Abstract
According to the importance of assessing the presence of time delay between the occurrence of various hydrological and meteorological phenomena, the study aim is to introduce a new method (with high ability and non-sensitivity to the abnormality of datasets and the existence of outliers) for determining the time delay in mentioned data series. In this research, a new measure to detect the time delay between two stationary time series (Non-Parametric Cross-Correlation Function or NCCF, called Spearman's CCF or SCCF) is introduced, which has very low sensitivity to abnormality of data series and also the existence of outliers in the data series. The numerical studies verify the ability of the proposed measure. In standard uniform and exponential (with mean 1) time series, at 100% of numerical analyses and in standard Gaussian time series at more than 60% of numerical studies, the ability of SCCF was more than the CCF. The applicability of the proposed measure in practice was also studied using the Reconnaissance Drought Index (RDI) data series of 20 stations over Iran during 1967–2019 in 1, 3, and 12-month time scales. The results of the practical study also proved the appropriate performance of the proposed model in all time scales.
HIGHLIGHTS
A modified version of the cross-correlation function was presented.
Output of this research is a new measure to detect the time delay between two stationary time series.
In this research, data series of 20 stations with various climate conditions was used.
The results are usable in better understanding the behavior of climatic parameters (especially drought).
Graphical Abstract
INTRODUCTION
The existence of a relationship between different climatic variables and various hydrological phenomena in terms of temporal and spatial is a proven issue worldwide (Abeysingha et al. 2020; Aksoy et al. 2021; Liang et al. 2021; Liu et al. 2021; Mokarram & Zarei 2021; Salimi et al. 2021; Zarei & Mahmoudi 2021; Zarei et al. 2021a; Lotfirad et al. 2022; Radmanesh et al. 2022; Sun et al. 2022). Generally, this relationship is used by researchers in various studies such as assessing and determining the degree of dependence of different variables, examining changes in one variable under the influence of other variables, evaluating the temporal and spatial changes in variables, examining and determining the delay time of a variable in different regions, etc. (Chen et al. 2018; Zarei & Moghimi 2019; Zarei et al. 2020; Bahrami et al. 2021; Fang et al. 2021; Gumus et al. 2021; Han et al. 2021). Therefore, it can be concluded that the detection of relationships between variables has a vital role in meteorological, hydrological, environmental, and so on, studies.
There are several parametric and non-parametric techniques introduced for detecting the relationships such as Pearson's correlation coefficient (Ablat et al. 2019; Li et al. 2020), Spearman's correlation coefficient (SCCF; Konapala et al. 2020; Tai et al. 2020), Kendall's correlation coefficient (Peña-Gallardo et al. 2019; Mallick et al. 2021), the Sen's slope (Atif et al. 2018; Myronidis et al. 2018), the cross-correlation function (CCF; Seo et al. 2019; Dong et al. 2020), and so on. Aryal & Zhu (2021) assessed the spatiotemporal structure of drought using the standardized precipitation evapotranspiration index (SPEI) and the principal component analysis over the continental United States during 1950–2015 in 12 and 24-month time scales. The results indicated that the areas with severe drought conditions are mostly located in the Northwest, South, upper Midwest, and East regions. Zarei et al. (2021b) used the CCF to assess the susceptibility of winter wheat, barley, and rapeseed to drought using the meteorological data series of 10 stations during 1968–2017 over Iran. They showed that the rapeseed had been the most susceptibility to drought occurrence. This study indicated that the maximum CC between the drought and annual yield of mentioned crops was less than 0.5 in more than 80% of investigated stations (without time lag). Rahmani & Fattahi (2021) used the multifractal cross-correlation to evaluate the sensitivity of meteorological and hydrological drought to temperature and rainfall. Based on the results of this research, the effect of precipitation fluctuations on droughts was more than the temperature fluctuations. Roustaei et al. (2021) assessed the time delay between wind erosion and drought in the Southern regions of Iran using the CCF function. They revealed that the maximum CC between the drought and wind erosion was equal to −0.22 (without time lag). Many researchers have tried to use parametric and non-parametric techniques to detect relationships between climatic and hydrologic variables worldwide (e.g., Baik et al. 2021; Kumar et al. 2021; Lashkari et al. 2021; Lohpaisankrit & Techamahasaranont 2021; Piri & Mobaraki 2021; Tuan & Canh 2021; Zarei et al. 2021c; Zhang et al. 2021).
Pearson's correlation coefficient is sensitive to the abnormality of datasets and the existence of outliers. Moreover, Pearson's correlation coefficient, Spearman's correlation coefficient, and Kendall's correlation coefficient are more applicable in facing independent observations. For assessing the relationship of two time series, the cross-correlation function (CCF, in abbreviation) is suggested. The CCF is somewhat sensitive to the abnormality of datasets and the existence of outliers (similar to Pearson's correlation). In other words, for abnormal populations or for populations with outliers data, the CCF may not work well. To solve this issue, in this research, we define a non-parametric CCF (NCCF, in abbreviation), called Spearman's CCF (SCCF, in abbreviation). The ability of the SCCF to detect a time-delay correlation between two stationary time series is studied. For this purpose, numerous datasets from two stationary time series are produced and analyzed. The ability of SCCF in practice is also investigated by a real example. For this purpose, the annual reconnaissance drought index (RDI) values from three Iranian synoptic are considered and analyzed.
In other words, due to the vital role of determining the delay time of the hydrological phenomena occurrence (such as drought, rain, and flood) in managing and reducing the negative impacts of the phenomena mentioned above, in this study, a new non-parametric statistical test (NCCF) was presented for determining the delay time in hydrological phenomena (It is the most critical aspect of research novelty). Then, its ability was assessed based on the simulated and real data.
MATERIALS AND METHODS
In this section, first, the parametric and non-parametric correlation methods will be explained. Then, the CCF model and its application in determining the time delay in hydrological phenomena will be described. Then, the SCCF model, as a new model for determining the time delay in hydrological phenomena, will be explained. Finally, using simulated data and actual data (based on the RDI drought index in different time scales), the ability of the SCCF model will be investigated.
Parametric correlation
Non-parametric correlation
Kendall's correlation coefficient is also computed as follows:
The Sen's slope trend is defined as follows:
Cross-correlation function
As we can observe, the CCF is the rate of the similarity (correlation) of the function f in (t) and the function g in .
CCF and sample CCF are important tools to measure the rate of time-delay correlation (that is from −1 to +1) between two time series.
Non-parametric cross-correlation function
The CCF, similar to Pearson's correlation, is somewhat sensitive to the normality assumption. In other words, for abnormal populations or populations with outliers, CCF may not work well. To solve this issue, we define a non-parametric CCF (NCCF, in abbreviation), called Spearman's CCF (SCCF, in abbreviation).
If and are two stationary time series, SCCF in lag is defined as following (Equation (16)):
Power test of SCCF
Power test of SCCF based on the simulation
In this section, the ability of the SCCF to detect a time-delay correlation between two stationary time series is studied. For this purpose, numerous datasets from two stationary time series and with time delay are produced and analyzed.
The simulation procedure is as follows:
Step 1: For fixed , a path of size n from is produced. To investigate the impacts of signal class and data length on the applied mathematical techniques functionality over the data, different distributions such as standard normal, standard uniform, Gaussian, non-Gaussian, Brownian motion and fractional Brownian motion, and exponential with different lengths are considered (Fattahi et al. 2011; Mitková 2019; Han et al. 2022).
In other words, and are the values of that have the maximum values of and respectively.
Step 4: Steps 1 to 3 are repeated 1,000 times.
Step 5: Calculating the mean absolute error (MAE) and root mean square error (RMSE) indices for CCF and SCCF methods.
Power test of SCCF based on the real data
In this section, the ability of SCCF in practice is investigated by an actual example. For this purpose, calculated RDI in 1, 3, and 12-month time scales were used. For investigating the stationarity of the datasets, the augmented Dickey–Fuller (ADF) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests were applied. These tests verify that the computed RDI in all three time scales were stationary.
Study region, data collection, and data evaluation
Station . | Latitude (N) . | Longitude (E) . | Elevation (m a.s.l) . | Rainfall (mm/year) . | Annual average temperature (°C) . | PET (mm/day) . |
---|---|---|---|---|---|---|
Babolsar | 36.720 | 52.653 | − 21.00 | 917.05 | 17.35 | 3.13 |
Bandar Abbas | 27.214 | 56.373 | 9.80 | 173.95 | 26.98 | 6.58 |
Bandar Lengeh | 26.528 | 54.828 | 22.70 | 134.13 | 26.86 | 6.78 |
Birjand | 32.891 | 59.283 | 1491.00 | 160.68 | 16.49 | 5.70 |
Chabahar | 25.281 | 60.651 | 8.00 | 113.20 | 26.33 | 5.60 |
Fasa | 28.899 | 53.719 | 1268.00 | 285.55 | 19.43 | 5.10 |
Qazvin | 36.319 | 50.020 | 1279.10 | 319.47 | 14.07 | 4.19 |
Iran Shahr | 27.229 | 60.718 | 591.10 | 109.82 | 26.95 | 6.47 |
Mashhad | 36.236 | 59.631 | 999.20 | 255.32 | 14.80 | 4.52 |
Oroomieh | 37.659 | 45.055 | 1328.00 | 330.65 | 11.36 | 3.72 |
Ramsar | 36.904 | 50.683 | − 20.00 | 1232.50 | 16.29 | 2.81 |
Semnan | 35.588 | 53.421 | 1127.00 | 139.86 | 18.29 | 6.56 |
Shiraz | 29.561 | 52.603 | 1488.00 | 319.11 | 18.08 | 5.29 |
Tabass | 33.603 | 56.951 | 711.00 | 82.10 | 22.16 | 5.15 |
Tabriz | 38.122 | 46.242 | 1361.00 | 274.55 | 12.88 | 4.69 |
Tehran | 35.693 | 51.309 | 1191.00 | 236.82 | 17.79 | 5.17 |
Torbat Hydarieh | 35.332 | 59.206 | 1451.00 | 261.22 | 14.40 | 5.68 |
Zabol | 31.089 | 61.543 | 489.20 | 54.58 | 22.41 | 9.24 |
Zahedan | 29.472 | 60.900 | 1370.00 | 78.44 | 18.72 | 6.31 |
Zanjan | 36.660 | 48.522 | 1659.40 | 303.57 | 11.26 | 2.68 |
Station . | Latitude (N) . | Longitude (E) . | Elevation (m a.s.l) . | Rainfall (mm/year) . | Annual average temperature (°C) . | PET (mm/day) . |
---|---|---|---|---|---|---|
Babolsar | 36.720 | 52.653 | − 21.00 | 917.05 | 17.35 | 3.13 |
Bandar Abbas | 27.214 | 56.373 | 9.80 | 173.95 | 26.98 | 6.58 |
Bandar Lengeh | 26.528 | 54.828 | 22.70 | 134.13 | 26.86 | 6.78 |
Birjand | 32.891 | 59.283 | 1491.00 | 160.68 | 16.49 | 5.70 |
Chabahar | 25.281 | 60.651 | 8.00 | 113.20 | 26.33 | 5.60 |
Fasa | 28.899 | 53.719 | 1268.00 | 285.55 | 19.43 | 5.10 |
Qazvin | 36.319 | 50.020 | 1279.10 | 319.47 | 14.07 | 4.19 |
Iran Shahr | 27.229 | 60.718 | 591.10 | 109.82 | 26.95 | 6.47 |
Mashhad | 36.236 | 59.631 | 999.20 | 255.32 | 14.80 | 4.52 |
Oroomieh | 37.659 | 45.055 | 1328.00 | 330.65 | 11.36 | 3.72 |
Ramsar | 36.904 | 50.683 | − 20.00 | 1232.50 | 16.29 | 2.81 |
Semnan | 35.588 | 53.421 | 1127.00 | 139.86 | 18.29 | 6.56 |
Shiraz | 29.561 | 52.603 | 1488.00 | 319.11 | 18.08 | 5.29 |
Tabass | 33.603 | 56.951 | 711.00 | 82.10 | 22.16 | 5.15 |
Tabriz | 38.122 | 46.242 | 1361.00 | 274.55 | 12.88 | 4.69 |
Tehran | 35.693 | 51.309 | 1191.00 | 236.82 | 17.79 | 5.17 |
Torbat Hydarieh | 35.332 | 59.206 | 1451.00 | 261.22 | 14.40 | 5.68 |
Zabol | 31.089 | 61.543 | 489.20 | 54.58 | 22.41 | 9.24 |
Zahedan | 29.472 | 60.900 | 1370.00 | 78.44 | 18.72 | 6.31 |
Zanjan | 36.660 | 48.522 | 1659.40 | 303.57 | 11.26 | 2.68 |
Note: PET is potential evapotranspiration (calculated based on FAO Penman-Monteith).
The RDI calculation
RESULTS AND DISCUSSION
Power test of SCCF based on the simulation
The computed values of , for different settings of parameter, are presented in Tables 2,3–4. The results show that the values of and are close to each other for Gaussian (normal) time series. Based on Table 2, in n = 100, 200, 500, and 1,000 at 64, 60, 64, and 60% of lags the was more than the , respectively. Presented results in Tables 3 and 4 indicated that at 100% of numerical studies for uniform and exponential time series, the is larger than . In other words, the is more robust than the , in detecting time delay between two non-Gaussian time series. Tables 5 and 6 indicate that almost at 100% of numerical studies for Brownian motion time series and fractional Brownian motion time series, the is larger than . In other words, the is more robust than the , in detecting time delay. The results of the MAE and RMSE also showed that the is more robust than the , in detecting time delay.
