Climate change significantly influences water resources and flood hazards in global watersheds. This study focuses on predicting the impact of climate change on the streamflow of the Qinglong River situated in northern China. The streamflow of the Qinglong River (2021-2100) under two climate change scenarios (RCP 4.5 and RCP 8.5) was mainly synthesized over multiple timescales. Meteorological data from 31 Global Climate Models (GCMs) in the Coupled Model Intercomparison Project Phase 5 (CMIP5) served as inputs for the Hydrological Simulation Program-Fortran (HSPF) to conduct hydrological simulations. Results show that: (1) The peak flood flow and average daily streamflow for the RCP4.5 scenario are at least 101.15% and 110.14% of the historical phase, and at least 108.89% and 121.88% of the historical phase for the RCP8.5 scenario. (2) Under both scenarios, the proportion of summer streamflow to the annual total is expected to increase from 61.46% (historical phase) to over 85%, while the proportion of winter streamflow to the annual total is expected to decrease from 8.84% (historical phase) to below 0.5%. (3) Compared to the historical period, the maximum increase in future multi-year average annual streamflow for the RCP4.5 and RCP8.5 scenarios is 30.34%, 31.48%, respectively.

  • The peak flow will increase by 1.15% (RCP4.5) than that of the historical.

  • The peak flow will increase by 8.89% (RCP8.5) than that of the historical.

  • The average annual streamflow will increase by 30.34% (RCP 4.5) over historical.

  • The average annual streamflow will increase by 31.48% (RCP8.5) over historical.

BASINS

better assessment science integrating point and non-point sources

CDF

cumulative distribution function

CMIP5

Coupled Model Intercomparison Project 5

DEM

digital elevation model

GCM

global climate model

GenScn

GENeration and analysis of model simulation SCenNarios

GHG

greenhouse gas

HEC-HMS

Hydrologic Engineering Center–Hydrologic Modeling System

HSPF

Hydrological Simulation Program-Fortran

IPCC

Intergovernmental Panel on Climate Change

MME

multi-model ensemble

NASA

National Aeronautics and Space Administration

NIMA

National Mapping Agency

NSE

Nash–Sutcliffe efficiency coefficient

PEST

Parameter estimation

QM

quantile mapping

RCP 2.6

Representative Concentration Pathway 2.6

RCP 4.5

Representative Concentration Pathway 4.5

RCP 6.0

Representative Concentration Pathway 6.0

RCP 8.5

Representative Concentration Pathway 8.5

R

correlation coefficient

RMSE

root mean square error

SRTM

Shuttle Radar Topography Mission

S-value

the Taylor skill scores

SWAT

Soil and Water Assessment Tool

TF

transfer function

Tmax

daily maximum temperature

Tmin

daily maximum temperature

USEPA

United States Environmental Protection Agency

The global surface temperature between 2011 and 2020 was 1.09 °C higher than the period from 1850 to 1900. It is anticipated that by the mid-2030s, the temperature rise will reach or exceed 1.5 °C (Lee et al. 2021; Intergovernmental Panel on Climate Change 2022). In this context, anthropogenic warming is accelerating the hydrological cycle (Huntington 2006; Wang et al. 2018; Zhang et al. 2019; Su & Sun 2021), leading to changes in global precipitation patterns. These alterations are making precipitation distribution more extreme and influencing the frequency of hydrological extreme events (Kundzewicz 2008; Putnam & Broecker 2017; Manfreda et al. 2018; Duan & Duan 2020). The fifth report of the United Nations Intergovernmental Panel on Climate Change (IPCC) estimated greenhouse gas (GHG) concentrations for the next nearly 100 years, converting them into increased radiative forcing (W/m²). Various agencies collaborated to develop four emission scenarios (Moss et al. 2010; van Vuuren et al. 2011), namely the Representative Concentration Pathway 2.6 (RCP 2.6), the Representative Concentration Pathway 4.5 (RCP 4.5), the Representative Concentration Pathway 6.0 (RCP 6.0), and the Representative Concentration Pathway 8.5 (RCP 8.5) (Intergovernmental Panel on Climate Change 2015). Applying these climate change scenarios provided climate models with a precise platform to visually analyze the direct impacts of climate change on hydrological water resources (Thomson et al. 2011; Auer et al. 2021).

The above-mentioned climate change scenarios are widely employed to investigate the impact of climate change on streamflow. Moazami Goudarzi et al. predicted higher future temperatures in the Maharu basin under scenarios RCP 4.5 and RCP 8.5, noting more significant precipitation changes in the wet season than in the dry season. Their results, obtained using the Soil and Water Assessment Tool (SWAT), revealed a year-by-year increase in annual streamflow for the watershed under both RCP4.5 and RCP8.5 scenarios (Moazami Goudarzi et al. 2020). Zhao et al. predicted the characteristics of streamflow changes in the Xijiang River Basin under RCP4.5 and RCP8.5 scenarios. Their findings indicated that compared with the baseline phase, the future intra-annual streamflow distribution would become more homogeneous under the RCP4.5 scenario and more heterogeneous under the RCP8.5 scenario (Zhao et al. 2020). Badora et al. assessed future hydrological changes in the Bystra River upland catchment using the SWAT model based on data from regional climate models. They discovered that the future monthly average total streamflow in the watershed under most climate change scenarios would be lower than in the reference period (Badora et al. 2022). Shafkat Ahsan et al. evaluated the future streamflow changes in the Jhelum basin using SWAT in combination with several GCMs. The results indicated reductions in watershed streamflow of approximately 23–37% under the RCP4.5 scenario and 19–46% under the RCP8.5 scenario (Ahsan et al. 2022). Danyang Gao et al. predicted streamflow changes in the Yangtze River under scenarios RCP2.6, RCP4.5, and RCP8.5. The results demonstrated that the streamflow would increase by 9.19, 10.23, and 13.44% during 2041–2100 under the three scenarios, respectively (Gao et al. 2020). Qihui Chen et al. found that annual streamflow in the Jinsha River Basin is expected to increase from 2017 to 2050 under RCP4.5 and RCP8.5 scenarios (Chen et al. 2020). Most studies were conducted using a combination of GCMs and SWAT models. However, some studies lack reasonably corrected climate data for GCMs, and the number of GCMs employed was limited. Additionally, many studies predicting future streamflow lack diversity in temporal scale, often focusing on only one or two scales. Consequently, these studies lack a comprehensive analysis of climate factors at different time scales. Hydrological models like SWAT encounter challenges in simulating streamflow on smaller time scales.

Considering these points, this study integrates 31 GCMs and the HSPF model to analyze changes in streamflow under the RCP4.5 and RCP8.5 scenarios. The HSPF model facilitates the simulation of hourly-scale and daily-scale streamflow (Choi et al. 2008). The analysis encompasses streamflow results at various scales, including hourly, daily, monthly, seasonal, and annual scales. Given the variability in simulated streamflow output among different GCMs (Koirala et al. 2014), the study specifically examines extreme values and the multi-model ensemble (MME) mean of the 31 GCMs across different time scales. To enhance the accuracy of climate model data, quantile mapping (QM) methods are employed to mitigate prediction errors.

In this study, we focused on the Qinglong River, situated in Hebei and Liaoning provinces in Northern China, to investigate its future water regulation and management (refer to section 2.1 for details). The impact of various climate factors on watershed streamflow varies depending on the actual situation of different watersheds (Tan et al. 2017; Wang et al. 2020). The objectives of this research are to predict variations in the Qinglong River streamflow from the present to the year 2100 across multiple temporal scales, including annual averages, monthly averages, daily peaks, and hourly peaks, under different climate change scenarios (RCP4.5 and RCP8.5). Utilizing the predicted data, such as precipitation and streamflows, we aimed to forecast and assess the conditions of water resources, water supply, and river flooding.

The changes in river water resources, including average annual flow, average monthly flow, and daily peak flows under climate change scenarios, hold significant importance for the sustainable development of river watersheds. In this study, 31 predicted meteorological datasets were employed as inputs for HSPF hydrological simulation. Streamflows of the Qinglong River were predicted for the period 2021–2100 under two climate change scenarios (RCP 4.5 and RCP 8.5). The impacts of climate change on water resources and river flooding were assessed based on average annual streamflow, average monthly streamflow, and daily maximum streamflow. The roadmap of this study is presented in Figure 1.
Figure 1

Study roadmap.

Study area

The Qinglong River originates from the Yanshan Mountains in northern China and its watershed encompasses Qinhuangdao city in Hebei Province and Lingyuan city in Liaoning Province (118.69°–119.63°E, 40.103°–41.165°N), as depicted in Figure 2. With a total length of 246 km, the main river extends for 210 km. The watershed area spans 6,340 km2, with the downstream Taolinkou Reservoir controlling a significant portion of 5,060 km2, constituting around 80% of the entire Qinglong River watershed (Liang et al. 2010). The Taolinkou Reservoir plays a crucial role in supplying water resources. It provides 182 million m³ of water annually to Qinhuangdao city for industrial, port, and urban domestic purposes, along with 520 million m³ of water to support agricultural use in the Qintang area. Consequently, addressing water resource supply is a vital consideration in this watershed.
Figure 2

Location of the Qinglong River watershed.

Figure 2

Location of the Qinglong River watershed.

Close modal

The Qinglong River watershed is situated in the East Asian monsoon climate zone, characterized by a multi-year average temperature of 10.1 °C. The lowest temperatures are typically recorded in January, with a monthly average of −6.8 °C and a minimum of −29.2 °C. Conversely, the highest temperatures occur in July, with a monthly average of 24.7 °C and a maximum of 39.4 °C. The watershed experiences an average annual water surface evaporation of 1,089 mm, with the maximum monthly evaporation reaching 239.6 mm. Annual precipitation in the watershed averages between 500 and 700 mm, with 70% of this concentrated in July and August. Consequently, 80% of the annual streamflow and river flooding typically occur during this period, posing a significant concern for watershed management.

