterns determined by the PCI and RCTIPC. However, both methods have similar behavior in some homogenous climatic situations. In general, the comparison of the two results reveals that the extreme temperature has reshaped the estimated values of precipitation.
Figure 2

Temporal plots showing quantitative deviance between observed PCI and RCTIPC.

Figure 2

Temporal plots showing quantitative deviance between observed PCI and RCTIPC.

Close modal

Spatial association and comparison

This section performs spatial comparative analysis using Tjostheim's coefficient index (Tjøstheim 1978) and modified t-test (Dutilleul et al. 1993). Tjostheim's coefficient and modified t-test are widely used to measure the association between two stochastic processes observed over space. We have used spatiotemporal regional spatial count data (see Table 6) of irregular, uniform, and moderate patterns observed under RCTIPC and PCI methods in all the selected stations. In computation, this research employed SpatialPack (Osorio et al. 2016) R package for assessing the spatial association.

Table 6

Frequencies of precipitation concentration patterns from 1971 to 2017

StationsRCTIPC
PCI
UniformModerateIrregularHigh ConcentrationUniformModerateIrregularHigh Concentration
Islamabad 15 29 15 29 
Barkhan 16 24 17 23 
Dir 36 10 38 
Multan 39 41 
Khuzdar 22 24 16 28 
Chitral 25 14 23 16 
Bahwalnagar 40 41 
Mianwali 22 17 21 19 
Balakot 30 13 32 13 
Karachi 45 45 
Sargodha 13 29 14 28 
Gharhidopatta 36 39 
Gupis 17 22 18 24 
Muzafrabad 26 12 28 16 
Nawabshah 46 47 
Kohaat 22 12 13 21 15 11 
Astor 20 18 18 20 
Risalpur 15 18 14 13 18 16 
Bunji 16 23 17 23 
Chilaas 16 25 16 25 
Lahore apo 11 35 11 35 
Kakul 35 34 13 
Hyderabad 46 47 
Khanpur 45 45 
Kotli 15 21 10 11 30 
Sakardu 11 18 18 21 19 
Kalat 39 41 
Jacobabad 45 46 
Jehlum 15 27 22 24 
Karachiap 44 45 
Lahore pbo 11 35 14 33 
Rafique paf 47 47 
Murree 29 12 33 13 
Padidan 47 47 
Panjgur 43 44 
Parachinar 32 42 
Pasni 43 46 
Peshawar 15 21 11 13 21 13 
Quetta 33 42 
Badian 47 47 
Gilgat 18 20 18 24 
Chhor 47 46 
Zohab 20 19 20 20 
Sialkot 15 29 10 34 
Sibbi 37 38 
Bahawalpur 39 38 
Rohri 45 47 
Cherat 12 23 12 15 21 10 
DI-khan 12 14 21 14 25 
Drosh 22 16 21 21 
Faisalabad 37 37 
Nokunddi 45 46 
Jiwani 46 47 
Dalbadian 42 45 
StationsRCTIPC
PCI
UniformModerateIrregularHigh ConcentrationUniformModerateIrregularHigh Concentration
Islamabad 15 29 15 29 
Barkhan 16 24 17 23 
Dir 36 10 38 
Multan 39 41 
Khuzdar 22 24 16 28 
Chitral 25 14 23 16 
Bahwalnagar 40 41 
Mianwali 22 17 21 19 
Balakot 30 13 32 13 
Karachi 45 45 
Sargodha 13 29 14 28 
Gharhidopatta 36 39 
Gupis 17 22 18 24 
Muzafrabad 26 12 28 16 
Nawabshah 46 47 
Kohaat 22 12 13 21 15 11 
Astor 20 18 18 20 
Risalpur 15 18 14 13 18 16 
Bunji 16 23 17 23 
Chilaas 16 25 16 25 
Lahore apo 11 35 11 35 
Kakul 35 34 13 
Hyderabad 46 47 
Khanpur 45 45 
Kotli 15 21 10 11 30 
Sakardu 11 18 18 21 19 
Kalat 39 41 
Jacobabad 45 46 
Jehlum 15 27 22 24 
Karachiap 44 45 
Lahore pbo 11 35 14 33 
Rafique paf 47 47 
Murree 29 12 33 13 
Padidan 47 47 
Panjgur 43 44 
Parachinar 32 42 
Pasni 43 46 
Peshawar 15 21 11 13 21 13 
Quetta 33 42 
Badian 47 47 
Gilgat 18 20 18 24 
Chhor 47 46 
Zohab 20 19 20 20 
Sialkot 15 29 10 34 
Sibbi 37 38 
Bahawalpur 39 38 
Rohri 45 47 
Cherat 12 23 12 15 21 10 
DI-khan 12 14 21 14 25 
Drosh 22 16 21 21 
Faisalabad 37 37 
Nokunddi 45 46 
Jiwani 46 47 
Dalbadian 42 45 