. | . | . | MAE . | RMSE . | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 . | 200 . | 500 . | 1,000 . | ||||||||||
. | . | . | . | . | . | . | . | SCCF . | CCF . | SCCF . | CCF . | ||
0.1 | 0 | 0.989 | 0.991 | 0.998 | 0.994 | 0.972 | 0.983 | 0.986 | 0.981 | 0.014 | 0.013 | 0.017 | 0.014 |
1 | 0.983 | 0.994 | 0.985 | 0.982 | 0.996 | 0.971 | 0.987 | 0.982 | 0.012 | 0.018 | 0.013 | 0.020 | |
2 | 0.963 | 0.960 | 0.963 | 0.987 | 0.983 | 0.971 | 0.984 | 0.996 | 0.027 | 0.022 | 0.029 | 0.026 | |
3 | 0.986 | 0.960 | 0.991 | 0.962 | 1.000 | 0.993 | 0.982 | 0.994 | 0.010 | 0.023 | 0.009 | 0.028 | |
4 | 0.952 | 0.991 | 0.986 | 0.979 | 0.998 | 0.988 | 0.986 | 0.982 | 0.020 | 0.015 | 0.018 | 0.016 | |
0.3 | 0 | 0.957 | 0.974 | 0.969 | 0.991 | 0.982 | 0.980 | 0.993 | 0.998 | 0.025 | 0.014 | 0.020 | 0.017 |
1 | 0.979 | 0.972 | 0.963 | 0.986 | 0.990 | 0.977 | 0.988 | 0.997 | 0.020 | 0.017 | 0.016 | 0.019 | |
2 | 0.982 | 0.973 | 0.982 | 0.999 | 0.989 | 0.990 | 0.992 | 0.996 | 0.014 | 0.011 | 0.010 | 0.015 | |
3 | 0.986 | 0.955 | 0.988 | 0.985 | 0.992 | 0.979 | 0.982 | 0.993 | 0.013 | 0.022 | 0.010 | 0.026 | |
4 | 0.993 | 0.971 | 0.962 | 0.996 | 0.970 | 0.976 | 0.997 | 0.991 | 0.020 | 0.017 | 0.017 | 0.019 | |
0.5 | 0 | 0.950 | 0.954 | 0.961 | 0.992 | 0.978 | 0.977 | 0.985 | 0.983 | 0.032 | 0.024 | 0.024 | 0.027 |
1 | 0.968 | 0.959 | 0.974 | 0.968 | 0.986 | 0.980 | 0.987 | 0.997 | 0.021 | 0.024 | 0.016 | 0.028 | |
2 | 0.998 | 0.970 | 0.975 | 0.999 | 0.989 | 0.978 | 0.993 | 0.980 | 0.011 | 0.018 | 0.010 | 0.021 | |
3 | 0.961 | 0.996 | 0.974 | 0.972 | 0.997 | 0.986 | 0.999 | 0.990 | 0.017 | 0.014 | 0.017 | 0.017 | |
4 | 0.997 | 0.987 | 0.984 | 0.983 | 0.988 | 0.988 | 0.994 | 0.985 | 0.009 | 0.014 | 0.007 | 0.014 | |
0.7 | 0 | 0.994 | 0.993 | 0.980 | 0.999 | 0.988 | 0.999 | 0.998 | 0.994 | 0.010 | 0.004 | 0.009 | 0.005 |
1 | 0.961 | 0.956 | 0.994 | 0.972 | 0.973 | 0.982 | 0.986 | 0.995 | 0.022 | 0.024 | 0.018 | 0.028 | |
2 | 0.977 | 0.951 | 0.979 | 0.977 | 0.998 | 0.986 | 0.991 | 0.981 | 0.014 | 0.026 | 0.011 | 0.030 | |
3 | 0.992 | 0.973 | 0.992 | 0.986 | 0.993 | 0.981 | 0.991 | 0.988 | 0.008 | 0.018 | 0.006 | 0.019 | |
4 | 0.990 | 0.985 | 0.975 | 0.972 | 0.994 | 0.992 | 0.988 | 0.980 | 0.013 | 0.018 | 0.011 | 0.019 | |
0.9 | 0 | 0.971 | 0.970 | 0.991 | 0.977 | 0.970 | 0.979 | 0.995 | 0.989 | 0.018 | 0.021 | 0.015 | 0.022 |
1 | 0.959 | 0.970 | 0.968 | 0.962 | 0.991 | 0.999 | 0.995 | 0.984 | 0.022 | 0.021 | 0.019 | 0.026 | |
2 | 0.958 | 0.957 | 0.989 | 0.979 | 0.997 | 0.977 | 0.985 | 0.982 | 0.018 | 0.026 | 0.016 | 0.028 | |
3 | 0.977 | 0.995 | 0.963 | 0.977 | 0.995 | 0.991 | 0.984 | 0.984 | 0.020 | 0.013 | 0.017 | 0.015 | |
4 | 0.954 | 0.972 | 0.964 | 0.999 | 0.977 | 0.978 | 0.993 | 0.999 | 0.028 | 0.013 | 0.022 | 0.018 | |
MAE | 0.025 | 0.027 | 0.022 | 0.017 | 0.013 | 0.017 | 0.010 | 0.011 | |||||
RMSE | 0.042 | 0.046 | 0.030 | 0.020 | 0.011 | 0.016 | 0.006 | 0.008 |
. | . | . | MAE . | RMSE . | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 . | 200 . | 500 . | 1,000 . | ||||||||||
. | . | . | . | . | . | . | . | SCCF . | CCF . | SCCF . | CCF . | ||
0.1 | 0 | 0.989 | 0.991 | 0.998 | 0.994 | 0.972 | 0.983 | 0.986 | 0.981 | 0.014 | 0.013 | 0.017 | 0.014 |
1 | 0.983 | 0.994 | 0.985 | 0.982 | 0.996 | 0.971 | 0.987 | 0.982 | 0.012 | 0.018 | 0.013 | 0.020 | |
2 | 0.963 | 0.960 | 0.963 | 0.987 | 0.983 | 0.971 | 0.984 | 0.996 | 0.027 | 0.022 | 0.029 | 0.026 | |
3 | 0.986 | 0.960 | 0.991 | 0.962 | 1.000 | 0.993 | 0.982 | 0.994 | 0.010 | 0.023 | 0.009 | 0.028 | |
4 | 0.952 | 0.991 | 0.986 | 0.979 | 0.998 | 0.988 | 0.986 | 0.982 | 0.020 | 0.015 | 0.018 | 0.016 | |
0.3 | 0 | 0.957 | 0.974 | 0.969 | 0.991 | 0.982 | 0.980 | 0.993 | 0.998 | 0.025 | 0.014 | 0.020 | 0.017 |
1 | 0.979 | 0.972 | 0.963 | 0.986 | 0.990 | 0.977 | 0.988 | 0.997 | 0.020 | 0.017 | 0.016 | 0.019 | |
2 | 0.982 | 0.973 | 0.982 | 0.999 | 0.989 | 0.990 | 0.992 | 0.996 | 0.014 | 0.011 | 0.010 | 0.015 | |
3 | 0.986 | 0.955 | 0.988 | 0.985 | 0.992 | 0.979 | 0.982 | 0.993 | 0.013 | 0.022 | 0.010 | 0.026 | |
4 | 0.993 | 0.971 | 0.962 | 0.996 | 0.970 | 0.976 | 0.997 | 0.991 | 0.020 | 0.017 | 0.017 | 0.019 | |
0.5 | 0 | 0.950 | 0.954 | 0.961 | 0.992 | 0.978 | 0.977 | 0.985 | 0.983 | 0.032 | 0.024 | 0.024 | 0.027 |
1 | 0.968 | 0.959 | 0.974 | 0.968 | 0.986 | 0.980 | 0.987 | 0.997 | 0.021 | 0.024 | 0.016 | 0.028 | |
2 | 0.998 | 0.970 | 0.975 | 0.999 | 0.989 | 0.978 | 0.993 | 0.980 | 0.011 | 0.018 | 0.010 | 0.021 | |
3 | 0.961 | 0.996 | 0.974 | 0.972 | 0.997 | 0.986 | 0.999 | 0.990 | 0.017 | 0.014 | 0.017 | 0.017 | |
4 | 0.997 | 0.987 | 0.984 | 0.983 | 0.988 | 0.988 | 0.994 | 0.985 | 0.009 | 0.014 | 0.007 | 0.014 | |
0.7 | 0 | 0.994 | 0.993 | 0.980 | 0.999 | 0.988 | 0.999 | 0.998 | 0.994 | 0.010 | 0.004 | 0.009 | 0.005 |
1 | 0.961 | 0.956 | 0.994 | 0.972 | 0.973 | 0.982 | 0.986 | 0.995 | 0.022 | 0.024 | 0.018 | 0.028 | |
2 | 0.977 | 0.951 | 0.979 | 0.977 | 0.998 | 0.986 | 0.991 | 0.981 | 0.014 | 0.026 | 0.011 | 0.030 | |
3 | 0.992 | 0.973 | 0.992 | 0.986 | 0.993 | 0.981 | 0.991 | 0.988 | 0.008 | 0.018 | 0.006 | 0.019 | |
4 | 0.990 | 0.985 | 0.975 | 0.972 | 0.994 | 0.992 | 0.988 | 0.980 | 0.013 | 0.018 | 0.011 | 0.019 | |
0.9 | 0 | 0.971 | 0.970 | 0.991 | 0.977 | 0.970 | 0.979 | 0.995 | 0.989 | 0.018 | 0.021 | 0.015 | 0.022 |
1 | 0.959 | 0.970 | 0.968 | 0.962 | 0.991 | 0.999 | 0.995 | 0.984 | 0.022 | 0.021 | 0.019 | 0.026 | |
2 | 0.958 | 0.957 | 0.989 | 0.979 | 0.997 | 0.977 | 0.985 | 0.982 | 0.018 | 0.026 | 0.016 | 0.028 | |
3 | 0.977 | 0.995 | 0.963 | 0.977 | 0.995 | 0.991 | 0.984 | 0.984 | 0.020 | 0.013 | 0.017 | 0.015 | |
4 | 0.954 | 0.972 | 0.964 | 0.999 | 0.977 | 0.978 | 0.993 | 0.999 | 0.028 | 0.013 | 0.022 | 0.018 | |
MAE | 0.025 | 0.027 | 0.022 | 0.017 | 0.013 | 0.017 | 0.010 | 0.011 | |||||
RMSE | 0.042 | 0.046 | 0.030 | 0.020 | 0.011 | 0.016 | 0.006 | 0.008 |
. | . | . | MAE . | RMSE . | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 . | 200 . | 500 . | 1,000 . | ||||||||||
. | . | . | . | . | . | . | . | SCCF . | CCF . | SCCF . | CCF . | ||
0.1 | 0 | 0.964 | 0.942 | 0.984 | 0.929 | 0.994 | 0.928 | 0.982 | 0.942 | 0.019 | 0.065 | 0.022 | 0.065 |
1 | 0.964 | 0.935 | 0.988 | 0.923 | 0.984 | 0.936 | 0.992 | 0.939 | 0.018 | 0.067 | 0.021 | 0.067 | |
2 | 0.987 | 0.930 | 0.974 | 0.914 | 0.997 | 0.938 | 0.995 | 0.936 | 0.012 | 0.071 | 0.015 | 0.071 | |
3 | 0.991 | 0.947 | 0.977 | 0.916 | 0.975 | 0.929 | 0.983 | 0.943 | 0.019 | 0.066 | 0.014 | 0.067 | |
4 | 0.965 | 0.927 | 0.980 | 0.927 | 0.979 | 0.943 | 0.996 | 0.936 | 0.020 | 0.067 | 0.016 | 0.067 | |
0.3 | 0 | 0.993 | 0.918 | 0.967 | 0.916 | 0.980 | 0.920 | 0.990 | 0.936 | 0.018 | 0.078 | 0.014 | 0.078 |
1 | 0.960 | 0.910 | 0.978 | 0.942 | 0.984 | 0.930 | 0.987 | 0.941 | 0.023 | 0.069 | 0.018 | 0.070 | |
2 | 0.959 | 0.917 | 0.967 | 0.912 | 0.970 | 0.945 | 0.995 | 0.933 | 0.027 | 0.073 | 0.021 | 0.074 | |
3 | 0.972 | 0.915 | 0.974 | 0.915 | 0.995 | 0.923 | 0.989 | 0.944 | 0.018 | 0.076 | 0.014 | 0.077 | |
4 | 0.989 | 0.908 | 0.961 | 0.936 | 0.978 | 0.945 | 0.993 | 0.939 | 0.020 | 0.068 | 0.016 | 0.069 | |
0.5 | 0 | 0.968 | 0.925 | 0.964 | 0.923 | 0.977 | 0.930 | 0.988 | 0.930 | 0.026 | 0.073 | 0.019 | 0.073 |
1 | 0.996 | 0.941 | 0.992 | 0.927 | 0.990 | 0.924 | 0.992 | 0.949 | 0.008 | 0.065 | 0.006 | 0.066 | |
2 | 0.986 | 0.924 | 0.963 | 0.930 | 0.992 | 0.930 | 0.982 | 0.931 | 0.019 | 0.071 | 0.016 | 0.071 | |
3 | 0.973 | 0.915 | 0.998 | 0.910 | 0.998 | 0.924 | 0.997 | 0.944 | 0.009 | 0.077 | 0.010 | 0.078 | |
4 | 0.998 | 0.917 | 0.982 | 0.939 | 0.997 | 0.950 | 0.994 | 0.948 | 0.007 | 0.062 | 0.007 | 0.063 | |
0.7 | 0 | 0.996 | 0.909 | 1.000 | 0.932 | 0.989 | 0.930 | 0.985 | 0.945 | 0.008 | 0.071 | 0.007 | 0.072 |
1 | 0.987 | 0.920 | 0.977 | 0.930 | 0.987 | 0.934 | 1.000 | 0.937 | 0.012 | 0.070 | 0.010 | 0.070 | |
2 | 0.964 | 0.914 | 0.995 | 0.929 | 0.988 | 0.940 | 0.986 | 0.944 | 0.017 | 0.068 | 0.014 | 0.069 | |
3 | 0.950 | 0.938 | 0.961 | 0.925 | 0.981 | 0.947 | 0.997 | 0.941 | 0.028 | 0.062 | 0.023 | 0.063 | |
4 | 0.987 | 0.940 | 0.986 | 0.936 | 0.989 | 0.935 | 0.992 | 0.949 | 0.012 | 0.060 | 0.008 | 0.060 | |
0.9 | 0 | 0.994 | 0.938 | 0.969 | 0.914 | 0.975 | 0.934 | 0.989 | 0.936 | 0.018 | 0.070 | 0.015 | 0.070 |
1 | 0.988 | 0.907 | 0.961 | 0.940 | 0.988 | 0.935 | 0.988 | 0.933 | 0.019 | 0.071 | 0.016 | 0.072 | |
2 | 0.951 | 0.921 | 0.979 | 0.913 | 0.974 | 0.944 | 0.990 | 0.933 | 0.027 | 0.072 | 0.021 | 0.073 | |
3 | 0.952 | 0.930 | 0.967 | 0.924 | 0.974 | 0.927 | 0.981 | 0.947 | 0.032 | 0.068 | 0.024 | 0.069 | |