Methodology

According to the flowchart of this study, several methods need to be emphasized here for introduction.

Deviation correction method

In this study, the predicted downscaling meteorological data (e.g. precipitation, temperature) were acquired from CMIP 5. Systematic deviations in climate model simulations compared to observations can significantly influence streamflow simulation results. Consequently, it is necessary to correct errors in climate model simulation results. Here, the observed precipitation data for the Qinglong River from 1961 to 2020 were utilized to calibrate the predicted precipitation data.

In this study, the QM method was selected for calibrating the downscaling precipitation data from climate models. The QM method offers advantages in non-independent error corrections, capable of revising both numerical and frequency distributions of precipitation. This approach not only corrects the mean value and inter-annual variability of the predicted data but also mitigates bias in the predicted data for extreme events. QM is a calibration method based on frequency distributions, primarily achieved through calculating the cumulative distribution function and the transfer function (TF). There are two primary methods for establishing TFs. The first involves constructing a TF based on the theoretical probability distribution function, assuming that the simulated data and measured data adhere to a known probability distribution function (Piani et al. 2010). The second method constructs a TF based on an empirical probability distribution (Themeßl et al. 2012).

In this study, the QM method was employed to construct the TF based on the Bernoulli-Gamma distribution. The occurrence of zero and non-zero values in precipitation data (representing the presence or absence of precipitation) is characterized using the Bernoulli distribution. The Bernoulli distribution models the occurrence of zero values while the Gamma distribution, with parameters, models the distribution of non-zero values. The correction of daily precipitation in the climate models for this study was carried out using the qmap (Statistical Transformations for Post-Processing Climate Model Output) package developed in R (Gudmundsson et al. 2012). Measured precipitation data for the period 1961–2020 were utilized to construct the TF, which was then employed to calibrate the predicted data for the period 2021–2100. The bias correction effect was assessed using the root mean square error (RMSE), Nash–Sutcliffe Efficiency (NSE), and RSR (ratio of RMSE to the standard deviation of the observations). The formulas are as follows:
(1)
where is the measured value, is the simulated value, and n is the number of samples.
(2)
where is the simulated flow rate; is the measured flow rate; is the average of the measured flow rates; n is the length of the simulated period. NSE is a commonly used indicator for evaluating the results of hydrological simulations and takes values in the range (−∞, 1]. When the NSE is greater than 0, the overall result is considered reliable and the closer the value is to 1, the better the fit (Cao et al. 2018). An NSE value greater than 0.45 indicates a good fit between the simulated and actual value.
(3)

In the formula, represents the average observed flow during the simulation period. The closer the RSR value is to 0, the closer the simulated value is to the actual measured value.

HSPF modeling method

In this study, the HSPF model was selected to simulate and predict the future flows of the Qinglong River. HSPF is a semi-distributed watershed model developed by the U.S. Environmental Protection Agency (USEPA) in 1980 (Kinerson et al. 2009). It has the capability to model the hydrology and water quality of a watershed. HSPF has been integrated into the Better Assessment Science Integrating Point and Non-point Sources (BASINS) system, becoming the core watershed model in BASINS (Donigian & Imhoff 2006). The HSPF model comprises three main application components. PERLND, IMPLND, and RCHRES correspond to Pervious Land Segment, Impervious Land Segment, and free-flowing reach or mixed reservoirs, respectively. Through these application components, the HSPF model can simulate various processes, including streamflow, soil loss, pollutant transport, river hydraulics, and others. The HSPF model combines the advantages of both distributed and centralized hydrological models, offering the ability to autonomously adjust the size of the hydrological response unit, thereby providing greater flexibility and improving the accuracy of watershed hydrological simulations (Liu & Tong 2011; Albek et al. 2019). This makes it well suited for the process simulation of regional watershed hydrology.

When utilizing HSPF to simulate streamflow, the initial steps are carried out within the BASINS system. In this system, the watershed model is first established using river network data, meteorological data, measured streamflow data, and other relevant information. Meteorological data and measured streamflow data are subsequently converted into WDM files using the WDMtil module. Following these procedures, the data are transferred to the HSPF model within the BASINS system for calculation and simulation. During this transfer process, the UCI file, which serves as the project file for HSPF, is automatically generated. Throughout the HSPF model, UCI files can be edited, run, and viewed, encompassing aspects such as the temporal range of the simulated data, settings of model parameters, and more.

HSPF parameter optimization method

The calibration of the HSPF model primarily involves adjusting relevant parameters in the PERLND, IMPLND, and RCHRES modules. Following HSPF simulation, the outputs can be processed using the post-processing tool GENeration and analysis of model simulation SCenNarios (GenScn) for visualization. GenScn facilitates the analysis and collation of simulation results (Kittle 1998). Calibration and validation of the HSPF model entail parameter tuning to attain optimal values, and this optimal parameter set is subsequently used for further simulations.

In this study, the sensitivity of HSPF model parameters was initially analyzed using the built-in parameter estimation (PEST) auto-calibration procedure. Eleven model parameters were ultimately selected for calibration based on sensitivity analysis results and insights from relevant studies (Zhang et al. 2018; Liu et al. 2021), as detailed in Table 1. Notably, the Support Vector Machine (SVM) surrogate model and general likelihood uncertainty estimation algorithm were employed to determine the optimized intervals and values of HSPF parameters. The daily flow series at the entrance section of the Taolinkou Reservoir from 2011 to 2013 served as the measured flows for calibration and validation.

Table 1

Parameter ranges and their values for HSPF simulations

ParametersUnitsRange of valuesInitial valuesOptimum values
LZSN inch [2,15] 2.23 1.83 
INFILT inch/h [0.001,0.5] 0.13 0.12 
AGWRC 1/day [0.85,1.0] 0.87 0.82 
DEEPFR – [0.001,0.5] 0.13 0.13 
BASETP – [0.001,0,2] 0.05 0.31 
AGWETP – [0.001,0.2] 0.13 0.05 
CEPSC – [0.01,0.4] 0.18 0.18 
UZSN inch [0.05,2] 0.76 1.41 
IRC 1/day [0.3,0.85] 0.75 0.71 
LZETP – [0.1,0.9] 0.74 0.74 
INTFW – [1.0,10.0] 4.58 4.58 
ParametersUnitsRange of valuesInitial valuesOptimum values
LZSN inch [2,15] 2.23 1.83 
INFILT inch/h [0.001,0.5] 0.13 0.12 
AGWRC 1/day [0.85,1.0] 0.87 0.82 
DEEPFR – [0.001,0.5] 0.13 0.13 
BASETP – [0.001,0,2] 0.05 0.31 
AGWETP – [0.001,0.2] 0.13 0.05 
CEPSC – [0.01,0.4] 0.18 0.18 
UZSN inch [0.05,2] 0.76 1.41 
IRC 1/day [0.3,0.85] 0.75 0.71 
LZETP – [0.1,0.9] 0.74 0.74 
INTFW – [1.0,10.0] 4.58 4.58 

NSE, the correlation coefficient (R), and the Taylor skill scores (S-value) were employed to evaluate model accuracy (Taylor 2001). The formulas are as follows:
(4)
where X and Y represent the values of the two variables (simulated flow rate and measured flow rate), respectively, and n is the sample capacity (the length of the simulated period).
(5)
where R is the correlation coefficient; is the standard deviation of the simulated series; is the standard deviation of the measured series; and is the maximum value of R. The S-value in the Taylor method considers both the standard deviation and the correlation coefficient, providing a comprehensive evaluation where larger S-values indicate better model performance.

MME means method

In this study, predictions were made for precipitation, temperature, and the corresponding daily simulated HSPF streamflows from 31 climate models. Subsequently, annual and monthly average parameters (precipitation, temperatures, streamflow volume) were synthesized using the MME means method (Ahmed et al. 2020; Tegegne et al. 2020). It is important to note that the maximum and minimum values of parameters (precipitation, streamflow volume, streamflow) were calculated based on the results of a single climate model and each HSPF simulation.

Furthermore, the baseline phase was set as the period from 2001 to 2020 (P0), and the prediction phase was divided into short-term (P1, 2021–2030), medium-term (P2, 2031–2050), and long-term (P3, 2051–2100). The prediction results were subjected to linear fitting using the least squares method to identify their trends.

Data source

Watershed data

For HSPF simulation, various watershed data were essential, encompassing topographic data, land use data, river network data, meteorological data, and actual hydrological data.

The topographic data, sourced from the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), are a joint effort by the United States National Aeronautics and Space Administration (NASA) and the National Mapping Agency (NIMA) of the Department of Defense (Yang et al. 2011).

Land use data, inclusive of information on land use, soil types, and spatial distribution, were retrieved from the Geospatial Data Cloud Platform managed by the Computer Network Information Centre of the Chinese Academy of Sciences (http://www.gscloud.cn/). Data on the river network in the study watershed were acquired through the Hydrological Analysis module of ArcGIS software. Meteorological data were sourced from the China Meteorological Science Data Sharing Centre (http://data.cma.cn). This meteorological data included daily precipitation, temperature, relative humidity, evaporation, sunshine, wind speed, and other relevant information spanning from 1957 to 2020. The daily measured streamflow (2011–2013) and annual streamflow (2001–2020) in the studied watershed were obtained from the Taolinkou Reservoir Administration in Hebei province, China, as detailed in Table 2.