Table 7 gives numerical estimates of spatial association among the counts of patterns of precipitation variability assessed from PCI and RCTIPC. In uniform patterns of frequency counts, there is a low spatial correlation (P < 0.05) between PCI and RCTIPC. Irrespective to the uniform pattern, there is a significant high correlation between PCI and RCTIPC. However, RCTIPC is highly correlated with PCI in other patterns. This shows that, the extreme temperature has significant impact on varying precipitation estimates under spatial configuration.

Table 7

Spatial correlation between the PCI and RCTIPC

PatternSpatial correlationF-statisticsP-value
Uniform 0.2586 3.5485 0.0655 
Moderate 0.982 248.57 0.0000 
Irregular 0.9508 67.075 0.0000 
High concentration 0.99 197.447 0.0014 
PatternSpatial correlationF-statisticsP-value
Uniform 0.2586 3.5485 0.0655 
Moderate 0.982 248.57 0.0000 
Irregular 0.9508 67.075 0.0000 
High concentration 0.99 197.447 0.0014 

Predictive distributions of various patterns

It is essential to make the spatial comparison to check and infer the discrepancies between the historical count of various precipitation patterns under PCI and RCIPCT. Therefore, this section separately provides comparative spatial inference using predictive distributions of historical counts of various precipitation patterns. To do this, go-count (Jing & De Oliveira 2015) and geoRglm (Christensen & Ribeiro 2002) R packages are employed to analyze spatiotemporal count data of uniform and irregular patterns using a spatial PLN model. Figure 3 shows the spatial predictive distributions of high concentration and irregular patterns under PCI and RCTIPC. From the map, we can see a minor change in the patterns under both methods.
Figure 3

Spatial predictive distribution of observed count of high and irregular concentration patterns (1971–2017).

Figure 3

Spatial predictive distribution of observed count of high and irregular concentration patterns (1971–2017).

Close modal
In contrast to the high concentration and irregular patterns, many discrepancies have been observed in uniform patterns. As shown in Figure 4, the spatial distributions of uniform patterns significantly deviate from each other. This also signifies the weak associative property between PCI and RCTIPC at a spatial scale (Table 7). However, the spatial behavior of moderate concentration is quite similar in both methods. Overall, these inconsistencies and similarities are caused by including the role of extreme temperature in the estimation of precipitation data. Therefore, instead of using only Mukerjee et al. (1987) estimator under simple random sampling settings, advanced estimators and data improving techniques can be configured to incorporate multiple auxiliary information under spatial and cluster settings (Kanwai et al. 2016; Grafström et al. 2017). However, the findings of this research show that extreme temperature being a strong candidate for auxiliary variable is useful to improve annual precipitation estimates for better regional representation.
Figure 4

Spatial predictive distribution of observed count of moderate and uniform concentration patterns (1971–2017).

Figure 4

Spatial predictive distribution of observed count of moderate and uniform concentration patterns (1971–2017).

Close modal

The objectives of this study were to examine the relation of precipitation with temperature and develop a better method for measuring precipitation concentration. For this purpose, the current research proposes a new approach that incorporates temperature as a piece of auxiliary information for analyzing regional precipitation variability. Under the climate warming scenario, regression analysis revealed that the additional input can potentially improve the precipitation estimates under the appropriate sampling estimator. This is the first study that has documented the impact of climate warming on measuring precipitation concentration. Overall, this study strengthens the analysis of precipitation concentration under climate warming. Empirical findings from this research provide some guidance for government and experts. A more reliable statistical procedure is needed to increase the meteorological products by employing advanced probabilistic and machine learning techniques which would encourage the researchers to propagate more reliable climatological information.

A few limitations of the study are the subjective selection of the auxiliary information-based sampling estimator and the contemplative inference of the interpolation techniques. Therefore, future research may be based on the optimum selection of the sampling estimator or techniques such as bootstrapping and the most appropriate interpolation methods.

All the data were analyzed using R software. The data and code used to support the findings of this study are available from the corresponding author upon request.

The manuscript is prepared in accordance with the ethical standards of the responsible committee on human experimentation and with the latest (2008) version of Helsinki Declaration of 1975.

The authors have not received any funding from any project.

The authors declare that they have no competing interests.

All authors have equal contribution.

Data cannot be made publicly available; readers should contact the corresponding author for details.

The authors declare there is no conflict.