4 | 0.951 | 0.939 | 0.991 | 0.929 | 0.971 | 0.948 | 0.999 | 0.934 | 0.022 | 0.063 | 0.020 | 0.063 | |
MAE | 0.025 | 0.027 | 0.022 | 0.017 | 0.013 | 0.017 | 0.010 | 0.011 | |||||
RMSE | 0.042 | 0.046 | 0.030 | 0.020 | 0.011 | 0.016 | 0.006 | 0.008 |
. | . | . | MAE . | RMSE . | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 . | 200 . | 500 . | 1,000 . | ||||||||||
. | . | . | . | . | . | . | . | SCCF . | CCF . | SCCF . | CCF . | ||
0.1 | 0 | 0.964 | 0.942 | 0.984 | 0.929 | 0.994 | 0.928 | 0.982 | 0.942 | 0.019 | 0.065 | 0.022 | 0.065 |
1 | 0.964 | 0.935 | 0.988 | 0.923 | 0.984 | 0.936 | 0.992 | 0.939 | 0.018 | 0.067 | 0.021 | 0.067 | |
2 | 0.987 | 0.930 | 0.974 | 0.914 | 0.997 | 0.938 | 0.995 | 0.936 | 0.012 | 0.071 | 0.015 | 0.071 | |
3 | 0.991 | 0.947 | 0.977 | 0.916 | 0.975 | 0.929 | 0.983 | 0.943 | 0.019 | 0.066 | 0.014 | 0.067 | |
4 | 0.965 | 0.927 | 0.980 | 0.927 | 0.979 | 0.943 | 0.996 | 0.936 | 0.020 | 0.067 | 0.016 | 0.067 | |
0.3 | 0 | 0.993 | 0.918 | 0.967 | 0.916 | 0.980 | 0.920 | 0.990 | 0.936 | 0.018 | 0.078 | 0.014 | 0.078 |
1 | 0.960 | 0.910 | 0.978 | 0.942 | 0.984 | 0.930 | 0.987 | 0.941 | 0.023 | 0.069 | 0.018 | 0.070 | |
2 | 0.959 | 0.917 | 0.967 | 0.912 | 0.970 | 0.945 | 0.995 | 0.933 | 0.027 | 0.073 | 0.021 | 0.074 | |
3 | 0.972 | 0.915 | 0.974 | 0.915 | 0.995 | 0.923 | 0.989 | 0.944 | 0.018 | 0.076 | 0.014 | 0.077 | |
4 | 0.989 | 0.908 | 0.961 | 0.936 | 0.978 | 0.945 | 0.993 | 0.939 | 0.020 | 0.068 | 0.016 | 0.069 | |
0.5 | 0 | 0.968 | 0.925 | 0.964 | 0.923 | 0.977 | 0.930 | 0.988 | 0.930 | 0.026 | 0.073 | 0.019 | 0.073 |
1 | 0.996 | 0.941 | 0.992 | 0.927 | 0.990 | 0.924 | 0.992 | 0.949 | 0.008 | 0.065 | 0.006 | 0.066 | |
2 | 0.986 | 0.924 | 0.963 | 0.930 | 0.992 | 0.930 | 0.982 | 0.931 | 0.019 | 0.071 | 0.016 | 0.071 | |
3 | 0.973 | 0.915 | 0.998 | 0.910 | 0.998 | 0.924 | 0.997 | 0.944 | 0.009 | 0.077 | 0.010 | 0.078 | |
4 | 0.998 | 0.917 | 0.982 | 0.939 | 0.997 | 0.950 | 0.994 | 0.948 | 0.007 | 0.062 | 0.007 | 0.063 | |
0.7 | 0 | 0.996 | 0.909 | 1.000 | 0.932 | 0.989 | 0.930 | 0.985 | 0.945 | 0.008 | 0.071 | 0.007 | 0.072 |
1 | 0.987 | 0.920 | 0.977 | 0.930 | 0.987 | 0.934 | 1.000 | 0.937 | 0.012 | 0.070 | 0.010 | 0.070 | |
2 | 0.964 | 0.914 | 0.995 | 0.929 | 0.988 | 0.940 | 0.986 | 0.944 | 0.017 | 0.068 | 0.014 | 0.069 | |
3 | 0.950 | 0.938 | 0.961 | 0.925 | 0.981 | 0.947 | 0.997 | 0.941 | 0.028 | 0.062 | 0.023 | 0.063 | |
4 | 0.987 | 0.940 | 0.986 | 0.936 | 0.989 | 0.935 | 0.992 | 0.949 | 0.012 | 0.060 | 0.008 | 0.060 | |
0.9 | 0 | 0.994 | 0.938 | 0.969 | 0.914 | 0.975 | 0.934 | 0.989 | 0.936 | 0.018 | 0.070 | 0.015 | 0.070 |
1 | 0.988 | 0.907 | 0.961 | 0.940 | 0.988 | 0.935 | 0.988 | 0.933 | 0.019 | 0.071 | 0.016 | 0.072 | |
2 | 0.951 | 0.921 | 0.979 | 0.913 | 0.974 | 0.944 | 0.990 | 0.933 | 0.027 | 0.072 | 0.021 | 0.073 | |
3 | 0.952 | 0.930 | 0.967 | 0.924 | 0.974 | 0.927 | 0.981 | 0.947 | 0.032 | 0.068 | 0.024 | 0.069 | |
4 | 0.951 | 0.939 | 0.991 | 0.929 | 0.971 | 0.948 | 0.999 | 0.934 | 0.022 | 0.063 | 0.020 | 0.063 | |
MAE | 0.025 | 0.027 | 0.022 | 0.017 | 0.013 | 0.017 | 0.010 | 0.011 | |||||
RMSE | 0.042 | 0.046 | 0.030 | 0.020 | 0.011 | 0.016 | 0.006 | 0.008 |
. | . | . | MAE . | RMSE . | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 . | 200 . | 500 . | 1,000 . | ||||||||||
. | . | . | . | . | . | . | . | SCCF . | CCF . | SCCF . | CCF . | ||
0.1 | 0 | 0.993 | 0.921 | 0.984 | 0.931 | 0.987 | 0.921 | 0.994 | 0.934 | 0.011 | 0.073 | 0.011 | 0.073 |
1 | 0.975 | 0.949 | 0.967 | 0.930 | 0.989 | 0.925 | 0.985 | 0.943 | 0.021 | 0.063 | 0.023 | 0.064 | |
2 | 0.970 | 0.937 | 0.981 | 0.931 | 0.987 | 0.946 | 0.981 | 0.948 | 0.020 | 0.060 | 0.021 | 0.060 | |
3 | 0.960 | 0.935 | 0.998 | 0.937 | 0.990 | 0.924 | 0.998 | 0.945 | 0.014 | 0.065 | 0.015 | 0.065 | |
4 | 0.965 | 0.930 | 0.986 | 0.935 | 0.990 | 0.930 | 0.985 | 0.949 | 0.019 | 0.064 | 0.015 | 0.064 | |
0.3 | 0 | 0.990 | 0.920 | 0.969 | 0.938 | 0.982 | 0.932 | 0.992 | 0.937 | 0.017 | 0.068 | 0.013 | 0.069 |
1 | 0.974 | 0.945 | 0.972 | 0.941 | 0.976 | 0.948 | 0.993 | 0.947 | 0.021 | 0.055 | 0.016 | 0.055 | |
2 | 0.969 | 0.935 | 0.973 | 0.935 | 0.987 | 0.933 | 0.988 | 0.949 | 0.021 | 0.062 | 0.016 | 0.062 | |
3 | 0.965 | 0.948 | 0.986 | 0.926 | 0.987 | 0.936 | 0.982 | 0.947 | 0.020 | 0.061 | 0.015 | 0.061 | |
4 | 0.971 | 0.900 | 0.970 | 0.945 | 0.995 | 0.945 | 0.985 | 0.946 | 0.020 | 0.066 | 0.016 | 0.069 | |
0.5 | 0 | 0.965 | 0.949 | 0.974 | 0.917 | 0.987 | 0.921 | 0.982 | 0.950 | 0.023 | 0.066 | 0.017 | 0.068 |
1 | 0.976 | 0.928 | 0.981 | 0.937 | 0.972 | 0.934 | 0.994 | 0.931 | 0.019 | 0.067 | 0.015 | 0.068 | |
2 | 0.969 | 0.901 | 0.972 | 0.923 | 0.997 | 0.946 | 0.987 | 0.949 | 0.019 | 0.070 | 0.016 | 0.073 | |
3 | 0.957 | 0.933 | 0.961 | 0.940 | 0.991 | 0.934 | 0.990 | 0.942 | 0.025 | 0.063 | 0.021 | 0.063 | |
4 | 0.984 | 0.947 | 0.972 | 0.937 | 0.981 | 0.930 | 0.996 | 0.940 | 0.017 | 0.062 | 0.013 | 0.062 | |
0.7 | 0 | 0.980 | 0.911 | 0.990 | 0.918 | 0.996 | 0.948 | 0.980 | 0.946 | 0.014 | 0.069 | 0.011 | 0.071 |
1 | 0.953 | 0.906 | 0.973 | 0.912 | 0.978 | 0.932 | 0.994 | 0.934 | 0.026 | 0.079 | 0.021 | 0.080 | |
2 | 0.994 | 0.914 | 0.986 | 0.934 | 0.979 | 0.948 | 0.990 | 0.931 | 0.013 | 0.068 | 0.010 | 0.069 | |
3 | 0.992 | 0.908 | 0.964 | 0.932 | 0.983 | 0.927 | 0.981 | 0.948 | 0.020 | 0.071 | 0.016 | 0.073 | |
4 | 0.971 | 0.919 | 0.983 | 0.950 | 0.994 | 0.929 | 0.984 | 0.949 | 0.017 | 0.063 | 0.013 | 0.065 | |
0.9 | 0 | 0.966 | 0.939 | 0.995 | 0.942 | 0.992 | 0.932 | 0.995 | 0.950 | 0.013 | 0.059 | 0.013 | 0.060 |
1 | 0.957 | 0.934 | 0.985 | 0.941 | 0.999 | 0.921 | 0.981 | 0.936 | 0.020 | 0.067 | 0.017 | 0.067 | |
2 | 0.972 | 0.919 | 0.997 | 0.918 | 0.981 | 0.949 | 0.985 | 0.946 | 0.016 | 0.067 | 0.013 | 0.069 | |
3 | 0.977 | 0.925 | 0.988 | 0.941 | 0.978 | 0.929 | 0.987 | 0.947 | 0.018 | 0.065 | 0.013 | 0.065 | |
4 | 0.999 | 0.933 | 0.991 | 0.922 | 0.980 | 0.927 | 0.982 | 0.934 | 0.012 | 0.071 | 0.010 | 0.071 | |
MAE | 0.025 | 0.027 | 0.022 | 0.017 | 0.013 | 0.017 | 0.010 | 0.011 | |||||
RMSE | 0.042 | 0.046 | 0.030 | 0.020 | 0.011 | 0.016 | 0.006 | 0.008 |
. | . | . | MAE . | RMSE . | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 . | 200 . | 500 . | 1,000 . | ||||||||||
. | . | . | . | . | . | . | . | SCCF . | CCF . | SCCF . | CCF . | ||
0.1 | 0 | 0.993 | 0.921 | 0.984 | 0.931 | 0.987 | 0.921 | 0.994 | 0.934 | 0.011 | 0.073 | 0.011 | 0.073 |
1 | 0.975 | 0.949 | 0.967 | 0.930 | 0.989 | 0.925 | 0.985 | 0.943 | 0.021 | 0.063 | 0.023 | 0.064 | |
2 | 0.970 | 0.937 | 0.981 | 0.931 | 0.987 | 0.946 | 0.981 | 0.948 | 0.020 | 0.060 | 0.021 | 0.060 | |
3 | 0.960 | 0.935 | 0.998 | 0.937 | 0.990 | 0.924 | 0.998 | 0.945 | 0.014 | 0.065 | 0.015 | 0.065 | |
4 | 0.965 | 0.930 | 0.986 | 0.935 | 0.990 | 0.930 | 0.985 | 0.949 | 0.019 | 0.064 | 0.015 | 0.064 | |
0.3 | 0 | 0.990 | 0.920 | 0.969 | 0.938 | 0.982 | 0.932 | 0.992 | 0.937 | 0.017 | 0.068 | 0.013 | 0.069 |
1 | 0.974 | 0.945 | 0.972 | 0.941 | 0.976 | 0.948 | 0.993 | 0.947 | 0.021 | 0.055 | 0.016 | 0.055 | |
2 | 0.969 | 0.935 | 0.973 | 0.935 | 0.987 | 0.933 | 0.988 | 0.949 | 0.021 | 0.062 | 0.016 | 0.062 | |
3 | 0.965 | 0.948 | 0.986 | 0.926 | 0.987 | 0.936 | 0.982 | 0.947 | 0.020 | 0.061 | 0.015 | 0.061 | |
4 | 0.971 | 0.900 | 0.970 | 0.945 | 0.995 | 0.945 | 0.985 | 0.946 | 0.020 | 0.066 | 0.016 | 0.069 | |
0.5 | 0 | 0.965 | 0.949 | 0.974 | 0.917 | 0.987 | 0.921 | 0.982 | 0.950 | 0.023 | 0.066 | 0.017 | 0.068 |
1 | 0.976 | 0.928 | 0.981 | 0.937 | 0.972 | 0.934 | 0.994 | 0.931 | 0.019 | 0.067 | 0.015 | 0.068 | |
2 | 0.969 | 0.901 | 0.972 | 0.923 | 0.997 | 0.946 | 0.987 | 0.949 | 0.019 | 0.070 | 0.016 | 0.073 | |
3 | 0.957 | 0.933 | 0.961 | 0.940 | 0.991 | 0.934 | 0.990 | 0.942 | 0.025 | 0.063 | 0.021 | 0.063 | |
4 | 0.984 | 0.947 | 0.972 | 0.937 | 0.981 | 0.930 | 0.996 | 0.940 | 0.017 | 0.062 | 0.013 | 0.062 | |
0.7 | 0 | 0.980 | 0.911 | 0.990 | 0.918 | 0.996 | 0.948 | 0.980 | 0.946 | 0.014 | 0.069 | 0.011 | 0.071 |
1 | 0.953 | 0.906 | 0.973 | 0.912 | 0.978 | 0.932 | 0.994 | 0.934 | 0.026 | 0.079 | 0.021 | 0.080 | |
2 | 0.994 | 0.914 | 0.986 | 0.934 | 0.979 | 0.948 | 0.990 | 0.931 | 0.013 | 0.068 | 0.010 | 0.069 | |
3 | 0.992 | 0.908 | 0.964 | 0.932 | 0.983 | 0.927 | 0.981 | 0.948 | 0.020 | 0.071 | 0.016 | 0.073 | |
4 | 0.971 | 0.919 | 0.983 | 0.950 | 0.994 | 0.929 | 0.984 | 0.949 | 0.017 | 0.063 | 0.013 | 0.065 | |
0.9 | 0 | 0.966 | 0.939 | 0.995 | 0.942 | 0.992 | 0.932 | 0.995 | 0.950 | 0.013 | 0.059 | 0.013 | 0.060 |