Table 2

Data required for HSPF modeling

DataContentResolutionYears
Topographic data Digital elevation model 90 m 2000 
Land use data Land use, soil types, and spatial distribution 0.5 m 2020 
River network data Sub-watersheds and river network 90 m 2000 
Meteorological data Precipitation, temperature, evaporation, etc. Daily 1957–2020 
Hydrological data streamflow data Daily 2001–2016 
Monthly 2001–2020 
Annual 2001–2020 
DataContentResolutionYears
Topographic data Digital elevation model 90 m 2000 
Land use data Land use, soil types, and spatial distribution 0.5 m 2020 
River network data Sub-watersheds and river network 90 m 2000 
Meteorological data Precipitation, temperature, evaporation, etc. Daily 1957–2020 
Hydrological data streamflow data Daily 2001–2016 
Monthly 2001–2020 
Annual 2001–2020 

Global climate model data

In this study, the initial predicted precipitation and temperature data were derived from the Coupled Model Intercomparison Project 5 (CMIP5) climate model dataset processed by the NWAI-Weather Generator (WG) statistical downscaling model (Liu & Zuo 2012). Following spatial and temporal downscaling, the precipitation and temperature data from CMIP5 underwent effective error correction (Li et al. 2019; Yao et al. 2020). The relevant data for 31 global climate models (GCMs) under two climate scenarios, RCP 4.5 and RCP 8.5, were obtained from the website (https://esgf-data.dkrz.de/search/cmip5-dkrz). The list of 31 GCMs utilized in this study is provided in Table 3.

Table 3

31 GCMs provided in CMIP5

Climate modelsAbbreviationInstitutionsResolution (degree × degree)
ACCESS1-0 AC1 CSIRO and BoM 1.875 × 1.25 
ACCESS1-3 AC2 CSIRO and BoM 1.875 × 1.25 
BCC-CSM1-1 BC1 BCC 2.8 × 2.8 
BCC-CSM1-1-m BC2 BCC 1.1 × 1.1 
BNU-ESM BNU GCESS 2.8 × 2.8 
CanESM2 CaE CCCMA 2.8 × 2.8 
CCSM4 CCS NCAR 1.25 × 0.94 
CESM1-BGC CE1 NSF-DOE-NCAR 1.25 × 0.94 
CESM1-CAM5 CE2 NSF-DOE-NCAR 2.5 × 2 
CESM1-WACCM CE5 NSF-DOE-NCAR 2.5 × 2 
CMCC-CM CM2 CMCC 0.75 × 0.75 
CMCC-CMS CM3 CMCC 1.86 × 1.87 
EC-EARTH ECE EC-EARTH 1.1 × 1.1 
FIO-ESM FIO FIO 2.8 × 2.8 
GISS-E2-H GE1 NASA GISS 1.25 × 0.94 
GISS-E2-H-CC GE2 NASA GISS 2.5 × 2 
GISS-E2-R GE3 NASA GISS 2.5 × 2 
GFDL-CM3 GF2 NOAA GFDL 2.5 × 2 
GFDL-ESM2G GF3 NOAA GFDL 2.5 × 2 
GFDL-ESM2M GF4 NOAA GFDL 2.5 × 2 
HadGEM2-AO Ha5 NIMR/KMA 1.87 × 1.25 
INM-CM4 INC INM 2.0 × 1.5 
IPSL-CM5A-MR IP2 IPSL 1.27 × 2.5 
IPSL-CM5B-LR IP3 IPSL 1.89 × 3.75 
MIROC5 MI2 MIROC 1.4 × 1.4 
MIROC-ESM MI3 MIROC 2.8 × 2.8 
MIROC-ESM-CHEM MI4 MIROC 2.8 × 2.8 
MPI-ESM-LR MP1 MPI-M 1.87 × 1.86 
MRI-CGCM3 MR3 MRI 1.1 × 1.1 
NorESM1-M NE1 NCC 2.5 × 1.9 
NorESM1-ME NE2 NCC 2.5 × 1.9 
Climate modelsAbbreviationInstitutionsResolution (degree × degree)
ACCESS1-0 AC1 CSIRO and BoM 1.875 × 1.25 
ACCESS1-3 AC2 CSIRO and BoM 1.875 × 1.25 
BCC-CSM1-1 BC1 BCC 2.8 × 2.8 
BCC-CSM1-1-m BC2 BCC 1.1 × 1.1 
BNU-ESM BNU GCESS 2.8 × 2.8 
CanESM2 CaE CCCMA 2.8 × 2.8 
CCSM4 CCS NCAR 1.25 × 0.94 
CESM1-BGC CE1 NSF-DOE-NCAR 1.25 × 0.94 
CESM1-CAM5 CE2 NSF-DOE-NCAR 2.5 × 2 
CESM1-WACCM CE5 NSF-DOE-NCAR 2.5 × 2 
CMCC-CM CM2 CMCC 0.75 × 0.75 
CMCC-CMS CM3 CMCC 1.86 × 1.87 
EC-EARTH ECE EC-EARTH 1.1 × 1.1 
FIO-ESM FIO FIO 2.8 × 2.8 
GISS-E2-H GE1 NASA GISS 1.25 × 0.94 
GISS-E2-H-CC GE2 NASA GISS 2.5 × 2 
GISS-E2-R GE3 NASA GISS 2.5 × 2 
GFDL-CM3 GF2 NOAA GFDL 2.5 × 2 
GFDL-ESM2G GF3 NOAA GFDL 2.5 × 2 
GFDL-ESM2M GF4 NOAA GFDL 2.5 × 2 
HadGEM2-AO Ha5 NIMR/KMA 1.87 × 1.25 
INM-CM4 INC INM 2.0 × 1.5 
IPSL-CM5A-MR IP2 IPSL 1.27 × 2.5 
IPSL-CM5B-LR IP3 IPSL 1.89 × 3.75 
MIROC5 MI2 MIROC 1.4 × 1.4 
MIROC-ESM MI3 MIROC 2.8 × 2.8 
MIROC-ESM-CHEM MI4 MIROC 2.8 × 2.8 
MPI-ESM-LR MP1 MPI-M 1.87 × 1.86 
MRI-CGCM3 MR3 MRI 1.1 × 1.1 
NorESM1-M NE1 NCC 2.5 × 1.9 
NorESM1-ME NE2 NCC 2.5 × 1.9 

Deviation correction results of precipitation

The correction results for the initially predicted precipitation data of the 31 climate models are presented in Table 4. It is evident that the RMSE values of downscaled precipitation data from all 31 climate models showed improvement after correction. Notably, the average RMSEs of ACCESS1-0, ACCESS1-3, and BCC-CSM1-1 were reduced by more than 20%, leading to a reduction of errors in the predicted precipitation by more than 10%.

Table 4

Comparison of RMSE of the corrected and uncorrected daily precipitation from 31 climate models

31 ModelsRange
Mean
Uncorrected (mm)Corrected (mm)Uncorrected (mm)Corrected (mm)
ACCESS1-0 0.001–1.324 0.005–1.188 0.340 0.248 
ACCESS1-3 0.001–1.324 0.003–1.191 0.340 0.248 
BCC-CSM1-1 0.001–1.324 0.012–1.179 0.340 0.250 
BCC-CSM1-1-m 0.001–1.324 0.012–1.179 0.340 0.250 
BNU-ESM 0.001–1.324 0.007–1.186 0.257 0.250 
CanESM2 0.001–1.324 0.009–1.184 0.278 0.260 
CCSM4 0.001–1.324 0.027–1.221 0.278 0.262 
CESM1-BGC 0.001–1.324 0.027–1.221 0.278 0.262 
CESM1-CAM5 0.001–1.324 0.031–1.224 0.278 0.262 
CESM1-WACCM 0.001–1.324 0.009–1.184 0.267 0.261 
CMCC-CM 0.001–1.324 0.009–1.184 0.278 0.261 
CMCC-CMS 0.001–1.324 0.013–1.180 0.290 0.283 
EC-EARTH 0.001–1.324 0.013–1.180 0.267 0.254 
FIO-ESM 0.001–1.324 0.013–1.180 0.268 0.263 
GISS-E2-H 0.001–1.324 0.007–1.186 0.278 0.260 
GISS-E2-H-CC 0.001–1.324 0.011–1.182 0.278 0.261 
GISS-E2-R 0.001–1.324 0.009–1.184 0.278 0.261 
GFDL-CM3 0.001–1.324 0.001–1.195 0.280 0.272 
GFDL-ESM2G 0.001–1.324 0.011–1.182 0.278 0.261 
GFDL-ESM2M 0.001–1.324 0.008–1.175 0.278 0.261 
HadGEM2-AO 0.001–1.324 0.007–1.186 0.278 0.260 
INM-CM4 0.001–1.324 0.011–1.182 0.339 0.270 
IPSL-CM5A-MR 0.001–1.324 0.009–1.184 0.278 0.261 
IPSL-CM5B-LR 0.001–1.324 0.009–1.184 0.267 0.260 
MIROC5 0.001–1.324 0.011–1.182 0.271 0.265 
MIROC-ESM 0.001–1.324 0.005–1.189 0.278 0.260 
MIROC-ESM-CHEM 0.001–1.324 0.011–1.182 0.305 0.297 
MPI-ESM-LR 0.001–1.324 0.010–1.177 0.278 0.261 
MRI-CGCM3 0.001–1.324 0.010–1.177 0.267 0.261 
NorESM1-M 0.001–1.324 0.011–1.182 0.278 0.261 
NorESM1-ME 0.001–1.324 0.009–1.184 0.278 0.261 
31 ModelsRange
Mean
Uncorrected (mm)Corrected (mm)Uncorrected (mm)Corrected (mm)
ACCESS1-0 0.001–1.324 0.005–1.188 0.340 0.248 
ACCESS1-3 0.001–1.324 0.003–1.191 0.340 0.248 
BCC-CSM1-1 0.001–1.324 0.012–1.179 0.340 0.250 
BCC-CSM1-1-m 0.001–1.324 0.012–1.179 0.340 0.250 
BNU-ESM 0.001–1.324 0.007–1.186 0.257 0.250 
CanESM2 0.001–1.324 0.009–1.184 0.278 0.260 
CCSM4 0.001–1.324 0.027–1.221 0.278 0.262 
CESM1-BGC 0.001–1.324 0.027–1.221 0.278 0.262 
CESM1-CAM5 0.001–1.324 0.031–1.224 0.278 0.262 
CESM1-WACCM 0.001–1.324 0.009–1.184 0.267 0.261 
CMCC-CM 0.001–1.324 0.009–1.184 0.278 0.261 
CMCC-CMS 0.001–1.324 0.013–1.180 0.290 0.283 
EC-EARTH 0.001–1.324 0.013–1.180 0.267 0.254 
FIO-ESM 0.001–1.324 0.013–1.180 0.268 0.263 
GISS-E2-H 0.001–1.324 0.007–1.186 0.278 0.260 
GISS-E2-H-CC 0.001–1.324 0.011–1.182 0.278 0.261 
GISS-E2-R 0.001–1.324 0.009–1.184 0.278 0.261 
GFDL-CM3 0.001–1.324 0.001–1.195 0.280 0.272 
GFDL-ESM2G 0.001–1.324 0.011–1.182 0.278 0.261 
GFDL-ESM2M 0.001–1.324 0.008–1.175 0.278 0.261 
HadGEM2-AO 0.001–1.324 0.007–1.186 0.278 0.260 
INM-CM4 0.001–1.324 0.011–1.182 0.339 0.270 
IPSL-CM5A-MR 0.001–1.324 0.009–1.184 0.278 0.261 
IPSL-CM5B-LR 0.001–1.324 0.009–1.184 0.267 0.260 
MIROC5 0.001–1.324 0.011–1.182 0.271 0.265 
MIROC-ESM 0.001–1.324 0.005–1.189 0.278 0.260 
MIROC-ESM-CHEM 0.001–1.324 0.011–1.182 0.305 0.297 
MPI-ESM-LR 0.001–1.324 0.010–1.177 0.278 0.261 
MRI-CGCM3 0.001–1.324 0.010–1.177 0.267 0.261 
NorESM1-M 0.001–1.324 0.011–1.182 0.278 0.261 
NorESM1-ME 0.001–1.324 0.009–1.184 0.278 0.261 