Ahmad
L.
,
Kanth
R. H.
,
Parvaze
S.
&
Mahdi
S. S.
2017
Measurement of precipitation
. In:
Experimental Agrometeorology: A Practical Manual
.
Springer
,
Cham
, pp.
55
66
.
Aitchison
J.
&
Ho
C. H.
1989
The multivariate Poisson-log Normal distribution
.
Biometrika
76
(
4
),
643
653
.
Ali
Z.
,
Hussain
I.
,
Faisal
M.
,
Shad
M. Y.
,
Elashkar
E. E.
&
Gani
S.
2020a
An ensemble procedure for pattern recognition of regional drought
.
International Journal of Climatology
40
(
1
),
94
114
.
Ali
Z.
,
Hussain
I.
,
Faisal
M.
,
Grzegorczyk
M. A.
,
Almanjahie
I. M.
,
Nazeer
A.
&
Ahmad
I.
2020b
Characterization of regional hydrological drought using improved precipitation records under multi-auxiliary information
.
Theoretical and Applied Climatology
140
(
1
),
25
36
.
Ali
Z.
,
Ellahi
A.
,
Hussain
I.
,
Nazeer
A.
,
Qamar
S.
,
Ni
G.
&
Faisal
M.
2021b
Reduction of errors in hydrological drought monitoring – a novel statistical framework for spatio-temporal assessment of drought
.
Water Resources Management
35
(
13
),
4363
4380
.
Apaydin
H.
,
Anli
A. S.
&
Ozturk
F.
2011
Evaluation of topographical and geographical effects on some climatic parameters in the Central Anatolia Region of Turkey
.
International Journal of Climatology
31
(
9
),
1264
1279
.
Azad
M.
,
Kalam
A.
,
Islam
A. R. M.
,
Ayen
K.
,
Rahman
M.
,
Shahid
S.
&
Mallick
J.
2022
Changes in monsoon precipitation patterns over Bangladesh and its teleconnections with global climate
.
Theoretical and Applied Climatology
148
(
3
),
1261
1278
.
Baek
S. H.
,
Smerdon
J. E.
,
Coats
S.
,
Williams
A. P.
,
Cook
B. I.
,
Cook
E. R.
&
Seager
R.
2017
Precipitation, temperature, and teleconnection signals across the combined North American, monsoon Asia, and old world drought Atlases
.
Journal of Climate
30
(
18
),
7141
7155
.
Bartolini
G.
,
Grifoni
D.
,
Magno
R.
,
Torrigiani
T.
&
Gozzini
B.
2018
Changes in temporal distribution of precipitation in a Mediterranean area (Tuscany, Italy) 1955–2013
.
International Journal of Climatology
38
(
3
),
1366
1374
.
Cameron
A. C.
&
Trivedi
P. K.
2013
Regression Analysis of Count Data
, Vol.
53
.
Cambridge University Press
,
Cambridge, UK
.
Carrera-Hernández
J. J.
&
Gaskin
S. J.
2007
Spatio temporal analysis of daily precipitation and temperature in the Basin of Mexico
.
Journal of Hydrology
336
(
3–4
),
231
249
.
Chebbi
A.
,
Bargaoui
Z. K.
&
da Conceição Cunha
M.
2013
Development of a method of robust rain gauge network optimization based on intensity-duration-frequency results
.
Hydrology and Earth System Sciences
17
(
10
),
4259
4268
.
Christensen
O. F.
&
Ribeiro
P.
Jr.
2002
Georglm–A package for generalised linear spatial models
.
R-NEWS
2
,
26
28
.
Cochran
W. G.
2007
Sampling Techniques
.
John Wiley & Sons
, Hoboken, NJ.
Coffel
E.
&
Horton
R.
2015
Climate change and the impact of extreme temperatures on aviation
.
Weather, Climate, and Society
7
(
1
),
94
102
.
Coles
S. G.
&
Tawn
J. A.
1991
Modelling extreme multivariate events
.
Journal of the Royal Statistical Society. Series B (Methodological)
,
53
(
2
),
377
392
.
Dado
J. M. B.
&
Takahashi
H. G.
2017
Potential impact of sea surface temperature on rainfall over the western Philippines
.
Progress in Earth and Planetary Science
4
(
1
),
23
.
Diacono
M.
,
De Benedetto
D.
,
Castrignano
A.
,
Rubino
P.
,
Vitti
C.
,
Abdelrahman
H. M.
,
Sollitto
D.
,
Cocozza
C.
&
Ventrella
D.
2013
A combined approach of geostatistics and geographical clustering for delineating homogeneous zones in a durum wheat field in organic farming
.
NJAS-Wageningen Journal of Life Sciences
64
,
47
57
.