1 | 0.957 | 0.934 | 0.985 | 0.941 | 0.999 | 0.921 | 0.981 | 0.936 | 0.020 | 0.067 | 0.017 | 0.067 | |
2 | 0.972 | 0.919 | 0.997 | 0.918 | 0.981 | 0.949 | 0.985 | 0.946 | 0.016 | 0.067 | 0.013 | 0.069 | |
3 | 0.977 | 0.925 | 0.988 | 0.941 | 0.978 | 0.929 | 0.987 | 0.947 | 0.018 | 0.065 | 0.013 | 0.065 | |
4 | 0.999 | 0.933 | 0.991 | 0.922 | 0.980 | 0.927 | 0.982 | 0.934 | 0.012 | 0.071 | 0.010 | 0.071 | |
MAE | 0.025 | 0.027 | 0.022 | 0.017 | 0.013 | 0.017 | 0.010 | 0.011 | |||||
RMSE | 0.042 | 0.046 | 0.030 | 0.020 | 0.011 | 0.016 | 0.006 | 0.008 |
. | . | . | MAE . | RMSE . | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 . | 200 . | 500 . | 1,000 . | ||||||||||
. | . | . | . | . | . | . | . | SCCF . | CCF . | SCCF . | CCF . | ||
0.1 | 0 | 0.965 | 0.928 | 0.978 | 0.932 | 0.995 | 0.934 | 0.991 | 0.934 | 0.018 | 0.068 | 0.021 | 0.068 |
1 | 0.972 | 0.951 | 0.973 | 0.950 | 0.981 | 0.956 | 0.981 | 0.956 | 0.023 | 0.047 | 0.024 | 0.047 | |
2 | 0.970 | 0.931 | 0.978 | 0.938 | 0.987 | 0.947 | 0.992 | 0.951 | 0.018 | 0.058 | 0.020 | 0.059 | |
3 | 0.976 | 0.936 | 0.978 | 0.938 | 0.989 | 0.944 | 0.989 | 0.950 | 0.017 | 0.058 | 0.013 | 0.058 | |
4 | 0.978 | 0.943 | 0.986 | 0.908 | 0.989 | 0.930 | 0.992 | 0.946 | 0.014 | 0.068 | 0.010 | 0.070 | |
0.3 | 0 | 0.965 | 0.917 | 0.985 | 0.930 | 0.994 | 0.938 | 0.997 | 0.947 | 0.015 | 0.067 | 0.014 | 0.068 |
1 | 0.965 | 0.907 | 0.970 | 0.943 | 0.997 | 0.949 | 0.998 | 0.949 | 0.018 | 0.063 | 0.016 | 0.065 | |
2 | 0.968 | 0.903 | 0.968 | 0.929 | 0.972 | 0.949 | 0.986 | 0.961 | 0.027 | 0.065 | 0.019 | 0.068 | |
3 | 0.967 | 0.903 | 0.976 | 0.904 | 0.976 | 0.912 | 0.980 | 0.963 | 0.025 | 0.080 | 0.018 | 0.083 | |
4 | 0.963 | 0.925 | 0.978 | 0.937 | 0.982 | 0.941 | 0.998 | 0.955 | 0.020 | 0.061 | 0.017 | 0.061 | |
0.5 | 0 | 0.950 | 0.934 | 0.963 | 0.942 | 0.978 | 0.953 | 0.984 | 0.961 | 0.031 | 0.053 | 0.024 | 0.054 |
1 | 0.967 | 0.948 | 0.980 | 0.957 | 0.985 | 0.964 | 0.991 | 0.969 | 0.019 | 0.041 | 0.015 | 0.041 | |
2 | 0.963 | 0.925 | 0.974 | 0.943 | 0.981 | 0.944 | 0.986 | 0.956 | 0.024 | 0.058 | 0.018 | 0.059 | |
3 | 0.962 | 0.909 | 0.975 | 0.918 | 0.985 | 0.935 | 0.992 | 0.955 | 0.022 | 0.071 | 0.017 | 0.073 | |
4 | 0.990 | 0.918 | 0.995 | 0.956 | 0.995 | 0.964 | 0.998 | 0.969 | 0.006 | 0.048 | 0.004 | 0.052 | |
0.7 | 0 | 0.978 | 0.912 | 0.987 | 0.939 | 0.991 | 0.941 | 0.994 | 0.965 | 0.013 | 0.061 | 0.010 | 0.064 |
1 | 0.974 | 0.901 | 0.980 | 0.926 | 0.988 | 0.939 | 0.995 | 0.960 | 0.016 | 0.069 | 0.012 | 0.072 | |
2 | 0.957 | 0.919 | 0.978 | 0.933 | 0.991 | 0.958 | 0.997 | 0.961 | 0.019 | 0.057 | 0.017 | 0.060 | |
3 | 0.931 | 0.955 | 0.961 | 0.963 | 0.989 | 0.964 | 0.998 | 0.972 | 0.030 | 0.037 | 0.028 | 0.037 | |
4 | 0.968 | 0.952 | 0.973 | 0.955 | 0.973 | 0.955 | 0.992 | 0.962 | 0.024 | 0.044 | 0.018 | 0.044 | |
0.9 | 0 | 0.966 | 0.919 | 0.979 | 0.925 | 0.984 | 0.932 | 0.995 | 0.942 | 0.019 | 0.071 | 0.015 | 0.071 |
1 | 0.973 | 0.904 | 0.976 | 0.940 | 0.989 | 0.947 | 0.992 | 0.958 | 0.018 | 0.063 | 0.014 | 0.066 | |
2 | 0.968 | 0.932 | 0.972 | 0.934 | 0.981 | 0.944 | 0.995 | 0.963 | 0.021 | 0.057 | 0.017 | 0.058 | |
3 | 0.952 | 0.938 | 0.971 | 0.943 | 0.990 | 0.954 | 0.997 | 0.959 | 0.023 | 0.052 | 0.020 | 0.052 | |
4 | 0.965 | 0.929 | 0.974 | 0.933 | 0.986 | 0.965 | 0.995 | 0.967 | 0.020 | 0.052 | 0.016 | 0.054 | |
MAE | 0.025 | 0.027 | 0.022 | 0.017 | 0.013 | 0.017 | 0.010 | 0.011 | |||||
RMSE | 0.042 | 0.046 | 0.030 | 0.020 | 0.011 | 0.016 | 0.006 | 0.008 |
. | . | . | MAE . | RMSE . | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 . | 200 . | 500 . | 1,000 . | ||||||||||
. | . | . | . | . | . | . | . | SCCF . | CCF . | SCCF . | CCF . | ||
0.1 | 0 | 0.965 | 0.928 | 0.978 | 0.932 | 0.995 | 0.934 | 0.991 | 0.934 | 0.018 | 0.068 | 0.021 | 0.068 |
1 | 0.972 | 0.951 | 0.973 | 0.950 | 0.981 | 0.956 | 0.981 | 0.956 | 0.023 | 0.047 | 0.024 | 0.047 | |
2 | 0.970 | 0.931 | 0.978 | 0.938 | 0.987 | 0.947 | 0.992 | 0.951 | 0.018 | 0.058 | 0.020 | 0.059 | |
3 | 0.976 | 0.936 | 0.978 | 0.938 | 0.989 | 0.944 | 0.989 | 0.950 | 0.017 | 0.058 | 0.013 | 0.058 | |
4 | 0.978 | 0.943 | 0.986 | 0.908 | 0.989 | 0.930 | 0.992 | 0.946 | 0.014 | 0.068 | 0.010 | 0.070 | |
0.3 | 0 | 0.965 | 0.917 | 0.985 | 0.930 | 0.994 | 0.938 | 0.997 | 0.947 | 0.015 | 0.067 | 0.014 | 0.068 |
1 | 0.965 | 0.907 | 0.970 | 0.943 | 0.997 | 0.949 | 0.998 | 0.949 | 0.018 | 0.063 | 0.016 | 0.065 | |
2 | 0.968 | 0.903 | 0.968 | 0.929 | 0.972 | 0.949 | 0.986 | 0.961 | 0.027 | 0.065 | 0.019 | 0.068 | |
3 | 0.967 | 0.903 | 0.976 | 0.904 | 0.976 | 0.912 | 0.980 | 0.963 | 0.025 | 0.080 | 0.018 | 0.083 | |
4 | 0.963 | 0.925 | 0.978 | 0.937 | 0.982 | 0.941 | 0.998 | 0.955 | 0.020 | 0.061 | 0.017 | 0.061 | |
0.5 | 0 | 0.950 | 0.934 | 0.963 | 0.942 | 0.978 | 0.953 | 0.984 | 0.961 | 0.031 | 0.053 | 0.024 | 0.054 |
1 | 0.967 | 0.948 | 0.980 | 0.957 | 0.985 | 0.964 | 0.991 | 0.969 | 0.019 | 0.041 | 0.015 | 0.041 | |
2 | 0.963 | 0.925 | 0.974 | 0.943 | 0.981 | 0.944 | 0.986 | 0.956 | 0.024 | 0.058 | 0.018 | 0.059 | |
3 | 0.962 | 0.909 | 0.975 | 0.918 | 0.985 | 0.935 | 0.992 | 0.955 | 0.022 | 0.071 | 0.017 | 0.073 | |
4 | 0.990 | 0.918 | 0.995 | 0.956 | 0.995 | 0.964 | 0.998 | 0.969 | 0.006 | 0.048 | 0.004 | 0.052 | |
0.7 | 0 | 0.978 | 0.912 | 0.987 | 0.939 | 0.991 | 0.941 | 0.994 | 0.965 | 0.013 | 0.061 | 0.010 | 0.064 |
1 | 0.974 | 0.901 | 0.980 | 0.926 | 0.988 | 0.939 | 0.995 | 0.960 | 0.016 | 0.069 | 0.012 | 0.072 | |
2 | 0.957 | 0.919 | 0.978 | 0.933 | 0.991 | 0.958 | 0.997 | 0.961 | 0.019 | 0.057 | 0.017 | 0.060 | |
3 | 0.931 | 0.955 | 0.961 | 0.963 | 0.989 | 0.964 | 0.998 | 0.972 | 0.030 | 0.037 | 0.028 | 0.037 | |
4 | 0.968 | 0.952 | 0.973 | 0.955 | 0.973 | 0.955 | 0.992 | 0.962 | 0.024 | 0.044 | 0.018 | 0.044 | |
0.9 | 0 | 0.966 | 0.919 | 0.979 | 0.925 | 0.984 | 0.932 | 0.995 | 0.942 | 0.019 | 0.071 | 0.015 | 0.071 |
1 | 0.973 | 0.904 | 0.976 | 0.940 | 0.989 | 0.947 | 0.992 | 0.958 | 0.018 | 0.063 | 0.014 | 0.066 | |
2 | 0.968 | 0.932 | 0.972 | 0.934 | 0.981 | 0.944 | 0.995 | 0.963 | 0.021 | 0.057 | 0.017 | 0.058 | |
3 | 0.952 | 0.938 | 0.971 | 0.943 | 0.990 | 0.954 | 0.997 | 0.959 | 0.023 | 0.052 | 0.020 | 0.052 | |
4 | 0.965 | 0.929 | 0.974 | 0.933 | 0.986 | 0.965 | 0.995 | 0.967 | 0.020 | 0.052 | 0.016 | 0.054 | |
MAE | 0.025 | 0.027 | 0.022 | 0.017 | 0.013 | 0.017 | 0.010 | 0.011 | |||||
RMSE | 0.042 | 0.046 | 0.030 | 0.020 | 0.011 | 0.016 | 0.006 | 0.008 |
. | . | . | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 . | 200 . | 500 . | 1,000 . | MAE . | RMSE . | ||||||||
. | . | . | . | . | . | . | . | SCCF . | CCF . | SCCF . | CCF . | ||
0.1 | 0 | 0.965 | 0.929 | 0.974 | 0.933 | 0.986 | 0.965 | 0.995 | 0.967 | 0.020 | 0.052 | 0.023 | 0.054 |
1 | 0.974 | 0.915 | 0.986 | 0.924 | 0.990 | 0.941 | 0.993 | 0.956 | 0.014 | 0.066 | 0.016 | 0.068 | |
2 | 0.966 | 0.939 | 0.968 | 0.943 | 0.995 | 0.946 | 0.997 | 0.955 | 0.019 | 0.054 | 0.024 | 0.055 | |
3 | 0.969 | 0.939 | 0.973 | 0.945 | 0.978 | 0.954 | 0.997 | 0.962 | 0.021 | 0.050 | 0.017 | 0.051 | |
4 | 0.972 | 0.927 | 0.980 | 0.933 | 0.985 | 0.949 | 0.994 | 0.959 | 0.017 | 0.058 | 0.013 | 0.059 | |
0.3 | 0 | 0.968 | 0.935 | 0.975 | 0.937 | 0.982 | 0.951 | 0.989 | 0.959 | 0.022 | 0.055 | 0.016 | 0.055 |
1 | 0.973 | 0.936 | 0.981 | 0.947 | 0.991 | 0.956 | 0.992 | 0.961 | 0.016 | 0.050 | 0.012 | 0.051 | |
2 | 0.966 | 0.937 | 0.980 | 0.942 | 0.989 | 0.953 | 0.999 | 0.965 | 0.017 | 0.051 | 0.014 | 0.052 | |
3 | 0.968 | 0.936 | 0.979 | 0.943 | 0.983 | 0.958 | 0.993 | 0.969 | 0.019 | 0.049 | 0.015 | 0.050 | |
4 | 0.960 | 0.935 | 0.982 | 0.936 | 0.987 | 0.961 | 0.992 | 0.969 | 0.020 | 0.050 | 0.016 | 0.052 | |
0.5 | 0 | 0.976 | 0.925 | 0.985 | 0.938 | 0.991 | 0.956 | 0.993 | 0.966 | 0.014 | 0.054 | 0.011 | 0.056 |
1 | 0.970 | 0.929 | 0.983 | 0.934 | 0.990 | 0.941 | 0.990 | 0.956 | 0.017 | 0.060 | 0.013 | 0.061 | |
2 | 0.958 | 0.915 | 0.971 | 0.935 | 0.989 | 0.943 | 0.997 | 0.959 | 0.021 | 0.062 | 0.018 | 0.064 | |
3 | 0.963 | 0.919 | 0.973 | 0.934 | 0.987 | 0.941 | 0.995 | 0.964 | 0.021 | 0.061 | 0.017 | 0.063 | |
4 | 0.965 | 0.925 | 0.969 | 0.931 | 0.987 | 0.945 | 0.995 | 0.958 | 0.021 | 0.060 | 0.017 | 0.062 | |
0.7 | 0 | 0.970 | 0.933 | 0.982 | 0.942 | 0.993 | 0.952 | 0.998 | 0.964 | 0.014 | 0.052 | 0.013 | 0.054 |
1 | 0.966 | 0.915 | 0.987 | 0.926 | 0.992 | 0.939 | 0.994 | 0.942 | 0.015 | 0.070 | 0.013 | 0.070 | |
2 | 0.965 | 0.929 | 0.968 | 0.940 | 0.985 | 0.948 | 0.998 | 0.955 | 0.021 | 0.057 | 0.018 | 0.058 | |
3 | 0.976 | 0.930 | 0.977 | 0.945 | 0.989 | 0.957 | 0.994 | 0.961 | 0.016 | 0.052 | 0.013 | 0.053 | |