The improvement in NSE and the value of RSR is presented in Table 5. The NSE value for each model has increased by at least 0.2, and the RSR value is close to 0. This indicates that the QM method brings the simulated data closer to the observed data, significantly reducing the error.

Table 5

Comparison of NSE, RSR of the corrected and uncorrected daily precipitation from 31 climate models

31 ModelsIncrease in NSEMean RSR
UncorrectedCorrected
ACCESS1-0 0.223 0.0345 0.0252 
ACCESS1-3 0.321 0.0345 0.0252 
BCC-CSM1-1 0.300 0.0345 0.0254 
BCC-CSM1-1-m 0.284 0.0345 0.0254 
BNU-ESM 0.484 0.0261 0.0254 
CanESM2 0.315 0.0282 0.0264 
CCSM4 0.311 0.0282 0.0266 
CESM1-BGC 0.217 0.0282 0.0266 
CESM1-CAM5 0.276 0.0282 0.0266 
CESM1-WACCM 0.244 0.0271 0.0265 
CMCC-CM 0.266 0.0282 0.0265 
CMCC-CMS 0.386 0.0294 0.0287 
EC-EARTH 0.296 0.0271 0.0258 
FIO-ESM 0.235 0.0272 0.0267 
GISS-E2-H 0.245 0.0282 0.0264 
GISS-E2-H-CC 0.269 0.0282 0.0265 
GISS-E2-R 0.304 0.0282 0.0265 
GFDL-CM3 0.346 0.0284 0.0276 
GFDL-ESM2G 0.267 0.0282 0.0265 
GFDL-ESM2M 0.245 0.0282 0.0265 
HadGEM2-AO 0.333 0.0282 0.0264 
INM-CM4 0.291 0.0344 0.0274 
IPSL-CM5A-MR 0.365 0.0282 0.0265 
IPSL-CM5B-LR 0.269 0.0271 0.0264 
MIROC5 0.365 0.0275 0.0269 
MIROC-ESM 0.294 0.0282 0.0264 
MIROC-ESM-CHEM 0.312 0.0310 0.0301 
MPI-ESM-LR 0.235 0.0282 0.0265 
MRI-CGCM3 0.273 0.0271 0.0265 
NorESM1-M 0.428 0.0282 0.0265 
NorESM1-ME 0.302 0.0282 0.0265 
31 ModelsIncrease in NSEMean RSR
UncorrectedCorrected
ACCESS1-0 0.223 0.0345 0.0252 
ACCESS1-3 0.321 0.0345 0.0252 
BCC-CSM1-1 0.300 0.0345 0.0254 
BCC-CSM1-1-m 0.284 0.0345 0.0254 
BNU-ESM 0.484 0.0261 0.0254 
CanESM2 0.315 0.0282 0.0264 
CCSM4 0.311 0.0282 0.0266 
CESM1-BGC 0.217 0.0282 0.0266 
CESM1-CAM5 0.276 0.0282 0.0266 
CESM1-WACCM 0.244 0.0271 0.0265 
CMCC-CM 0.266 0.0282 0.0265 
CMCC-CMS 0.386 0.0294 0.0287 
EC-EARTH 0.296 0.0271 0.0258 
FIO-ESM 0.235 0.0272 0.0267 
GISS-E2-H 0.245 0.0282 0.0264 
GISS-E2-H-CC 0.269 0.0282 0.0265 
GISS-E2-R 0.304 0.0282 0.0265 
GFDL-CM3 0.346 0.0284 0.0276 
GFDL-ESM2G 0.267 0.0282 0.0265 
GFDL-ESM2M 0.245 0.0282 0.0265 
HadGEM2-AO 0.333 0.0282 0.0264 
INM-CM4 0.291 0.0344 0.0274 
IPSL-CM5A-MR 0.365 0.0282 0.0265 
IPSL-CM5B-LR 0.269 0.0271 0.0264 
MIROC5 0.365 0.0275 0.0269 
MIROC-ESM 0.294 0.0282 0.0264 
MIROC-ESM-CHEM 0.312 0.0310 0.0301 
MPI-ESM-LR 0.235 0.0282 0.0265 
MRI-CGCM3 0.273 0.0271 0.0265 
NorESM1-M 0.428 0.0282 0.0265 
NorESM1-ME 0.302 0.0282 0.0265 

Prediction results of precipitation after QM correction

Based on the QM-corrected results from 31 GCMs, the daily predicted precipitation outcomes (MME mean) for the period 2021–2100 were acquired under RCP4.5 and RCP8.5 scenarios, as illustrated in Figure 3. The daily precipitation data for the historical phase (2001–2020) are presented in Figure 3(c).
Figure 3

Daily precipitation variability under historical phase, RCP4.5 and RCP8.5. Short-term P1 (2021–2030), medium-term P2 (2031–2050), and long-term P3 (2051–2100).

Figure 3

Daily precipitation variability under historical phase, RCP4.5 and RCP8.5. Short-term P1 (2021–2030), medium-term P2 (2031–2050), and long-term P3 (2051–2100).

Close modal

The specific characteristics of the data, including skewness, coefficient of variation, and so on, are listed in the appendix. The daily precipitation under both the RCP4.5 and RCP8.5 scenarios demonstrates a distribution with an average kurtosis of 79.518 and 118.731, respectively, and skewness of 8.870 and 8.904, respectively. These values suggest that the data distribution is more peaked and skewed to the right compared to a normal distribution. Additionally, the coefficient of variation fluctuates around 4.4, pointing to substantial variability in the data, with values in the dataset being relatively dispersed.

Firstly, it is observed that the maximum daily precipitation under RCP4.5 and RCP8.5 scenarios is 41.87 and 48.85 mm, occurring on 18 July 2045 and 7 August 2044, respectively, as depicted in Figure 3 and detailed in Table 6. The maximum daily precipitation during the historical phase took place on 22 July 2012, measuring 65.53 mm. Secondly, the historical multi-year average daily precipitation is 0.93 mm. Future multi-year average daily precipitation is projected to increase by 111% (short-term), 135% (medium-term), and 137% (long-term) for RCP4.5 scenarios, and by 124% (short-term), 129% (medium-term), and 154% (long-term) for RCP8.5 scenarios.

Table 6

Mean and maximum daily precipitation for each period

ScenariosPeriodsMean (mm)Max (mm)
Baseline P0 (2001–2020) 0.93 65.53 
RCP4.5 P1 (2021–2030) 1.96 34.34 
P2 (2031–2050) 2.18 41.87 
P3 (2051–2100) 2.20 37.55 
RCP8.5 P1 (2021–2030) 2.09 39.52 
P2 (2031–2050) 2.13 48.85 
P3 (2051–2100) 2.36 48.45 
ScenariosPeriodsMean (mm)Max (mm)
Baseline P0 (2001–2020) 0.93 65.53 
RCP4.5 P1 (2021–2030) 1.96 34.34 
P2 (2031–2050) 2.18 41.87 
P3 (2051–2100) 2.20 37.55 
RCP8.5 P1 (2021–2030) 2.09 39.52 
P2 (2031–2050) 2.13 48.85 
P3 (2051–2100) 2.36 48.45 

By aggregating daily precipitation data, monthly and annual precipitation values were obtained, as illustrated in Figures 46.
Figure 4

Annual seasonal precipitation variation over time under the RCP4.5 scenario. Baseline phase P0 (2001–2020), short-term P1 (2021–2030), medium-term P2 (2031–2050), and long-term P3 (2051–2100).