Diggle
P. J.
,
Tawn
J. A.
&
Moyeed
R. A.
1998
Model-based geostatistics
.
Journal of the Royal Statistical Society: Series C (Applied Statistics)
47
(
3
),
299
350
.
Dutilleul
P.
,
Clifford
P.
,
Richardson
S.
&
Hemon
D.
1993
Modifying the t test for assessing the correlation between two spatial processes
.
Biometrics
49
(
1
),
305
314
.
El Kharraz
J.
,
El-Sadek
A.
,
Ghaffour
N.
&
Mino
E.
2012
Water scarcity and drought in WANA countries
.
Procedia Engineering
33
,
14
29
.
Eslamian
S.
2014
Handbook of Engineering Hydrology: Modeling, Climate Change, and Variability
.
CRC Press
, Boca Raton, CA.
Farooqi
A. B.
,
Khan
A. H.
&
Mir
H.
2005
Climate change perspective in Pakistan
.
Pakistan Journal of Meteorology
2
(
3
),
11
21
.
Gabella
M.
&
Notarpietro
R.
2004
Improving operational measurement of precipitation using radar in mountainous terrain-part I: methods
.
IEEE Geoscience and Remote Sensing Letters
1
(
2
),
78
83
.
Gehman
A. L. M.
,
Hall
R. J.
&
Byers
J. E.
2018
Host and parasite thermal ecology jointly determine the effect of climate warming on epidemic dynamics
.
Proceedings of the National Academy of Sciences
115
(
4
),
201705067
.
Germann
U.
&
Joss
J.
2004
Operational measurement of precipitation in mountainous terrain
. In: P. Meischner, ed.
Weather Radar
.
Springer
,
Berlin, Heidelberg
, pp.
52
77
.
Grafström
A.
,
Zhao
X.
,
Nylander
M.
&
Petersson
H.
2017
A new sampling strategy for forest inventories applied to the temporary clusters of the Swedish national forest inventory
.
Canadian Journal of Forest Research
47
(
9
),
1161
1167
.
Henry
W. P.
&
Cassidy
J. J.
1978
What the design engineer needs from the hydrometeorologist
.
Journal of Applied Meteorology
17
(
10
),
1558
1563
.
Hou
Z.
,
Xu
Q.
,
McRoberts
R. E.
,
Greenberg
J. A.
,
Liu
J.
,
Heiskanen
J.
,
Pitkänen
S.
&
Packalen
P.
2017
Effects of temporally external auxiliary data on model-based inference
.
Remote Sensing of Environment
198
,
150
159
.
Huang
J.
,
Liu
F.
,
Xue
Y.
&
Sun
S.
2015
The spatial and temporal analysis of precipitation concentration and dry spell in Qinghai, northwest China
.
Stochastic Environmental Research and Risk Assessment
29
(
5
),
1403
1411
.
Huang
Y.
,
Wang
H.
,
Xiao
W.
,
Chen
L. H.
,
Yan
D. H.
,
Zhou
Y. Y.
,
Jiang
D. C.
&
Yang
M. Z.
2018
Spatial and temporal variability in the precipitation concentration in the upper reaches of the Hongshui River Basin, Southwestern China
.
Advances in Meteorology
2018
, 19 pp. https://doi.org/10.1155/2018/4329757.
Hussein
Z.
,
Hertel
T.
&
Golub
A.
2013
Climate change mitigation policies and poverty in developing countries
.
Environmental Research Letters
8
(
3
),
035009
.
Islam
T.
,
Md
A. R.
,
Rahman
M.
,
Khatun
R.
&
Hu
Z.
2020
Spatiotemporal trends in the frequency of daily rainfall in Bangladesh during 1975–2017
.
Theoretical and Applied Climatology
141
(
3
),
869
887
.
Jiang
H.
,
Khan
M. A.
,
Li
Z.
,
Ali
Z.
,
Ali
F.
&
Gul
S.
2020
Regional drought assessment using improved precipitation records under auxiliary information
.
Tellus A: Dynamic Meteorology and Oceanography
72
(
1
),
1
26
.
Jing
L.
&
De Oliveira
V.
2015
Geocount: an R package for the analysis of geostatistical count data
.
Journal of Statistical Software
63
(
1
),
1
33
.
Joss
J.
,
Waldvogel
A.
&
Collier
C. G.
1990
Precipitation measurement and hydrology. In: D. Atlas, ed.
Radar in Meteorology
. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-935704-15-7_39.
Kanwai
M. E.
,
Asiribo
O. E.
&
Isah
A.
2016
Use of auxiliary variables and asymptotically optimum estimators in double sampling
.