4 | 0.982 | 0.922 | 0.986 | 0.936 | 0.989 | 0.951 | 0.998 | 0.963 | 0.011 | 0.057 | 0.009 | 0.059 | |
0.9 | 0 | 0.976 | 0.923 | 0.984 | 0.936 | 0.989 | 0.957 | 0.999 | 0.960 | 0.013 | 0.056 | 0.011 | 0.058 |
1 | 0.964 | 0.932 | 0.981 | 0.936 | 0.982 | 0.955 | 0.992 | 0.961 | 0.020 | 0.054 | 0.016 | 0.055 | |
2 | 0.977 | 0.930 | 0.984 | 0.938 | 0.987 | 0.959 | 1.000 | 0.966 | 0.013 | 0.052 | 0.011 | 0.054 | |
3 | 0.969 | 0.928 | 0.982 | 0.939 | 0.992 | 0.953 | 0.995 | 0.965 | 0.016 | 0.054 | 0.013 | 0.056 | |
4 | 0.972 | 0.926 | 0.990 | 0.945 | 0.991 | 0.963 | 0.993 | 0.968 | 0.014 | 0.050 | 0.011 | 0.052 | |
MAE | 0.025 | 0.027 | 0.022 | 0.017 | 0.013 | 0.017 | 0.010 | 0.011 | |||||
RMSE | 0.042 | 0.046 | 0.030 | 0.020 | 0.011 | 0.016 | 0.006 | 0.008 |
. | . | . | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 . | 200 . | 500 . | 1,000 . | MAE . | RMSE . | ||||||||
. | . | . | . | . | . | . | . | SCCF . | CCF . | SCCF . | CCF . | ||
0.1 | 0 | 0.965 | 0.929 | 0.974 | 0.933 | 0.986 | 0.965 | 0.995 | 0.967 | 0.020 | 0.052 | 0.023 | 0.054 |
1 | 0.974 | 0.915 | 0.986 | 0.924 | 0.990 | 0.941 | 0.993 | 0.956 | 0.014 | 0.066 | 0.016 | 0.068 | |
2 | 0.966 | 0.939 | 0.968 | 0.943 | 0.995 | 0.946 | 0.997 | 0.955 | 0.019 | 0.054 | 0.024 | 0.055 | |
3 | 0.969 | 0.939 | 0.973 | 0.945 | 0.978 | 0.954 | 0.997 | 0.962 | 0.021 | 0.050 | 0.017 | 0.051 | |
4 | 0.972 | 0.927 | 0.980 | 0.933 | 0.985 | 0.949 | 0.994 | 0.959 | 0.017 | 0.058 | 0.013 | 0.059 | |
0.3 | 0 | 0.968 | 0.935 | 0.975 | 0.937 | 0.982 | 0.951 | 0.989 | 0.959 | 0.022 | 0.055 | 0.016 | 0.055 |
1 | 0.973 | 0.936 | 0.981 | 0.947 | 0.991 | 0.956 | 0.992 | 0.961 | 0.016 | 0.050 | 0.012 | 0.051 | |
2 | 0.966 | 0.937 | 0.980 | 0.942 | 0.989 | 0.953 | 0.999 | 0.965 | 0.017 | 0.051 | 0.014 | 0.052 | |
3 | 0.968 | 0.936 | 0.979 | 0.943 | 0.983 | 0.958 | 0.993 | 0.969 | 0.019 | 0.049 | 0.015 | 0.050 | |
4 | 0.960 | 0.935 | 0.982 | 0.936 | 0.987 | 0.961 | 0.992 | 0.969 | 0.020 | 0.050 | 0.016 | 0.052 | |
0.5 | 0 | 0.976 | 0.925 | 0.985 | 0.938 | 0.991 | 0.956 | 0.993 | 0.966 | 0.014 | 0.054 | 0.011 | 0.056 |
1 | 0.970 | 0.929 | 0.983 | 0.934 | 0.990 | 0.941 | 0.990 | 0.956 | 0.017 | 0.060 | 0.013 | 0.061 | |
2 | 0.958 | 0.915 | 0.971 | 0.935 | 0.989 | 0.943 | 0.997 | 0.959 | 0.021 | 0.062 | 0.018 | 0.064 | |
3 | 0.963 | 0.919 | 0.973 | 0.934 | 0.987 | 0.941 | 0.995 | 0.964 | 0.021 | 0.061 | 0.017 | 0.063 | |
4 | 0.965 | 0.925 | 0.969 | 0.931 | 0.987 | 0.945 | 0.995 | 0.958 | 0.021 | 0.060 | 0.017 | 0.062 | |
0.7 | 0 | 0.970 | 0.933 | 0.982 | 0.942 | 0.993 | 0.952 | 0.998 | 0.964 | 0.014 | 0.052 | 0.013 | 0.054 |
1 | 0.966 | 0.915 | 0.987 | 0.926 | 0.992 | 0.939 | 0.994 | 0.942 | 0.015 | 0.070 | 0.013 | 0.070 | |
2 | 0.965 | 0.929 | 0.968 | 0.940 | 0.985 | 0.948 | 0.998 | 0.955 | 0.021 | 0.057 | 0.018 | 0.058 | |
3 | 0.976 | 0.930 | 0.977 | 0.945 | 0.989 | 0.957 | 0.994 | 0.961 | 0.016 | 0.052 | 0.013 | 0.053 | |
4 | 0.982 | 0.922 | 0.986 | 0.936 | 0.989 | 0.951 | 0.998 | 0.963 | 0.011 | 0.057 | 0.009 | 0.059 | |
0.9 | 0 | 0.976 | 0.923 | 0.984 | 0.936 | 0.989 | 0.957 | 0.999 | 0.960 | 0.013 | 0.056 | 0.011 | 0.058 |
1 | 0.964 | 0.932 | 0.981 | 0.936 | 0.982 | 0.955 | 0.992 | 0.961 | 0.020 | 0.054 | 0.016 | 0.055 | |
2 | 0.977 | 0.930 | 0.984 | 0.938 | 0.987 | 0.959 | 1.000 | 0.966 | 0.013 | 0.052 | 0.011 | 0.054 | |
3 | 0.969 | 0.928 | 0.982 | 0.939 | 0.992 | 0.953 | 0.995 | 0.965 | 0.016 | 0.054 | 0.013 | 0.056 | |
4 | 0.972 | 0.926 | 0.990 | 0.945 | 0.991 | 0.963 | 0.993 | 0.968 | 0.014 | 0.050 | 0.011 | 0.052 | |
MAE | 0.025 | 0.027 | 0.022 | 0.017 | 0.013 | 0.017 | 0.010 | 0.011 | |||||
RMSE | 0.042 | 0.046 | 0.030 | 0.020 | 0.011 | 0.016 | 0.006 | 0.008 |
Ability assessment of SCCF using the real data
In this section, the ability of SCCF in practice is investigated by an actual example. For this purpose, the calculated data of RDI in 1, 3, and 12-month time scales were used. The ADF and KPSS tests were used to investigate the stationarity of the datasets. The results of the ADF and KPSS tests verify that the calculated RDI in all time scales were stationary.
Data collection and evaluation
In this research, the humidity data in 1971 at Tabass were estimated using the Fuzzy regression. Based on the results, the time duration of the data series (Based on the Mockus equation) was significantly adequate at all stations (at a 0.99 significant level). The results of the Run-test indicated that all data series at all stations were homogeneous.
Calculated RDI
Normality test of RDI data series
In this study, the Kolmogorov–Smirnov test was used to assess the normality of the calculated RDI in 1, 3, and 12-month time scales. Based on the results of the normality test, the calculated RDI at all stations and all chosen time scales were non-normal at the 0.05 significant level (Table 7). Table 7 shows that in all stations and all time scales, the calculated significance levels for the Kolmogorov–Smirnov were less than 0.05.
Station . | 12-month (Annual) . | 3-month (Seasonal) . | 1-month (monthly) . |
---|---|---|---|
Significant level . | |||
Babolsar | 0.0000 | 0.0000 | 0.0000 |
Bandar Abbas | 0.0000 | 0.0000 | 0.0000 |
Bandar Lengeh | 0.0031 | 0.0000 | 0.0000 |
Birjand | 0.0000 | 0.0000 | 0.0000 |
Chabahar | 0.0000 | 0.0000 | 0.0000 |
Fasa | 0.0000 | 0.0000 | 0.0000 |
Qazvin | 0.0030 | 0.0000 | 0.0000 |
Iran Shahr | 0.0000 | 0.0000 | 0.0000 |
Mashhad | 0.0173 | 0.0000 | 0.0000 |
Oroomieh | 0.0105 | 0.0000 | 0.0000 |
Ramsar | 0.0024 | 0.0000 | 0.0000 |
Semnan | 0.0000 | 0.0000 | 0.0000 |
Shiraz | 0.0000 | 0.0000 | 0.0000 |
Tabass | 0.0002 | 0.0000 | 0.0000 |
Tabriz | 0.0014 | 0.0000 | 0.0000 |
Tehran | 0.0001 | 0.0000 | 0.0000 |
Torbat Hydarieh | 0.0000 | 0.0000 | 0.0000 |
Zabol | 0.0001 | 0.0000 | 0.0000 |
Zahedan | 0.0036 | 0.0000 | 0.0000 |
Zanjan | 0.0000 | 0.0000 | 0.0000 |
Station . | 12-month (Annual) . | 3-month (Seasonal) . | 1-month (monthly) . |
---|---|---|---|
Significant level . | |||
Babolsar | 0.0000 | 0.0000 | 0.0000 |
Bandar Abbas | 0.0000 | 0.0000 | 0.0000 |
Bandar Lengeh | 0.0031 | 0.0000 | 0.0000 |
Birjand | 0.0000 | 0.0000 | 0.0000 |
Chabahar | 0.0000 | 0.0000 | 0.0000 |
Fasa | 0.0000 | 0.0000 | 0.0000 |
Qazvin | 0.0030 | 0.0000 | 0.0000 |
Iran Shahr | 0.0000 | 0.0000 | 0.0000 |
Mashhad | 0.0173 | 0.0000 | 0.0000 |
Oroomieh | 0.0105 | 0.0000 | 0.0000 |
Ramsar | 0.0024 | 0.0000 | 0.0000 |
Semnan | 0.0000 | 0.0000 | 0.0000 |
Shiraz | 0.0000 | 0.0000 | 0.0000 |
Tabass | 0.0002 | 0.0000 | 0.0000 |
Tabriz | 0.0014 | 0.0000 | 0.0000 |
Tehran | 0.0001 | 0.0000 | 0.0000 |
Torbat Hydarieh | 0.0000 | 0.0000 | 0.0000 |
Zabol | 0.0001 | 0.0000 | 0.0000 |
Zahedan | 0.0036 | 0.0000 | 0.0000 |
Zanjan | 0.0000 | 0.0000 | 0.0000 |
Note: Calculated RDI data series at all station and all time scales were non-normal.
SCCF ability assessment
To assess the ability of SCCF using the actual RDI data in 1, 3, and 12-month time scales at first, 15 groups of meteorological stations were defined; 10 out of 15 groups included two stations with short spatial distance, and 5 out of 15 groups included two stations with long spatial distance. Groups with short spatial distance, including group 1 including Fasa and Shiraz stations, group 2 including Zabol and Zahedan stations, group 3 including Bandar Abass and Bandar Lenge stations, group 4 including Oroomieh and Tabriz stations, group 5 including Ramsar and Babolsar stations, group 6 including Birjand and Tabass stations, group 7 including Torbat Hydarieh and Mashhad stations, group 8 including Iran Shahr and Chabahar stations, group 9 including Qazvin and Zanjan stations, and group 10 including Semnan, and Tehran stations and groups with long spatial distance including group 11 including Fasa and Tabriz stations, group 12 including Qazvin and Zahedan stations, group 13 including Bandar Abass and Mashhad stations, group 14 including Oroomieh, and Shiraz stations, and group 15 including Chabahar and Semnan stations. Then the SCCF between the RDI values of two stations in each group at different time scales in 21 lags, including 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, −1, −2, −3, −4, −5, −6, −7, −8, −9, and −10 were estimated. It is expected that, if the SCCF had good ability, the result of SCCF between stations with short spatial distance does not reveal delay time in drought occurrence. In stations with long spatial distances, this result should be reversed.