Figure 4

Annual seasonal precipitation variation over time under the RCP4.5 scenario. Baseline phase P0 (2001–2020), short-term P1 (2021–2030), medium-term P2 (2031–2050), and long-term P3 (2051–2100).

Close modal
Figure 5

Annual seasonal precipitation variation over time under the RCP8.5 scenario. Baseline period P0 (2001–2020), short-term P1 (2021–2030), medium-term P2 (2031–2050), and long-term P3 (2051–2100).

Figure 5

Annual seasonal precipitation variation over time under the RCP8.5 scenario. Baseline period P0 (2001–2020), short-term P1 (2021–2030), medium-term P2 (2031–2050), and long-term P3 (2051–2100).

Close modal
Figure 6

Variation in annual precipitation (%) from the baseline phase mean is depicted. The solid line to the left of the dashed line illustrates the variation in annual precipitation relative to the baseline phase annual mean precipitation. On the right side of the dashed line, the solid line represents the variation in the future annual precipitation MME mean relative to the baseline phase mean annual precipitation. The shaded area represents one inter-model standard deviation around the MME mean (solid line).

Figure 6

Variation in annual precipitation (%) from the baseline phase mean is depicted. The solid line to the left of the dashed line illustrates the variation in annual precipitation relative to the baseline phase annual mean precipitation. On the right side of the dashed line, the solid line represents the variation in the future annual precipitation MME mean relative to the baseline phase mean annual precipitation. The shaded area represents one inter-model standard deviation around the MME mean (solid line).

Close modal

Based on the results from 31 GCMs (refer to Tables 7 and 8), the maximum daily precipitation under the RCP4.5 scenario is 412.7 mm for the ACCESS1-3 model. For the RCP8.5 scenario, the maximum daily precipitation is 367.8 mm for the HadGEM2-AO model. Notably, the daily precipitation maxima for most GCMs under both the RCP4.5 and RCP8.5 scenarios occur in the long-term and surpass the historical maximum daily precipitation.

Table 7

Statistics of daily precipitation for 31 GCMs under RCP4.5 scenario

No.ModelDaily precipitation (mm)
P1 (2021–2030)
P2 (2031–2050)
P3 (2051–2100)
MeanMaxMeanMaxMeanMax
AC1 2.27 264.2 2.04 195.1 2.45 329.2 
AC2 1.84 126.0 2.38 253.7 2.78 412.7 
BC1 2.05 181.9 2.26 218.0 2.26 220.4 
BC2 1.98 220.4 2.17 198.1 2.48 270.9 
BNU 1.83 140.9 2.41 189.9 2.33 215.4 
CaE 2.08 149.4 2.45 159.3 2.37 210.1 
CCS 1.72 153.9 2.34 220.7 2.33 263.3 
CE1 1.75 104.3 2.02 151.3 2.20 185.4 
CE2 2.29 165.7 2.38 181.2 2.22 181.9 
10 CE5 1.81 175.3 1.99 183.5 2.05 215.5 
11 CM2 1.94 242.8 2.05 179.3 2.21 216.3 
12 CM3 2.56 301.6 2.36 292.0 2.27 256.0 
13 ECE 1.94 155.3 2.19 174.9 2.06 183.5 
14 FIO 1.60 171.3 2.06 211.6 1.90 266.7 
15 GE1 1.84 153.5 2.17 174.7 2.11 269.1 
16 GE2 2.04 167.6 1.98 162.4 2.07 233.0 
17 GE3 1.79 130.3 2.13 243.9 2.11 280.9 
18 GF2 2.09 174.3 2.17 267.0 2.84 353.9 
19 GF3 1.57 83.6 2.05 147.8 2.05 246.2 
20 GF4 1.83 130.2 2.08 184.8 2.00 268.4 
21 Ha5 2.21 254.6 2.51 222.7 2.38 226.4 
22 INC 1.85 133.1 1.87 259.2 2.16 244.3 
23 IP2 1.84 123.7 2.55 217.6 2.39 221.4 
24 IP3 2.08 167.8 2.30 265.4 2.15 247.9 
25 MI2 2.24 196.0 2.59 252.7 2.39 229.9 
26 MI3 2.04 211.2 2.38 266.8 2.20 231.0 
27 MI4 2.64 201.8 2.14 246.9 2.03 269.0 
28 MP1 1.66 184.4 1.74 160.1 2.02 206.5 
29 MR3 1.98 190.5 1.88 210.9 2.13 229.7 
30 NE1 1.78 156.6 1.87 180.7 2.32 270.0 
31 NE2 1.97 107.3 2.27 258.9 2.28 240.1 
Maximum 2.64 301.6 2.59 292.0 2.84 412.7 
Mean 1.97 171.6 2.19 171.6 2.24 248.2 
Minimum 1.57 83.6 1.74 83.6 1.90 181.9 
No.ModelDaily precipitation (mm)
P1 (2021–2030)
P2 (2031–2050)
P3 (2051–2100)
MeanMaxMeanMaxMeanMax
AC1 2.27 264.2 2.04 195.1 2.45 329.2 
AC2 1.84 126.0 2.38 253.7 2.78 412.7 
BC1 2.05 181.9 2.26 218.0 2.26 220.4 
BC2 1.98 220.4 2.17 198.1 2.48 270.9 
BNU 1.83 140.9 2.41 189.9 2.33 215.4 
CaE 2.08 149.4 2.45 159.3 2.37 210.1 
CCS 1.72 153.9 2.34 220.7 2.33 263.3 
CE1 1.75 104.3 2.02 151.3 2.20 185.4 
CE2 2.29 165.7 2.38 181.2 2.22 181.9 
10 CE5 1.81 175.3 1.99 183.5 2.05 215.5 
11 CM2 1.94 242.8 2.05 179.3 2.21 216.3 
12 CM3 2.56 301.6 2.36 292.0 2.27 256.0 
13 ECE 1.94 155.3 2.19 174.9 2.06 183.5 
14 FIO 1.60 171.3 2.06 211.6 1.90 266.7 
15 GE1 1.84 153.5 2.17 174.7 2.11 269.1 
16 GE2 2.04 167.6 1.98 162.4 2.07 233.0 
17 GE3 1.79 130.3 2.13 243.9 2.11 280.9 
18 GF2 2.09 174.3 2.17 267.0 2.84 353.9 
19 GF3 1.57 83.6 2.05 147.8 2.05 246.2 
20 GF4 1.83 130.2 2.08 184.8 2.00 268.4 
21 Ha5 2.21 254.6 2.51 222.7 2.38 226.4 
22 INC 1.85 133.1 1.87 259.2 2.16 244.3 
23 IP2 1.84 123.7 2.55 217.6 2.39 221.4 
24 IP3 2.08 167.8 2.30 265.4 2.15 247.9 
25 MI2 2.24 196.0 2.59 252.7 2.39 229.9 
26 MI3 2.04 211.2 2.38 266.8 2.20 231.0 
27 MI4 2.64 201.8 2.14 246.9 2.03 269.0 
28 MP1 1.66 184.4 1.74 160.1 2.02 206.5 
29 MR3 1.98 190.5 1.88 210.9 2.13 229.7 
30 NE1 1.78 156.6 1.87 180.7 2.32 270.0 
31 NE2 1.97 107.3 2.27 258.9 2.28 240.1 
Maximum 2.64 301.6 2.59 292.0 2.84 412.7 
Mean 1.97 171.6 2.19 171.6 2.24 248.2 
Minimum 1.57 83.6 1.74 83.6 1.90 181.9 

The bold values represent the maximum and minimum values.