International Journal of Statistics and Probability
5
(
3
),
55
.
Khan
A. A.
,
Zhao
Y.
,
Rahman
G.
,
Rafiq
M.
&
Moazzam
M. F. U.
2021
Spatial and temporal analysis of rainfall and drought condition in southwest Xinjiang in Northwest China, using various climate indices
.
Earth Systems and Environment
5
(
2
),
201
216
.
Li
H.
,
Zhai
P.
,
Lu
E.
,
Zhao
W.
,
Chen
Y.
&
Wang
H.
2017
Changes in temporal concentration property of summer precipitation in China during 1961–2010 based on a new index
.
Journal of Meteorological Research
31
(
2
),
336
349
.
Lohr
S. L.
&
Prasad
N. N.
2003
Small area estimation with auxiliary survey data
.
Canadian Journal of Statistics
31
(
4
),
383
396
.
Longman
R. J.
,
Giambelluca
T. W.
,
Nullet
M. A.
,
Frazier
A. G.
,
Kodama
K.
,
Crausbay
S. D.
,
Krushelnycky
P. D.
,
Cordell
S.
,
Clark
M. P.
,
Newman
A. J.
&
Arnold
J. R.
2018
Compilation of climate data from heterogeneous networks across the Hawaiian Islands
.
Scientific Data
5
,
180012
.
Mahdian
M. H.
,
Bandarabady
S. R.
,
Sokouti
R.
&
Banis
Y. N.
2009
Appraisal of the geo-statistical methods to estimate monthly and annual temperature
.
Journal of Applied Sciences
9
(
1
),
128
134
.
Melillo
J. M.
2014
Climate Change Impacts in the United States: The Third National Climate Assessment
.
Government Printing Office, Cambridge
.
Montazerolghaem
M.
,
Vervoort
W.
,
Minasny
B.
&
McBratney
A.
2016
Long-term variability of the leading seasonal modes of rainfall in south-eastern Australia
.
Weather and Climate Extremes
13
,
1
14
.
Mukerjee
R.
,
Rao
T. J.
&
Vijayan
K.
1987
Regression type estimators using multiple auxiliary information
.
Australian & New Zealand Journal of Statistics
29
(
3
),
244
254
.
Oliver
J. E.
1980
Monthly precipitation distribution: a comparative index
.
The Professional Geographer
32
(
3
),
300
309
.
Osorio
F.
,
Vallejos
R.
&
Cuevas
F.
2016
SpatialPack: Computing the Association Between Two Spatial Processes. arXiv preprint arXiv:1611.05289
.
Paloscia
S.
,
Pettinato
S.
,
Santi
E.
,
Notarnicola
C.
,
Pasolli
L.
&
Reppucci
A.
2013
Soil moisture mapping using sentinel-1 images: algorithm and preliminary validation
.
Remote Sensing of Environment
134
,
234
248
.
Powell
J. P.
&
Reinhard
S.
2016
Measuring the effects of extreme weather events on yields
.
Weather and Climate Extremes
12
,
69
79
.
Praveen
B.
,
Talukdar
S.
,
Mahato
S.
,
Mondal
J.
,
Sharma
P.
,
Islam
A. R. M.
&
Rahman
A.
2020
Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches
.
Scientific Reports
10
(
1
),
1
21
.
Rana
R. S.
&
Naim
H.
2014
Tharparkar: a forgotten disaster
.
The Lancet Global Health
2
(
9
),
e508
.
Royle
J. A.
&
Wikle
C. K.
2005
Efficient statistical mapping of avian count data
.
Environmental and Ecological Statistics
12
(
2
),
225
243
.
Sahai
A.
&
Ray
S. K.
1980
An efficient estimator using auxiliary information
.
Metrika
27
(
1
),
271
275
.
Saunders
K.
,
Stephenson
A. G.
,
Taylor
P. G.
&
Karoly
D.
2017
The spatial distribution of rainfall extremes and the influence of El Niño Southern Oscillation
.
Weather and Climate Extremes
18
,
17
28
.
Tjøstheim
D.
1978
A measure of association for spatial variables
.
Biometrika
65
(
1
),
109
114
.
Wolski
P.
,
Conradie
S.
,
Jack
C.
&
Tadross
M.
2021
Spatio-temporal patterns of rainfall trends and the 2015–2017 drought over the winter rainfall region of South Africa
.
International Journal of Climatology
41
,
E1303
E1319
.
Zhang
X.
&
Yang
F.
2004
RClimdex (1.0) user manual
.
Climate Research Branch Environment Canada
2
(
1
),
1
22
.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).