. | SCCF . | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Lags . | Group 1 . | Group 2 . | Group 3 . | Group 4 . | Group 5 . | Group 6 . | Group 7 . | Group 8 . | Group 9 . | Group 10 . |
−10 | 0.0005 | 0.1049 | − 0.0202 | 0.2995 | − 0.0403 | 0.1082 | 0.1234 | − 0.1101 | 0.1185 | − 0.1329 |
−9 | − 0.0307 | 0.0443 | − 0.0065 | 0.2463 | 0.1416 | − 0.1320 | − 0.0497 | − 0.2020 | − 0.0040 | − 0.0858 |
−8 | − 0.1168 | 0.2533 | − 0.0339 | 0.3018 | − 0.1088 | − 0.0138 | 0.0601 | − 0.0543 | 0.0160 | − 0.0364 |
−7 | 0.0803 | 0.1000 | 0.0288 | 0.1830 | − 0.0510 | 0.0815 | 0.1339 | 0.1147 | − 0.0714 | − 0.0528 |
−6 | 0.0245 | 0.1347 | 0.0004 | 0.1420 | 0.0950 | 0.0186 | 0.2456 | − 0.0553 | 0.0411 | − 0.0900 |
−5 | 0.0035 | 0.0029 | 0.0869 | 0.2460 | − 0.0505 | 0.1119 | 0.2367 | 0.0023 | − 0.1538 | 0.1058 |
−4 | 0.0702 | 0.0819 | 0.0649 | 0.1850 | 0.1297 | − 0.0557 | 0.0347 | 0.1344 | − 0.2147 | 0.0852 |
−3 | 0.0121 | − 0.1011 | 0.1224 | 0.1245 | − 0.0456 | 0.1338 | 0.1384 | 0.0419 | − 0.0503 | 0.1009 |
−2 | 0.0951 | 0.0476 | 0.2386 | 0.1611 | − 0.1913 | 0.0019 | 0.0581 | 0.3827 | − 0.2104 | 0.1566 |
−1 | − 0.1325 | 0.1336 | 0.0397 | 0.3220 | 0.0918 | 0.2396 | 0.1591 | 0.1876 | − 0.0391 | − 0.1055 |
0 | 0.4297 | 0.5673 | 0.8729 | 0.7821 | 0.3120 | 0.6616 | 0.6968 | 0.3965 | 0.5961 | 0.6890 |
1 | − 0.1149 | 0.1047 | 0.0931 | 0.2272 | 0.1486 | 0.0794 | 0.1338 | − 0.0817 | − 0.0275 | − 0.1269 |
2 | − 0.0568 | 0.1947 | 0.1702 | 0.2074 | 0.0631 | 0.1151 | 0.1174 | 0.0856 | 0.0948 | 0.1294 |
3 | − 0.0810 | − 0.0547 | 0.1493 | − 0.0521 | − 0.0767 | 0.1301 | − 0.1865 | − 0.0649 | 0.0127 | 0.2378 |
4 | − 0.0623 | − 0.0093 | 0.0224 | 0.0975 | 0.1113 | 0.1562 | 0.1326 | − 0.1634 | − 0.0374 | 0.0781 |
5 | − 0.3050 | − 0.0793 | 0.0945 | 0.2404 | 0.2806 | 0.1541 | 0.1126 | − 0.1559 | − 0.0812 | 0.3509 |
6 | − 0.0113 | 0.0185 | 0.0130 | − 0.0191 | 0.0144 | 0.0058 | 0.1522 | − 0.1215 | − 0.1526 | 0.0177 |
7 | − 0.1435 | − 0.1232 | − 0.0400 | 0.1418 | − 0.1067 | 0.1551 | 0.2771 | − 0.2987 | − 0.0980 | 0.1085 |
8 | 0.0107 | − 0.1440 | 0.0628 | 0.0439 | 0.1732 | − 0.1410 | − 0.1135 | − 0.1076 | − 0.1564 | 0.1201 |
9 | − 0.1781 | − 0.1499 | − 0.0630 | 0.1401 | 0.0102 | 0.2065 | − 0.0261 | − 0.0937 | 0.0450 | − 0.1033 |
10 | 0.1346 | 0.0691 | − 0.0632 | 0.2079 | 0.2402 | 0.0120 | 0.0588 | − 0.1474 | 0.0529 | 0.0882 |
. | SCCF . | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Lags . | Group 1 . | Group 2 . | Group 3 . | Group 4 . | Group 5 . | Group 6 . | Group 7 . | Group 8 . | Group 9 . | Group 10 . |
−10 | 0.0005 | 0.1049 | − 0.0202 | 0.2995 | − 0.0403 | 0.1082 | 0.1234 | − 0.1101 | 0.1185 | − 0.1329 |
−9 | − 0.0307 | 0.0443 | − 0.0065 | 0.2463 | 0.1416 | − 0.1320 | − 0.0497 | − 0.2020 | − 0.0040 | − 0.0858 |
−8 | − 0.1168 | 0.2533 | − 0.0339 | 0.3018 | − 0.1088 | − 0.0138 | 0.0601 | − 0.0543 | 0.0160 | − 0.0364 |
−7 | 0.0803 | 0.1000 | 0.0288 | 0.1830 | − 0.0510 | 0.0815 | 0.1339 | 0.1147 | − 0.0714 | − 0.0528 |
−6 | 0.0245 | 0.1347 | 0.0004 | 0.1420 | 0.0950 | 0.0186 | 0.2456 | − 0.0553 | 0.0411 | − 0.0900 |
−5 | 0.0035 | 0.0029 | 0.0869 | 0.2460 | − 0.0505 | 0.1119 | 0.2367 | 0.0023 | − 0.1538 | 0.1058 |
−4 | 0.0702 | 0.0819 | 0.0649 | 0.1850 | 0.1297 | − 0.0557 | 0.0347 | 0.1344 | − 0.2147 | 0.0852 |
−3 | 0.0121 | − 0.1011 | 0.1224 | 0.1245 | − 0.0456 | 0.1338 | 0.1384 | 0.0419 | − 0.0503 | 0.1009 |
−2 | 0.0951 | 0.0476 | 0.2386 | 0.1611 | − 0.1913 | 0.0019 | 0.0581 | 0.3827 | − 0.2104 | 0.1566 |
−1 | − 0.1325 | 0.1336 | 0.0397 | 0.3220 | 0.0918 | 0.2396 | 0.1591 | 0.1876 | − 0.0391 | − 0.1055 |
0 | 0.4297 | 0.5673 | 0.8729 | 0.7821 | 0.3120 | 0.6616 | 0.6968 | 0.3965 | 0.5961 | 0.6890 |
1 | − 0.1149 | 0.1047 | 0.0931 | 0.2272 | 0.1486 | 0.0794 | 0.1338 | − 0.0817 | − 0.0275 | − 0.1269 |
2 | − 0.0568 | 0.1947 | 0.1702 | 0.2074 | 0.0631 | 0.1151 | 0.1174 | 0.0856 | 0.0948 | 0.1294 |
3 | − 0.0810 | − 0.0547 | 0.1493 | − 0.0521 | − 0.0767 | 0.1301 | − 0.1865 | − 0.0649 | 0.0127 | 0.2378 |
4 | − 0.0623 | − 0.0093 | 0.0224 | 0.0975 | 0.1113 | 0.1562 | 0.1326 | − 0.1634 | − 0.0374 | 0.0781 |
5 | − 0.3050 | − 0.0793 | 0.0945 | 0.2404 | 0.2806 | 0.1541 | 0.1126 | − 0.1559 | − 0.0812 | 0.3509 |
6 | − 0.0113 | 0.0185 | 0.0130 | − 0.0191 | 0.0144 | 0.0058 | 0.1522 | − 0.1215 | − 0.1526 | 0.0177 |
7 | − 0.1435 | − 0.1232 | − 0.0400 | 0.1418 | − 0.1067 | 0.1551 | 0.2771 | − 0.2987 | − 0.0980 | 0.1085 |
8 | 0.0107 | − 0.1440 | 0.0628 | 0.0439 | 0.1732 | − 0.1410 | − 0.1135 | − 0.1076 | − 0.1564 | 0.1201 |
9 | − 0.1781 | − 0.1499 | − 0.0630 | 0.1401 | 0.0102 | 0.2065 | − 0.0261 | − 0.0937 | 0.0450 | − 0.1033 |
10 | 0.1346 | 0.0691 | − 0.0632 | 0.2079 | 0.2402 | 0.0120 | 0.0588 | − 0.1474 | 0.0529 | 0.0882 |
Note: Each group includes two adjacent stations (with low spatial distance). Group1 including Fasa and Shiraz stations, group 2 including Zabol and Zahedan stations, group 3 including Bandar Abass and Bandar Lenge stations, group 4 including Oroomieh and Tabriz stations, group 5 including Ramsar and Babolsar stations, group 6 including Birjand and Tabass stations, group 7 including Torbat Hydarieh and Mashhad stations, group 8 including Iran Shahr and Chabahar stations, group 9 including Qazvin and Zanjan stations, and group 10 including Semnan and Tehran stations.
Bold characters are the maximum values of SCCF.
. | SCCF . | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Lags . | Group 1 . | Group 2 . | Group 3 . | Group 4 . | Group 5 . | Group 6 . | Group 7 . | Group 8 . | Group 9 . | Group 10 . |
−10 | − 0.7360 | − 0.5862 | − 0.5520 | − 0.5898 | − 0.7800 | − 0.7278 | − 0.7676 | − 0.1937 | − 0.7275 | − 0.7269 |
−9 | 0.0428 | − 0.0306 | 0.0245 | − 0.0367 | 0.0203 | 0.1093 | 0.0059 | 0.0540 | 0.0208 | 0.0140 |
−8 | 0.7475 | 0.6389 | 0.6299 | 0.7129 | 0.7749 | 0.7444 | 0.7919 | 0.3915 | 0.7744 | 0.7251 |
−7 | 0.0064 | 0.1026 | 0.0165 | − 0.0076 | − 0.0143 | − 0.0658 | 0.0204 | − 0.1182 | − 0.0625 | − 0.0186 |
−6 | − 0.7424 | − 0.6635 | − 0.5639 | − 0.5768 | − 0.7684 | − 0.7906 | − 0.8059 | − 0.1550 | − 0.7396 | − 0.7229 |
−5 | 0.0285 | − 0.0414 | 0.0254 | − 0.0286 | 0.0017 | 0.1055 | − 0.0289 | 0.0354 | 0.0064 | − 0.0017 |
−4 | 0.7411 | 0.5975 | 0.5693 | 0.7520 | 0.8005 | 0.7605 | 0.8108 | 0.4160 | 0.7891 | 0.7336 |
−3 | − 0.0202 | 0.0714 | − 0.0103 | 0.0170 | − 0.0143 | − 0.0637 | 0.0263 | − 0.0786 | − 0.0672 | − 0.0190 |
−2 | − 0.7467 | − 0.6046 | − 0.5533 | − 0.6234 | − 0.8023 | − 0.7444 | − 0.8016 | − 0.2052 | − 0.7405 | − 0.7378 |
−1 | 0.0221 | − 0.0688 | 0.0162 | − 0.0216 | 0.0090 | 0.1165 | − 0.0066 | 0.0448 | 0.0006 | 0.0341 |
0 | 0.9505 | 0.8668 | 0.8959 | 0.9163 | 0.9015 | 0.9076 | 0.9490 | 0.5419 | 0.9252 | 0.8977 |
1 | − 0.0236 | 0.0889 | − 0.0238 | − 0.0179 | − 0.0304 | − 0.0817 | 0.0262 | − 0.1146 | − 0.0557 | − 0.0177 |
2 | − 0.7374 | − 0.5869 | − 0.5790 | − 0.6108 | − 0.7950 | − 0.7444 | − 0.7889 | − 0.2621 | − 0.7396 | − 0.7409 |
3 | 0.0480 | − 0.0567 | 0.0439 | − 0.0411 | 0.0408 | 0.0882 | − 0.0097 | − 0.0610 | 0.0025 | 0.0382 |
4 | 0.7322 | 0.6167 | 0.5979 | 0.7450 | 0.8178 | 0.7583 | 0.8053 | 0.4519 | 0.7819 | 0.7545 |
5 | − 0.0014 | 0.0824 | − 0.0004 | − 0.0233 | − 0.0298 | − 0.0695 | 0.0090 | − 0.1389 | − 0.0708 | − 0.0322 |
6 | − 0.7539 | − 0.6606 | − 0.6218 | − 0.5967 | − 0.7882 | − 0.7896 | − 0.8002 | − 0.2217 | − 0.7376 | − 0.7245 |
7 | 0.0217 | − 0.0571 | − 0.0059 | − 0.0395 | 0.0311 | 0.1028 | − 0.0026 | 0.0019 | 0.0165 | 0.0491 |
8 | 0.7188 | 0.6764 | 0.6377 | 0.7331 | 0.7883 | 0.7473 | 0.7849 | 0.3762 | 0.7847 | 0.7572 |
9 | − 0.0218 | 0.0764 | − 0.0244 | − 0.0027 | − 0.0280 | − 0.0881 | 0.0427 | − 0.1812 | − 0.0440 | − 0.0159 |
10 | − 0.7299 | − 0.5909 | − 0.5938 | − 0.6077 | − 0.7710 | − 0.7414 | − 0.7600 | − 0.2742 | − 0.7053 | − 0.7073 |
. | SCCF . | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Lags . | Group 1 . | Group 2 . | Group 3 . | Group 4 . | Group 5 . | Group 6 . | Group 7 . | Group 8 . | Group 9 . | Group 10 . |
−10 | − 0.7360 | − 0.5862 | − 0.5520 | − 0.5898 | − 0.7800 | − 0.7278 | − 0.7676 | − 0.1937 | − 0.7275 | − 0.7269 |
−9 | 0.0428 | − 0.0306 | 0.0245 | − 0.0367 | 0.0203 | 0.1093 | 0.0059 | 0.0540 | 0.0208 | 0.0140 |
−8 | 0.7475 | 0.6389 | 0.6299 | 0.7129 | 0.7749 | 0.7444 | 0.7919 | 0.3915 | 0.7744 | 0.7251 |
−7 | 0.0064 | 0.1026 | 0.0165 | − 0.0076 | − 0.0143 | − 0.0658 | 0.0204 | − 0.1182 | − 0.0625 | − 0.0186 |
−6 | − 0.7424 | − 0.6635 | − 0.5639 | − 0.5768 | − 0.7684 | − 0.7906 | − 0.8059 | − 0.1550 | − 0.7396 | − 0.7229 |
−5 | 0.0285 | − 0.0414 | 0.0254 | − 0.0286 | 0.0017 | 0.1055 | − 0.0289 | 0.0354 | 0.0064 | − 0.0017 |
−4 | 0.7411 | 0.5975 | 0.5693 | 0.7520 | 0.8005 | 0.7605 | 0.8108 | 0.4160 | 0.7891 | 0.7336 |
−3 | − 0.0202 | 0.0714 | − 0.0103 | 0.0170 | − 0.0143 | − 0.0637 | 0.0263 | − 0.0786 | − 0.0672 | − 0.0190 |
−2 | − 0.7467 | − 0.6046 | − 0.5533 | − 0.6234 | − 0.8023 | − 0.7444 | − 0.8016 | − 0.2052 | − 0.7405 | − 0.7378 |
−1 | 0.0221 | − 0.0688 | 0.0162 | − 0.0216 | 0.0090 | 0.1165 | − 0.0066 | 0.0448 | 0.0006 | 0.0341 |
0 | 0.9505 | 0.8668 | 0.8959 | 0.9163 | 0.9015 | 0.9076 | 0.9490 | 0.5419 | 0.9252 | 0.8977 |
1 | − 0.0236 | 0.0889 | − 0.0238 | − 0.0179 | − 0.0304 | − 0.0817 | 0.0262 | − 0.1146 | − 0.0557 | − 0.0177 |
2 | − 0.7374 | − 0.5869 | − 0.5790 | − 0.6108 | − 0.7950 | − 0.7444 | − 0.7889 | − 0.2621 | − 0.7396 | − 0.7409 |
3 | 0.0480 | − 0.0567 | 0.0439 | − 0.0411 | 0.0408 | 0.0882 | − 0.0097 | − 0.0610 | 0.0025 | 0.0382 |
4 | 0.7322 | 0.6167 | 0.5979 | 0.7450 | 0.8178 | 0.7583 | 0.8053 | 0.4519 | 0.7819 | 0.7545 |
5 | − 0.0014 | 0.0824 | − 0.0004 | − 0.0233 | − 0.0298 | − 0.0695 | 0.0090 | − 0.1389 | − 0.0708 | − 0.0322 |
6 | − 0.7539 | − 0.6606 | − 0.6218 | − 0.5967 | − 0.7882 | − 0.7896 | − 0.8002 | − 0.2217 | − 0.7376 | − 0.7245 |
7 | 0.0217 | − 0.0571 | − 0.0059 | − 0.0395 | 0.0311 | 0.1028 | − 0.0026 | 0.0019 | 0.0165 | 0.0491 |
8 | 0.7188 | 0.6764 | 0.6377 | 0.7331 | 0.7883 | 0.7473 | 0.7849 | 0.3762 | 0.7847 | 0.7572 |
9 | − 0.0218 | 0.0764 | − 0.0244 | − 0.0027 | − 0.0280 | − 0.0881 | 0.0427 | − 0.1812 | − 0.0440 | − 0.0159 |
10 | − 0.7299 | − 0.5909 | − 0.5938 | − 0.6077 | − 0.7710 | − 0.7414 | − 0.7600 | − 0.2742 | − 0.7053 | − 0.7073 |
Note: Bold characters are the maximum values of SCCF.