Table 8

Statistics of daily precipitation for 31 GCMs under RCP8.5 scenario

No.ModelDaily precipitation (mm)
P1 (2021–2030)
P2 (2031–2050)
P3 (2051–2100)
MeanMaxMeanMaxMeanMax
AC1 2.35 177.5 2.13 199.5 2.88 261.5 
AC2 2.03 214.4 2.21 221.2 2.72 320.3 
BC1 1.97 152.7 2.12 326.4 2.14 217.7 
BC2 2.37 260.5 2.22 233.3 2.58 221.6 
BNU 2.12 160.4 2.26 217.8 2.62 272.4 
CaE 2.11 206.1 2.31 299.4 2.69 259.0 
CCS 2.00 130.9 2.35 196.0 2.50 321.1 
CE1 2.04 266.2 2.07 217.8 2.28 219.8 
CE2 1.85 246.5 2.14 186.2 2.45 254.5 
10 CE5 1.86 158.7 2.10 186.7 2.28 213.7 
11 CM2 2.05 204.5 2.07 176.2 2.25 231.2 
12 CM3 1.93 130.7 2.28 151.1 2.19 167.7 
13 ECE 2.32 134.4 1.91 178.3 2.09 185.5 
14 FIO 2.08 247.5 1.94 179.9 2.14 267.5 
15 GE1 2.31 162.2 2.09 207.5 2.08 218.3 
16 GE2 1.93 233.3 2.00 215.6 2.26 265.5 
17 GE3 2.39 187.5 2.02 153.0 2.24 260.2 
18 GF2 2.12 161.8 2.14 161.4 2.76 224.2 
19 GF3 2.02 175.2 1.92 150.3 2.29 251.1 
20 GF4 2.20 137.7 2.30 267.0 2.15 334.7 
21 Ha5 2.34 198.3 2.09 235.8 2.59 367.8 
22 INC 2.06 183.0 1.85 244.2 2.26 252.0 
23 IP2 2.41 157.7 2.45 203.1 2.79 311.5 
24 IP3 1.97 152.7 2.10 337.6 2.28 253.9 
25 MI2 1.97 164.7 2.61 224.2 2.55 267.2 
26 MI3 2.01 257.1 2.15 180.1 2.06 191.0 
27 MI4 1.85 119.4 1.89 127.7 2.23 208.4 
28 MP1 1.77 186.1 1.89 171.9 1.86 205.8 
29 MR3 1.96 160.5 2.12 194.9 2.38 229.5 
30 NE1 2.22 239.4 2.11 225.6 2.55 330.0 
31 NE2 2.11 164.9 2.17 264.1 2.55 262.8 
Maximum 2.41 266.20 2.61 337.6 2.88 367.8 
Mean 2.09 184.92 2.13 210.8 2.38 253.1 
Minimum 1.77 119.40 1.85 127.7 1.86 167.7 
No.ModelDaily precipitation (mm)
P1 (2021–2030)
P2 (2031–2050)
P3 (2051–2100)
MeanMaxMeanMaxMeanMax
AC1 2.35 177.5 2.13 199.5 2.88 261.5 
AC2 2.03 214.4 2.21 221.2 2.72 320.3 
BC1 1.97 152.7 2.12 326.4 2.14 217.7 
BC2 2.37 260.5 2.22 233.3 2.58 221.6 
BNU 2.12 160.4 2.26 217.8 2.62 272.4 
CaE 2.11 206.1 2.31 299.4 2.69 259.0 
CCS 2.00 130.9 2.35 196.0 2.50 321.1 
CE1 2.04 266.2 2.07 217.8 2.28 219.8 
CE2 1.85 246.5 2.14 186.2 2.45 254.5 
10 CE5 1.86 158.7 2.10 186.7 2.28 213.7 
11 CM2 2.05 204.5 2.07 176.2 2.25 231.2 
12 CM3 1.93 130.7 2.28 151.1 2.19 167.7 
13 ECE 2.32 134.4 1.91 178.3 2.09 185.5 
14 FIO 2.08 247.5 1.94 179.9 2.14 267.5 
15 GE1 2.31 162.2 2.09 207.5 2.08 218.3 
16 GE2 1.93 233.3 2.00 215.6 2.26 265.5 
17 GE3 2.39 187.5 2.02 153.0 2.24 260.2 
18 GF2 2.12 161.8 2.14 161.4 2.76 224.2 
19 GF3 2.02 175.2 1.92 150.3 2.29 251.1 
20 GF4 2.20 137.7 2.30 267.0 2.15 334.7 
21 Ha5 2.34 198.3 2.09 235.8 2.59 367.8 
22 INC 2.06 183.0 1.85 244.2 2.26 252.0 
23 IP2 2.41 157.7 2.45 203.1 2.79 311.5 
24 IP3 1.97 152.7 2.10 337.6 2.28 253.9 
25 MI2 1.97 164.7 2.61 224.2 2.55 267.2 
26 MI3 2.01 257.1 2.15 180.1 2.06 191.0 
27 MI4 1.85 119.4 1.89 127.7 2.23 208.4 
28 MP1 1.77 186.1 1.89 171.9 1.86 205.8 
29 MR3 1.96 160.5 2.12 194.9 2.38 229.5 
30 NE1 2.22 239.4 2.11 225.6 2.55 330.0 
31 NE2 2.11 164.9 2.17 264.1 2.55 262.8 
Maximum 2.41 266.20 2.61 337.6 2.88 367.8 
Mean 2.09 184.92 2.13 210.8 2.38 253.1 
Minimum 1.77 119.40 1.85 127.7 1.86 167.7 

The bold values represent the maximum and minimum values.

Monthly precipitation holds significant importance for water supply, particularly in agriculture. As depicted in Figures 4 and 5, the highest average seasonal precipitation during the historical period is observed in the summer (June–August) at 499.95 mm, while the lowest occurs in the winter (December–February) at 11.05 mm. Under the RCP4.5 scenario, the maximum average seasonal precipitation transpires in the summer (long-term) at 587.16 mm, marking a 17.44% increase from the historical maximum. The minimum value occurs in winter (short-term) at 14.19 mm, reflecting a 28.37% rise from the historical minimum. Similarly, under the RCP8.5 scenario, the peak average seasonal precipitation is in the summer (long-term) at 621.24 mm, indicating a 24.26% increase from the historical maximum. The minimum value occurs in winter (short-term) at 13.66 mm, representing a 23.60% increase from the historical minimum. There are fluctuating trends during precipitation in spring (March–May) and autumn (September–November).

The measured annual precipitation for the historical phase (2001–2020) and the modeled annual precipitation for the future phase (2021–2100) are depicted in Figure 6. To begin, the annual precipitation during the historical phase exhibits a trend rate of −7.64 mm/10a, with a multi-year average annual precipitation of 717 mm (Table 9). Additionally, under the RCP4.5 scenario, the maximum increase rate in future annual precipitation occurs in the medium-term, at 25.74 mm/10a. Under the RCP8.5 scenario, the maximum increase rate in future annual precipitation takes place in the long term, at 21.94 mm/10a (Table 9). The multi-year average annual precipitation under the RCP4.5 scenario experiences a 0.31% increase (short-term), 11.26% increase (medium-term), and 13.42% increase (long-term) compared to the historical period. Similarly, the multi-year average annual precipitation under the RCP8.5 scenario witnesses a 5.88% increase (short-term), 7.70% increase (medium-term), and 20.36% increase (long-term) compared to the historical period.

Table 9

Mean, variation ranges and trends of the annual precipitation

ScenariosPeriodsmean (mm)Variation ranges of the annual precipitation (%)
Precipitation trends (mm/10a)
MaximumMinumum
Baseline P0 (2001–2020) 717.75 65.23 −36.76 −7.64 
RCP4.5 P1 (2021–2030) 719.97 9.88 −11.96 −58.39 
P2 (2031–2050) 798.55 22.50 −2.70 25.74 
P3 (2051–2100) 814.09 25.74 0.56 1.17 
RCP8.5 P1 (2021–2030) 759.93 9.97 −1.58 −24.75 
P2 (2031–2050) 773.00 23.54 −1.69 5.73 
P3 (2051–2100) 863.86 36.48 5.10 21.94 
ScenariosPeriodsmean (mm)Variation ranges of the annual precipitation (%)
Precipitation trends (mm/10a)
MaximumMinumum
Baseline P0 (2001–2020) 717.75 65.23 −36.76 −7.64 
RCP4.5 P1 (2021–2030) 719.97 9.88 −11.96 −58.39 
P2 (2031–2050) 798.55 22.50 −2.70 25.74 
P3 (2051–2100) 814.09 25.74 0.56 1.17 
RCP8.5 P1 (2021–2030) 759.93 9.97 −1.58 −24.75 
P2 (2031–2050) 773.00 23.54 −1.69 5.73 
P3 (2051–2100) 863.86 36.48 5.10 21.94 

Prediction results of temperature

The temperature data, similar to the precipitation data, were input into HSPF as the meteorological data needed for simulating streamflow. The overall projected trends of daily maximum temperature (Tmax) and daily minimum temperature (Tmin) are shown in Figure 7. Specific data characteristics, such as skewness, and coefficient of variation, are listed in the appendix. The daily Tmax, in both the RCP4.5 and RCP8.5 scenarios, exhibits a distribution with kurtosis and skewness less than 0, signifying a relatively flat and left-skewed pattern. The coefficient of variation remains consistent around 0.32, indicating a stable dataset. Similarly, the daily Tmin follows a comparable trend, featuring kurtosis and skewness less than 0, indicating a distribution that is both relatively flat and left-skewed, with the coefficient of variation fluctuating around 0.54. While the data are relatively stable, it is noteworthy that it does not exhibit the same level of stability as the daily Tmax.
Figure 7

Change in (a) Tmax (°C) and (b) Tmin (°C) from the baseline phase average. The solid line indicates the temperature departure, illustrating the extent to which the temperature deviates from the mean temperature of the baseline phase. The shaded area represents one inter-model standard deviation from the MME mean (solid line).

Figure 7

Change in (a) Tmax (°C) and (b) Tmin (°C) from the baseline phase average. The solid line indicates the temperature departure, illustrating the extent to which the temperature deviates from the mean temperature of the baseline phase. The shaded area represents one inter-model standard deviation from the MME mean (solid line).

Close modal

Firstly, compared to the average value of the baseline phase (2001–2020), the projected increases in Tmax and Tmin under the RCP4.5 scenario reach 1.67 and 1.46 °C, respectively, at the end of the century. Meanwhile, the increases in Tmax and Tmin under the RCP8.5 scenario reach 4.10 and 4.16 °C, respectively, by the end of the century (Figure 7). Furthermore, the results for specific changes in temperature over time are shown in Table 10. Moreover, the increasing rates of Tmax and Tmin gradually decrease during 2021–2100 under the RCP4.5 scenario, while they gradually increase under the RCP8.5 scenario. The increase rate of Tmin is greater than that of Tmax in both the medium-term and long-term. In general, Tmax and Tmin show an increasing trend during 2021–2100 under both scenarios, with Tmin increasing more noticeably.

Table 10

Analysis of the range of variation and trends in Tmax and Tmin

ScenarioPeriodTemperature departure (°C)
Trend (°C/10 a)
Tmax
Tmin
TmaxTmin
MaxMinMaxMin
Baseline P0 (2001–2020) 0.73 −1.08 0.47 −0.79 0.036 0.13 
RCP4.5 P1 (2021–2030) 0.41 −0.11 0.25 −0.24 0.39 0.37 
P2 (2031–2050) 1.04 0.23 0.79 0.07 0.30 0.31 
P3 (2051–2100) 1.67 0.75 1.55 0.55 0.13 0.14 
RCP8.5 P1 (2021–2030) 0.62 0.10 0.45 0.03 0.37 0.35 
P2 (2031–2050) 1.57 0.53 1.37 0.40 0.51 0.54 
P3 (2051–2100) 4.10 1.40 4.16 1.34 0.53 0.55 
ScenarioPeriodTemperature departure (°C)
Trend (°C/10 a)
Tmax
Tmin
TmaxTmin
MaxMinMaxMin
Baseline P0 (2001–2020) 0.73 −1.08 0.47 −0.79 0.036 0.13 
RCP4.5 P1 (2021–2030) 0.41 −0.11 0.25 −0.24 0.39 0.37 
P2 (2031–2050) 1.04 0.23 0.79 0.07 0.30 0.31 
P3 (2051–2100) 1.67 0.75 1.55 0.55 0.13 0.14 
RCP8.5 P1 (2021–2030) 0.62 0.10 0.45 0.03 0.37 0.35 
P2 (2031–2050) 1.57 0.53 1.37 0.40 0.51 0.54 
P3 (2051–2100) 4.10 1.40 4.16 1.34 0.53 0.55 

Furthermore, available data suggest that Tmax and Tmin show an increasing trend in both summer (June to August) and autumn (September to November) under the RCP4.5 and RCP8.5 scenarios. The range of temperature changes over time for each month for Tmax and Tmin under the different scenarios is shown in Figure 8.
Figure 8

Monthly changes in Tmax, Tmin for RCP4.5, and Tmax, Tmin for RCP8.5 over time.

Figure 8

Monthly changes in Tmax, Tmin for RCP4.5, and Tmax, Tmin for RCP8.5 over time.

Close modal

It is evident that the largest increase of 2.6 °C compared to the baseline phase is expected to occur in the summer of the P3 period under the RCP8.5 scenario for Tmax. Overall, in both scenarios, Tmax and Tmin show a decrease and then an increase in spring (March to May). This is more pronounced in March, while Tmin decreases and then increases in January and February during the winter (December to February) months, with Tmax exhibiting a different pattern.

Results of HSPF parameter calibration

We used the year 2011 as the calibration period and the years 2012 and 2013 as the validation period for calibrating 11 HSPF parameters. Comparisons of the simulated and measured flow series are shown in Figures 9 and 10. The modeling accuracy is presented in Table 11. It can be observed that NSEs of the calibration period and validation period models reach 0.820 and 0.814, respectively, indicating that HSPF model parameters have been well optimized for further applications.
Figure 9

Comparison of simulated and measured flow in 2011.

Figure 9

Comparison of simulated and measured flow in 2011.

Close modal
Figure 10

Comparison of simulated and measured flows during 2012–2013.

Figure 10

Comparison of simulated and measured flows during 2012–2013.

Close modal
Table 11

Calibration and validation results of HSPF modeling

YearNSERS-value
Calibration 2011 0.820 0.907 0.894 
Validation 2012, 2013 0.814 0.948 0.927 
YearNSERS-value
Calibration 2011 0.820 0.907 0.894 
Validation 2012, 2013 0.814 0.948 0.927 

Results of streamflow prediction based on HSPF simulations

The precipitation and temperature prediction results from 31 climate models along with the calibrated HSPF model were utilized to derive hourly, daily, monthly, and annual streamflow projections for the Qinglong River under RCP 4.5 and RCP8.5 scenarios. Specifically, the monthly and annual streamflow values were calculated by summing up the corresponding daily streamflow data. These results are presented in Figures 11, 12, 14, and 15.
Figure 11

Hourly streamflow MME mean for RCP4.8 and RCP8.5 scenarios.

Figure 11

Hourly streamflow MME mean for RCP4.8 and RCP8.5 scenarios.

Close modal
Figure 12

Daily streamflow variability under RCP4.5 and RCP8.5. Short-term P1 (2021–2030), medium-term P2 (2031–2050), and long-term P3 (2051–2100).

Figure 12

Daily streamflow variability under RCP4.5 and RCP8.5. Short-term P1 (2021–2030), medium-term P2 (2031–2050), and long-term P3 (2051–2100).

Close modal

Hourly and daily prediction results of streamflow

By analyzing the hourly and daily streamflow data generated by HSPF, we can assess the potential for future flash floods in the Qinglong River.

Initially, hourly streamflow projections for the period 2021–2100 under both RCP4.5 and RCP8.5 scenarios were obtained by configuring the HSPF output time scale to hourly intervals. After thorough calculation and comparison, the mean and maximum hourly streamflow values for 31 GCMs under the respective scenarios during different periods are presented in Tables 12 and 13. The MME mean results of the 31 GCMs are illustrated in Figure 11.

Table 12

Statistics of hourly streamflow for 31 GCMs under RCP4.5 scenario

No.ModelHourly streamflow (108 m3)
P1 (2021–2030)
P2 (2031–2050)
P3 (2051–2100)
MeanMaxMeanMaxMeanMax
AC1 0.016 1.258 0.012 1.169 0.017 3.047 
AC2 0.008 0.950 0.019 2.183 0.022 4.021 
BC1 0.014 1.419 0.015 1.188 0.014 1.542 
BC2 0.010 1.030 0.014 1.554 0.017 1.554 
BNU 0.009 0.678 0.018 1.591 0.014 1.369 
CaE 0.011 1.010 0.016 0.809 0.013 1.641 
CCS 0.007 0.503 0.017 1.406 0.014 1.468 
CE1 0.006 0.444 0.009 0.640 0.011 1.295 
CE2 0.015 0.981 0.014 0.784 0.010 1.208 
10 CE5 0.009 0.910 0.010 0.893 0.010 1.579 
11 CM2 0.011 2.109 0.011 1.270 0.013 1.690 
12 CM3 0.025 2.886 0.018 2.529 0.014 2.257 
13 ECE 0.011 0.717 0.013 1.064 0.011 0.933 
14 FIO 0.006 0.437 0.013 1.554 0.009 1.307 
15 GE1 0.009 0.676 0.013 1.089 0.012 1.875 
16 GE2 0.011 1.258 0.009 0.697 0.012 1.517 
17 GE3 0.009 0.582 0.013 1.283 0.011 1.480 
18 GF2 0.013 1.178 0.012 1.406 0.020 2.344 
19 GF3 0.005 0.470 0.012 1.013 0.010 1.727 
20 GF4 0.008 0.567 0.012 1.591 0.009 1.295 
21 Ha5 0.016 2.245 0.019 1.764 0.015 1.357 
22 INC 0.009 0.831 0.009 1.369 0.013 1.258 
23 IP2 0.008 0.567 0.021 1.468 0.015 1.480 
24 IP3 0.011 1.172 0.016 2.319 0.012 1.887 
25 MI2 0.015 1.616 0.019 1.357 0.014 1.554 
26 MI3 0.013 1.678 0.018 1.456 0.012 1.493 
27 MI4 0.022 1.739 0.012 1.357 0.008 1.087 
28 MP1 0.007 0.614 0.007 1.095 0.009 1.220 
29 MR3 0.012 1.018 0.010 1.505 0.012 1.986 
30 NE1 0.009 0.918 0.008 1.270 0.013 1.382 
31 NE2 0.009 0.475 0.014 1.394 0.013 1.986 
Maximum 0.025 2.886 0.021 2.529 0.022 4.021  
Mean 0.011 1.062 0.014 1.357 0.013 1.672  
Minimum 0.005 0.437 0.007 0.640 0.008 0.933  
No.ModelHourly streamflow (108 m3)
P1 (2021–2030)
P2 (2031–2050)
P3 (2051–2100)
MeanMaxMeanMaxMeanMax
AC1 0.016 1.258 0.012 1.169 0.017 3.047 
AC2 0.008 0.950 0.019 2.183 0.022 4.021 
BC1 0.014 1.419 0.015 1.188 0.014 1.542 
BC2 0.010 1.030 0.014 1.554 0.017 1.554 
BNU 0.009 0.678 0.018 1.591 0.014 1.369 
CaE 0.011 1.010 0.016 0.809 0.013 1.641 
CCS 0.007 0.503 0.017 1.406 0.014 1.468 
CE1 0.006 0.444 0.009 0.640 0.011 1.295 
CE2 0.015 0.981 0.014 0.784 0.010 1.208 
10 CE5 0.009 0.910 0.010 0.893 0.010 1.579 
11 CM2 0.011 2.109 0.011 1.270 0.013 1.690 
12 CM3 0.025 2.886 0.018 2.529 0.014 2.257 
13 ECE 0.011 0.717 0.013 1.064 0.011 0.933 
14 FIO 0.006 0.437 0.013 1.554 0.009 1.307 
15 GE1 0.009 0.676 0.013 1.089 0.012 1.875 
16 GE2 0.011 1.258 0.009 0.697 0.012 1.517 
17 GE3 0.009 0.582 0.013 1.283 0.011 1.480 
18 GF2 0.013 1.178 0.012 1.406 0.020 2.344 
19 GF3 0.005 0.470 0.012 1.013 0.010 1.727 
20 GF4 0.008 0.567 0.012 1.591 0.009 1.295 
21 Ha5 0.016 2.245 0.019 1.764 0.015 1.357 
22 INC 0.009 0.831 0.009 1.369 0.013 1.258 
23 IP2 0.008 0.567 0.021 1.468 0.015 1.480 
24 IP3 0.011 1.172 0.016 2.319 0.012 1.887 
25 MI2 0.015 1.616 0.019 1.357 0.014 1.554 
26 MI3 0.013 1.678 0.018 1.456 0.012 1.493 
27 MI4 0.022 1.739 0.012 1.357 0.008 1.087 
28 MP1 0.007 0.614 0.007 1.095 0.009 1.220 
29 MR3 0.012 1.018 0.010 1.505 0.012 1.986 
30 NE1 0.009 0.918 0.008 1.270 0.013 1.382 
31 NE2 0.009 0.475 0.014 1.394 0.013 1.986 
Maximum 0.025 2.886 0.021 2.529 0.022 4.021  
Mean 0.011 1.062 0.014 1.357 0.013 1.672  
Minimum 0.005 0.437 0.007 0.640 0.008 0.933  

The bold values represent the maximum and minimum values.