. | SCCF . | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Lags . | Group 1 . | Group 2 . | Group 3 . | Group 4 . | Group 5 . | Group 6 . | Group 7 . | Group 8 . | Group 9 . | Group 10 . |
−10 | 0.2455 | 0.2711 | 0.1482 | 0.2984 | 0.3444 | 0.2795 | 0.3243 | − 0.0039 | 0.2846 | 0.2648 |
−9 | − 0.0538 | 0.0363 | − 0.0351 | − 0.0438 | 0.0422 | − 0.0281 | − 0.0025 | − 0.1307 | − 0.0720 | − 0.0203 |
−8 | − 0.3405 | − 0.1914 | − 0.2239 | − 0.2744 | − 0.2814 | − 0.3596 | − 0.3362 | − 0.1850 | − 0.3819 | − 0.3327 |
−7 | − 0.5113 | − 0.3451 | − 0.3167 | − 0.4641 | − 0.5212 | − 0.5729 | − 0.6202 | − 0.1233 | − 0.5841 | − 0.5384 |
−6 | − 0.5922 | − 0.4408 | − 0.3648 | − 0.5205 | − 0.6452 | − 0.6372 | − 0.7029 | − 0.1153 | − 0.6520 | − 0.6144 |
−5 | − 0.5233 | − 0.4117 | − 0.3365 | − 0.4947 | − 0.5760 | − 0.5525 | − 0.6105 | − 0.1083 | − 0.5694 | − 0.5324 |
−4 | − 0.2904 | − 0.2892 | − 0.2101 | − 0.3397 | − 0.3360 | − 0.3055 | − 0.3594 | − 0.1211 | − 0.3441 | − 0.3173 |
−3 | − 0.0044 | − 0.0807 | − 0.0494 | − 0.0610 | − 0.0358 | 0.0326 | 0.0041 | − 0.0028 | − 0.0120 | 0.0077 |
−2 | 0.2970 | 0.2140 | 0.2024 | 0.2996 | 0.2577 | 0.3687 | 0.3519 | 0.1595 | 0.3395 | 0.3459 |
−1 | 0.5965 | 0.4368 | 0.4275 | 0.5758 | 0.5294 | 0.6599 | 0.6640 | 0.3338 | 0.6497 | 0.6084 |
0 | 0.9405 | 0.7992 | 0.8767 | 0.8846 | 0.8016 | 0.8669 | 0.9152 | 0.4048 | 0.8983 | 0.8636 |
1 | 0.5642 | 0.4710 | 0.4132 | 0.5697 | 0.5667 | 0.5789 | 0.6487 | 0.2020 | 0.6126 | 0.5763 |
2 | 0.2604 | 0.2969 | 0.1866 | 0.2979 | 0.3577 | 0.2971 | 0.3625 | − 0.0122 | 0.3081 | 0.2959 |
3 | − 0.0476 | 0.0390 | − 0.0687 | − 0.0288 | 0.0158 | − 0.0533 | 0.0060 | − 0.1788 | − 0.0451 | − 0.0056 |
4 | − 0.3178 | − 0.1742 | − 0.2180 | − 0.3092 | − 0.2859 | − 0.3335 | − 0.3357 | − 0.2182 | − 0.3936 | − 0.3454 |
5 | − 0.5251 | − 0.3427 | − 0.3261 | − 0.4508 | − 0.5190 | − 0.5679 | − 0.5997 | − 0.1423 | − 0.5915 | − 0.5636 |
6 | − 0.5927 | − 0.4490 | − 0.3737 | − 0.5216 | − 0.6382 | − 0.6390 | − 0.6887 | − 0.1275 | − 0.6539 | − 0.6272 |
7 | − 0.5166 | − 0.3871 | − 0.3354 | − 0.5066 | − 0.5470 | − 0.5658 | − 0.6158 | − 0.1267 | − 0.5627 | − 0.5230 |
8 | − 0.3194 | − 0.2830 | − 0.2047 | − 0.3260 | − 0.3336 | − 0.3129 | − 0.3477 | − 0.1226 | − 0.3368 | − 0.3145 |
9 | 0.0017 | − 0.0434 | 0.0181 | − 0.0749 | − 0.0359 | 0.0180 | − 0.0140 | − 0.0715 | − 0.0184 | − 0.0206 |
10 | 0.3037 | 0.1686 | 0.2092 | 0.2455 | 0.2809 | 0.3405 | 0.3371 | 0.1136 | 0.3367 | 0.3182 |
. | SCCF . | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Lags . | Group 1 . | Group 2 . | Group 3 . | Group 4 . | Group 5 . | Group 6 . | Group 7 . | Group 8 . | Group 9 . | Group 10 . |
−10 | 0.2455 | 0.2711 | 0.1482 | 0.2984 | 0.3444 | 0.2795 | 0.3243 | − 0.0039 | 0.2846 | 0.2648 |
−9 | − 0.0538 | 0.0363 | − 0.0351 | − 0.0438 | 0.0422 | − 0.0281 | − 0.0025 | − 0.1307 | − 0.0720 | − 0.0203 |
−8 | − 0.3405 | − 0.1914 | − 0.2239 | − 0.2744 | − 0.2814 | − 0.3596 | − 0.3362 | − 0.1850 | − 0.3819 | − 0.3327 |
−7 | − 0.5113 | − 0.3451 | − 0.3167 | − 0.4641 | − 0.5212 | − 0.5729 | − 0.6202 | − 0.1233 | − 0.5841 | − 0.5384 |
−6 | − 0.5922 | − 0.4408 | − 0.3648 | − 0.5205 | − 0.6452 | − 0.6372 | − 0.7029 | − 0.1153 | − 0.6520 | − 0.6144 |
−5 | − 0.5233 | − 0.4117 | − 0.3365 | − 0.4947 | − 0.5760 | − 0.5525 | − 0.6105 | − 0.1083 | − 0.5694 | − 0.5324 |
−4 | − 0.2904 | − 0.2892 | − 0.2101 | − 0.3397 | − 0.3360 | − 0.3055 | − 0.3594 | − 0.1211 | − 0.3441 | − 0.3173 |
−3 | − 0.0044 | − 0.0807 | − 0.0494 | − 0.0610 | − 0.0358 | 0.0326 | 0.0041 | − 0.0028 | − 0.0120 | 0.0077 |
−2 | 0.2970 | 0.2140 | 0.2024 | 0.2996 | 0.2577 | 0.3687 | 0.3519 | 0.1595 | 0.3395 | 0.3459 |
−1 | 0.5965 | 0.4368 | 0.4275 | 0.5758 | 0.5294 | 0.6599 | 0.6640 | 0.3338 | 0.6497 | 0.6084 |
0 | 0.9405 | 0.7992 | 0.8767 | 0.8846 | 0.8016 | 0.8669 | 0.9152 | 0.4048 | 0.8983 | 0.8636 |
1 | 0.5642 | 0.4710 | 0.4132 | 0.5697 | 0.5667 | 0.5789 | 0.6487 | 0.2020 | 0.6126 | 0.5763 |
2 | 0.2604 | 0.2969 | 0.1866 | 0.2979 | 0.3577 | 0.2971 | 0.3625 | − 0.0122 | 0.3081 | 0.2959 |
3 | − 0.0476 | 0.0390 | − 0.0687 | − 0.0288 | 0.0158 | − 0.0533 | 0.0060 | − 0.1788 | − 0.0451 | − 0.0056 |
4 | − 0.3178 | − 0.1742 | − 0.2180 | − 0.3092 | − 0.2859 | − 0.3335 | − 0.3357 | − 0.2182 | − 0.3936 | − 0.3454 |
5 | − 0.5251 | − 0.3427 | − 0.3261 | − 0.4508 | − 0.5190 | − 0.5679 | − 0.5997 | − 0.1423 | − 0.5915 | − 0.5636 |
6 | − 0.5927 | − 0.4490 | − 0.3737 | − 0.5216 | − 0.6382 | − 0.6390 | − 0.6887 | − 0.1275 | − 0.6539 | − 0.6272 |
7 | − 0.5166 | − 0.3871 | − 0.3354 | − 0.5066 | − 0.5470 | − 0.5658 | − 0.6158 | − 0.1267 | − 0.5627 | − 0.5230 |
8 | − 0.3194 | − 0.2830 | − 0.2047 | − 0.3260 | − 0.3336 | − 0.3129 | − 0.3477 | − 0.1226 | − 0.3368 | − 0.3145 |
9 | 0.0017 | − 0.0434 | 0.0181 | − 0.0749 | − 0.0359 | 0.0180 | − 0.0140 | − 0.0715 | − 0.0184 | − 0.0206 |
10 | 0.3037 | 0.1686 | 0.2092 | 0.2455 | 0.2809 | 0.3405 | 0.3371 | 0.1136 | 0.3367 | 0.3182 |
Note: Bold characters are the maximum values of SCCF.
. | SCCF . | ||||
---|---|---|---|---|---|
Lags . | Group 11 . | Group 12 . | Group 13 . | Group 14 . | Group 15 . |
−10 | − 0.0668 | 0.0276 | 0.3513 | − 0.0221 | 0.1147 |
−9 | − 0.2115 | − 0.2205 | 0.0486 | − 0.1589 | − 0.0097 |
−8 | − 0.2520 | 0.0413 | 0.1312 | − 0.0187 | − 0.1709 |
−7 | − 0.2186 | 0.0551 | 0.1971 | 0.0335 | − 0.1040 |
−6 | − 0.3258 | 0.0734 | 0.0479 | − 0.0526 | − 0.1118 |
−5 | − 0.2457 | − 0.0065 | 0.3010 | − 0.0851 | − 0.1078 |
−4 | − 0.1856 | − 0.2342 | 0.1299 | − 0.3455 | − 0.1568 |
−3 | − 0.3329 | 0.0059 | 0.1595 | − 0.1185 | − 0.0834 |
−2 | − 0.3511 | 0.0937 | 0.1868 | 0.1633 | 0.0147 |
−1 | − 0.3277 | 0.1091 | 0.0972 | 0.0164 | 0.0174 |
0 | − 0.1373 | 0.1957 | 0.3486 | 0.2586 | 0.1058 |
1 | − 0.3702 | − 0.1639 | 0.0564 | 0.1563 | 0.1180 |
2 | − 0.2430 | 0.1877 | 0.1703 | 0.1126 | 0.1327 |
3 | − 0.3586 | 0.1930 | 0.0422 | 0.0409 | 0.0270 |
4 | − 0.4308 | − 0.0142 | 0.1813 | − 0.2206 | 0.2030 |
5 | − 0.2828 | − 0.0188 | 0.0194 | − 0.0577 | 0.0093 |
6 | − 0.2104 | 0.0440 | 0.0994 | − 0.0033 | 0.0233 |
7 | − 0.2756 | − 0.1147 | 0.0860 | − 0.0030 | 0.1517 |
8 | − 0.1661 | 0.0094 | − 0.1831 | 0.0772 | − 0.0103 |
9 | − 0.2960 | − 0.0145 | 0.0470 | 0.1980 | − 0.0270 |
10 | − 0.1275 | − 0.0410 | 0.3056 | 0.3418 | − 0.0342 |
. | SCCF . | ||||
---|---|---|---|---|---|
Lags . | Group 11 . | Group 12 . | Group 13 . | Group 14 . | Group 15 . |
−10 | − 0.0668 | 0.0276 | 0.3513 | − 0.0221 | 0.1147 |
−9 | − 0.2115 | − 0.2205 | 0.0486 | − 0.1589 | − 0.0097 |
−8 | − 0.2520 | 0.0413 | 0.1312 | − 0.0187 | − 0.1709 |
−7 | − 0.2186 | 0.0551 | 0.1971 | 0.0335 | − 0.1040 |
−6 | − 0.3258 | 0.0734 | 0.0479 | − 0.0526 | − 0.1118 |
−5 | − 0.2457 | − 0.0065 | 0.3010 | − 0.0851 | − 0.1078 |
−4 | − 0.1856 | − 0.2342 | 0.1299 | − 0.3455 | − 0.1568 |
−3 | − 0.3329 | 0.0059 | 0.1595 | − 0.1185 | − 0.0834 |
−2 | − 0.3511 | 0.0937 | 0.1868 | 0.1633 | 0.0147 |
−1 | − 0.3277 | 0.1091 | 0.0972 | 0.0164 | 0.0174 |
0 | − 0.1373 | 0.1957 | 0.3486 | 0.2586 | 0.1058 |
1 | − 0.3702 | − 0.1639 | 0.0564 | 0.1563 | 0.1180 |
2 | − 0.2430 | 0.1877 | 0.1703 | 0.1126 | 0.1327 |
3 | − 0.3586 | 0.1930 | 0.0422 | 0.0409 | 0.0270 |
4 | − 0.4308 | − 0.0142 | 0.1813 | − 0.2206 | 0.2030 |
5 | − 0.2828 | − 0.0188 | 0.0194 | − 0.0577 | 0.0093 |
6 | − 0.2104 | 0.0440 | 0.0994 | − 0.0033 | 0.0233 |
7 | − 0.2756 | − 0.1147 | 0.0860 | − 0.0030 | 0.1517 |
8 | − 0.1661 | 0.0094 | − 0.1831 | 0.0772 | − 0.0103 |
9 | − 0.2960 | − 0.0145 | 0.0470 | 0.1980 | − 0.0270 |
10 | − 0.1275 | − 0.0410 | 0.3056 | 0.3418 | − 0.0342 |
Note: Each group is including two stations with high spatial distance. Group 11 including Fasa and Tabriz stations, group 12 including Qazvin and Zahedan stations, group 13 including Bandar Abass and Mashhad stations, group 14 including Oroomieh and Shiraz stations, and group 15 including Chabahar and Semnan stations.
Bold characters are the maximum values of SCCF (based on the absolute value).
. | SCCF . | ||||
---|---|---|---|---|---|
Lags . | Group 11 . | Group 12 . | Group 13 . | Group 14 . | Group 15 . |
−10 | − 0.6587 | − 0.6653 | − 0.6882 | − 0.7068 | − 0.5130 |
−9 | 0.0231 | − 0.1244 | − 0.0429 | − 0.0047 | 0.0527 |
−8 | 0.6732 | 0.6756 | 0.6798 | 0.7336 | 0.4814 |
−7 | 0.0189 | 0.1608 | 0.1180 | 0.0072 | − 0.0003 |
−6 | − 0.6802 | − 0.6716 | − 0.6912 | − 0.7085 | − 0.5640 |
−5 | 0.0032 | − 0.1588 | − 0.1003 | 0.0024 | 0.0274 |
−4 | 0.7140 | 0.6122 | 0.7765 | 0.7373 | 0.4655 |
−3 | 0.0101 | 0.1682 | 0.1330 | − 0.0059 | 0.0188 |
−2 | − 0.7026 | − 0.7639 | − 0.6776 | − 0.6980 | − 0.5108 |
−1 | 0.0241 | − 0.1581 | − 0.0793 | − 0.0108 | 0.0666 |
0 | 0.7464 | 0.7336 | 0.7890 | 0.7350 | 0.4345 |
1 | 0.0278 | 0.1641 | 0.1450 | − 0.0002 | 0.0341 |
2 | − 0.6801 | − 0.7962 | − 0.6802 | − 0.7203 | − 0.4757 |
3 | − 0.0166 | − 0.1551 | − 0.0979 | − 0.0044 | 0.0695 |
4 | 0.6847 | 0.6726 | 0.7927 | 0.7607 | 0.5271 |
5 | 0.0109 | 0.1535 | 0.1258 | − 0.0199 | − 0.0047 |
6 | − 0.6849 | − 0.6901 | − 0.6816 | − 0.7023 | − 0.5107 |
7 | 0.0381 | − 0.1251 | − 0.1000 | − 0.0096 | 0.0235 |
8 | 0.7002 | 0.6572 | 0.6726 | 0.7299 | 0.4743 |
9 | 0.0312 | 0.1656 | 0.1488 | 0.0118 | 0.0487 |
10 | − 0.6873 | − 0.6308 | − 0.6594 | − 0.6777 | − 0.4542 |
. | SCCF . | ||||
---|---|---|---|---|---|
Lags . | Group 11 . | Group 12 . | Group 13 . | Group 14 . | Group 15 . |
−10 | − 0.6587 | − 0.6653 | − 0.6882 | − 0.7068 | − 0.5130 |
−9 | 0.0231 | − 0.1244 | − 0.0429 | − 0.0047 | 0.0527 |
−8 | 0.6732 | 0.6756 | 0.6798 | 0.7336 | 0.4814 |
−7 | 0.0189 | 0.1608 | 0.1180 | 0.0072 | − 0.0003 |
−6 | − 0.6802 | − 0.6716 | − 0.6912 | − 0.7085 | − 0.5640 |
−5 | 0.0032 | − 0.1588 | − 0.1003 | 0.0024 | 0.0274 |
−4 | 0.7140 | 0.6122 | 0.7765 | 0.7373 | 0.4655 |
−3 | 0.0101 | 0.1682 | 0.1330 | − 0.0059 | 0.0188 |
−2 | − 0.7026 | − 0.7639 | − 0.6776 | − 0.6980 | − 0.5108 |
−1 | 0.0241 | − 0.1581 | − 0.0793 | − 0.0108 | 0.0666 |
0 | 0.7464 | 0.7336 | 0.7890 | 0.7350 | 0.4345 |
1 | 0.0278 | 0.1641 | 0.1450 | − 0.0002 | 0.0341 |
2 | − 0.6801 | − 0.7962 | − 0.6802 | − 0.7203 | − 0.4757 |
3 | − 0.0166 | − 0.1551 | − 0.0979 | − 0.0044 | 0.0695 |
4 | 0.6847 | 0.6726 | 0.7927 | 0.7607 | 0.5271 |
5 | 0.0109 | 0.1535 | 0.1258 | − 0.0199 | − 0.0047 |
6 | − 0.6849 | − 0.6901 | − 0.6816 | − 0.7023 | − 0.5107 |
7 | 0.0381 | − 0.1251 | − 0.1000 | − 0.0096 | 0.0235 |
8 | 0.7002 | 0.6572 | 0.6726 | 0.7299 | 0.4743 |
9 | 0.0312 | 0.1656 | 0.1488 | 0.0118 | 0.0487 |
10 | − 0.6873 | − 0.6308 | − 0.6594 | − 0.6777 | − 0.4542 |
Note: Bold characters are the maximum values of SCCF (based on the absolute value).
. | SCCF . | ||||
---|---|---|---|---|---|
Lags . | Group 11 . | Group 12 . | Group 13 . | Group 14 . | Group 15 . |
−10 | 0.2855 | 0.3676 | 0.3086 | 0.3338 | 0.1834 |
−9 | 0.0483 | 0.1293 | 0.0630 | − 0.0144 | 0.0312 |
−8 | − 0.2492 | − 0.1596 | − 0.2090 | − 0.3292 | − 0.1890 |
−7 | − 0.4985 | − 0.4058 | − 0.4493 | − 0.5704 | − 0.3062 |
−6 | − 0.6202 | − 0.5605 | − 0.5517 | − 0.6471 | − 0.3211 |
−5 | − 0.5633 | − 0.5398 | − 0.4992 | − 0.5186 | − 0.2933 |
−4 | − 0.2945 | − 0.3763 | − 0.2874 | − 0.2696 | − 0.1152 |
−3 | 0.0302 | − 0.1133 | − 0.0595 | 0.0305 | 0.0310 |
−2 | 0.3369 | 0.1722 | 0.2240 | 0.3179 | 0.1757 |
−1 | 0.5515 | 0.4158 | 0.4829 | 0.6399 | 0.3047 |
0 | 0.5838 | 0.5048 | 0.5176 | 0.6302 | 0.2887 |
1 | 0.4721 | 0.5639 | 0.5049 | 0.7127 | 0.3766 |
2 | 0.3088 | 0.3884 | 0.3173 | 0.3254 | 0.2121 |
3 | 0.0669 | 0.1400 | 0.0724 | − 0.0050 | − 0.0188 |
4 | − 0.2201 | − 0.1891 | − 0.1966 | − 0.3523 | − 0.2005 |
5 | − 0.4924 | − 0.4182 | − 0.4110 | − 0.5645 | − 0.3012 |
6 | − 0.6273 | − 0.5788 | − 0.5316 | − 0.6339 | − 0.3304 |
7 | − 0.5462 | − 0.5453 | − 0.4948 | − 0.5247 | − 0.2603 |
8 | − 0.2933 | − 0.3684 | − 0.3058 | − 0.2695 | − 0.1226 |
9 | 0.0257 | − 0.1401 | − 0.0550 | 0.0171 | 0.0042 |
10 | 0.3038 | 0.1621 | 0.2228 | 0.3100 | 0.1785 |
. | SCCF . | ||||
---|---|---|---|---|---|
Lags . | Group 11 . | Group 12 . | Group 13 . | Group 14 . | Group 15 . |
−10 | 0.2855 | 0.3676 | 0.3086 | 0.3338 | 0.1834 |
−9 | 0.0483 | 0.1293 | 0.0630 | − 0.0144 | 0.0312 |
−8 | − 0.2492 | − 0.1596 | − 0.2090 | − 0.3292 | − 0.1890 |
−7 | − 0.4985 | − 0.4058 | − 0.4493 | − 0.5704 | − 0.3062 |
−6 | − 0.6202 | − 0.5605 | − 0.5517 | − 0.6471 | − 0.3211 |
−5 | − 0.5633 | − 0.5398 | − 0.4992 | − 0.5186 | − 0.2933 |
−4 | − 0.2945 | − 0.3763 | − 0.2874 | − 0.2696 | − 0.1152 |
−3 | 0.0302 | − 0.1133 | − 0.0595 | 0.0305 | 0.0310 |
−2 | 0.3369 | 0.1722 | 0.2240 | 0.3179 | 0.1757 |
−1 | 0.5515 | 0.4158 | 0.4829 | 0.6399 | 0.3047 |
0 | 0.5838 | 0.5048 | 0.5176 | 0.6302 | 0.2887 |
1 | 0.4721 | 0.5639 | 0.5049 | 0.7127 | 0.3766 |
2 | 0.3088 | 0.3884 | 0.3173 | 0.3254 | 0.2121 |
3 | 0.0669 | 0.1400 | 0.0724 | − 0.0050 | − 0.0188 |
4 | − 0.2201 | − 0.1891 | − 0.1966 | − 0.3523 | − 0.2005 |
5 | − 0.4924 | − 0.4182 | − 0.4110 | − 0.5645 | − 0.3012 |
6 | − 0.6273 | − 0.5788 | − 0.5316 | − 0.6339 | − 0.3304 |
7 | − 0.5462 | − 0.5453 | − 0.4948 | − 0.5247 | − 0.2603 |
8 | − 0.2933 | − 0.3684 | − 0.3058 | − 0.2695 | − 0.1226 |
9 | 0.0257 | − 0.1401 | − 0.0550 | 0.0171 | 0.0042 |
10 | 0.3038 | 0.1621 | 0.2228 | 0.3100 | 0.1785 |
Note: Bold characters are the maximum values of SCCF (based on the absolute value).
CONCLUSION
The analysis of environmental, meteorological, and hydrological datasets often requires the detection of relationships between their variables. Generally, for assessing the relationship between two time series datasets, the CCF is suggested. The CCF is somewhat sensitive to the abnormality of datasets and the existence of outliers. Therefore, for abnormal datasets or for datasets with outliers, the CCF may not work well. To solve this issue, in this research, a non-parametric cross-correlation function was defined (SCCF). The ability of the proposed measure to detect the time-delay correlation between two stationary time series was studied. For this purpose, numerous datasets from two stationary time series were produced and analyzed. The results indicated that the proposed measure was more robust than the comparative measure, in detecting time delay between two non-Gaussian time series. The ability of the proposed measure in practice was also investigated by a real example. For this purpose, the RDI values of 20 synoptic stations in 1, 3, and 12-month time scales were considered and analyzed. The analysis results based on the actual data also proved the ability of the SCCF model. Finally, considering the low power of the CCF and high power of the SCCF to estimate CC in non-normal data series, it is suggested to assess the CC and calculate the time delay in non-normal hydrological data series the CCF replaced with the SCCF. On the other hand, it is recommended that SCCF's ability to determine the time delay in other hydrological variables such as rain and flood be investigated by other researchers.
ACKNOWLEDGEMENTS
The authors would like to thank National Meteorological Organization of Iran for providing the necessary climatic data.
AUTHORS CONTRIBUTION
The participation of M.R.M. and A.R.Z. includes the data collection, analyzing the results, and writing the article.
ETHICS APPROVAL
The authors confirm that this article is original research and has not been published or presented previously in any journal or conference in any language (in whole or in part).
DATA AVAILABILITY STATEMENT
Data cannot be made publicly available; readers should contact the corresponding author for details.
CONFLICT OF INTEREST
The authors declare there is no conflict.