Table 13

Statistics of hourly streamflow for 31 GCMs under RCP8.5 scenario

No.ModelHourly streamflow (108 m3)
P1 (2021–2030)
P2 (2031–2050)
P3 (2051–2100)
MeanMaxMeanMaxMeanMax
AC1 0.015 1.344 0.014 0.934 0.022 2.393 
AC2 0.012 1.715 0.013 1.357 0.019 2.899 
BC1 0.011 0.776 0.011 1.431 0.012 1.258 
BC2 0.017 1.258 0.015 1.307 0.018 1.715 
BNU 0.012 0.926 0.015 1.150 0.017 1.480 
CaE 0.012 1.628 0.016 2.714 0.017 1.690 
CCS 0.011 0.650 0.016 1.641 0.015 2.023 
CE1 0.013 1.295 0.013 1.270 0.013 1.875 
CE2 0.009 1.140 0.013 1.579 0.014 1.850 
10 CE5 0.009 0.593 0.012 1.246 0.010 1.190 
11 CM2 0.011 0.937 0.011 0.782 0.011 1.628 
12 CM3 0.009 0.433 0.014 0.822 0.011 0.956 
13 ECE 0.016 0.892 0.010 0.678 0.011 1.332 
14 FIO 0.014 1.206 0.011 1.456 0.013 1.320 
15 GE1 0.015 1.071 0.013 1.530 0.011 1.205 
16 GE2 0.012 1.443 0.012 1.456 0.013 1.616 
17 GE3 0.017 1.060 0.011 0.741 0.012 1.155 
18 GF2 0.013 0.722 0.012 1.003 0.019 1.517 
19 GF3 0.012 1.332 0.009 0.904 0.013 1.567 
20 GF4 0.013 0.551 0.017 2.060 0.011 1.665 
21 Ha5 0.016 1.776 0.012 1.567 0.018 2.109 
22 INC 0.011 0.775 0.010 1.035 0.015 1.431 
23 IP2 0.016 0.910 0.017 1.004 0.021 2.048 
24 IP3 0.011 0.611 0.012 2.245 0.012 1.295 
25 MI2 0.010 0.886 0.019 1.468 0.014 1.739 
26 MI3 0.011 1.205 0.012 0.844 0.007 1.480 
27 MI4 0.007 0.389 0.008 0.734 0.009 1.332 
28 MP1 0.008 1.172 0.009 1.099 0.007 1.542 
29 MR3 0.011 1.061 0.014 1.530 0.015 1.924 
30 NE1 0.015 1.517 0.012 0.867 0.015 1.752 
31 NE2 0.011 0.728 0.013 1.320 0.015 1.394 
Maximum 0.017 1.776 0.019 2.714 0.022 2.899 
Mean 0.012 1.032 0.013 1.283 0.014 1.625 
Minimum 0.007 0.389 0.008 0.678 0.007 0.956 
No.ModelHourly streamflow (108 m3)
P1 (2021–2030)
P2 (2031–2050)
P3 (2051–2100)
MeanMaxMeanMaxMeanMax
AC1 0.015 1.344 0.014 0.934 0.022 2.393 
AC2 0.012 1.715 0.013 1.357 0.019 2.899 
BC1 0.011 0.776 0.011 1.431 0.012 1.258 
BC2 0.017 1.258 0.015 1.307 0.018 1.715 
BNU 0.012 0.926 0.015 1.150 0.017 1.480 
CaE 0.012 1.628 0.016 2.714 0.017 1.690 
CCS 0.011 0.650 0.016 1.641 0.015 2.023 
CE1 0.013 1.295 0.013 1.270 0.013 1.875 
CE2 0.009 1.140 0.013 1.579 0.014 1.850 
10 CE5 0.009 0.593 0.012 1.246 0.010 1.190 
11 CM2 0.011 0.937 0.011 0.782 0.011 1.628 
12 CM3 0.009 0.433 0.014 0.822 0.011 0.956 
13 ECE 0.016 0.892 0.010 0.678 0.011 1.332 
14 FIO 0.014 1.206 0.011 1.456 0.013 1.320 
15 GE1 0.015 1.071 0.013 1.530 0.011 1.205 
16 GE2 0.012 1.443 0.012 1.456 0.013 1.616 
17 GE3 0.017 1.060 0.011 0.741 0.012 1.155 
18 GF2 0.013 0.722 0.012 1.003 0.019 1.517 
19 GF3 0.012 1.332 0.009 0.904 0.013 1.567 
20 GF4 0.013 0.551 0.017 2.060 0.011 1.665 
21 Ha5 0.016 1.776 0.012 1.567 0.018 2.109 
22 INC 0.011 0.775 0.010 1.035 0.015 1.431 
23 IP2 0.016 0.910 0.017 1.004 0.021 2.048 
24 IP3 0.011 0.611 0.012 2.245 0.012 1.295 
25 MI2 0.010 0.886 0.019 1.468 0.014 1.739 
26 MI3 0.011 1.205 0.012 0.844 0.007 1.480 
27 MI4 0.007 0.389 0.008 0.734 0.009 1.332 
28 MP1 0.008 1.172 0.009 1.099 0.007 1.542 
29 MR3 0.011 1.061 0.014 1.530 0.015 1.924 
30 NE1 0.015 1.517 0.012 0.867 0.015 1.752 
31 NE2 0.011 0.728 0.013 1.320 0.015 1.394 
Maximum 0.017 1.776 0.019 2.714 0.022 2.899 
Mean 0.012 1.032 0.013 1.283 0.014 1.625 
Minimum 0.007 0.389 0.008 0.678 0.007 0.956 

The bold values represent the maximum and minimum values.

For the years 2021–2100, the maximum values of hourly streamflow peak at 402.1 and 289.9 million m3 under RCP4.5 and RCP8.5 scenarios, occurring on 18 July 2069 and 23 August 2088. Conversely, the minimum values of maximum hourly streamflow are recorded in the short term, at 43.7 and 38.9 million m3. Figure 11 displays the MME mean of hourly streamflow for the 31 GCMs, revealing that the maximum future hourly streamflow is 32.39 million m3 under the RCP4.5 scenario, occurring on 18 July 2040, and is 34.34 million m3 under the RCP8.5 scenario, occurring on 19 July 2084.

Due to the absence of measured hourly streamflow data, the maximum hourly streamflow values for RCP4.5 and RCP8.5 scenarios were further converted into streamflow per second and compared with historical flood data for the watershed. The results are shown in Table 14. As of now, since the completion of the Taolinkou Reservoir in 1998, the maximum flood peak of the Qinglong River has been 2,011 m3/s. It is noteworthy that the maximum flood peak discharges recorded in the Qinglong River before the completion of the downstream reservoir were 8,760 m3/s (Table 14). Referring to relevant information (Wu 2009), the design flood standard for the Taolinkou Reservoir is outlined in Table 15, indicating that the maximum design flood corresponds to a 100-year flood with a peak flow of 14,340 m/s.

Table 14

Historical peak flood flows and future peak flood flows in the Qinglong River modeled by HSPF

ScenarioPeriodTypePeak flood flow (m3/s)Ratios (%)
Historical phase Before 1998 Measured 8,760 100.00 
After 1998 Measured 2,011 22.96 
RCP4.5 P1 (2021–2030) MME 7,302 83.36 
Min 12,139 138.57 
Max 80,166 915.14 
P2 (2031–2050) MME 8,996 102.69 
Min 17,778 202.95 
Max 70,250 801.94 
P3 (2051–2100) MME 8,861 101.15 
Min 25,917 295.86 
Maximum 111,694 1,275.05 
RCP8.5 P1 (2021–2030) MME 7,420 84.70 
Min 10,806 123.36 
Max 49,333 563.16 
P2 (2031–2050) MME 7,446 85.00 
Min 18,833 214.99 
Max 75,389 860.61 
P3 (2051–2100) MME 9,539 108.89 
Min 26,556 303.15 
Max 80,528 919.27 
ScenarioPeriodTypePeak flood flow (m3/s)Ratios (%)
Historical phase Before 1998 Measured 8,760 100.00 
After 1998 Measured 2,011 22.96 
RCP4.5 P1 (2021–2030) MME 7,302 83.36 
Min 12,139 138.57 
Max 80,166 915.14 
P2 (2031–2050) MME 8,996 102.69 
Min 17,778 202.95 
Max 70,250 801.94 
P3 (2051–2100) MME 8,861 101.15 
Min 25,917 295.86 
Maximum 111,694 1,275.05 
RCP8.5 P1 (2021–2030) MME 7,420 84.70 
Min 10,806 123.36 
Max 49,333 563.16 
P2 (2031–2050) MME 7,446 85.00 
Min 18,833 214.99 
Max 75,389 860.61 
P3 (2051–2100) MME 9,539 108.89 
Min 26,556 303.15 
Max 80,528 919.27 

MME represents the MME mean of 31 GCMs. Min means the minimum of the mean and maximum output of each GCM among 31 GCMs, and max means the maximum.

Table 15

Design peak discharge of Taolinkou Reservoir

Frequency (%)Return period (year)Peak discharge (m3/s)
100 14,340 
50 11,400 
20 7,660 
10 10 5,120 
20 2,860 
Frequency (%)Return period (year)Peak discharge (m3/s)
100 14,340 
50 11,400 
20 7,660 
10 10 5,120 
20 2,860 

Analyzing the results from all 31 GCMs, the projected future peak flood flow under the RCP4.5 scenario is expected to range from 138.57% (short-term) to 1,275.05% (long-term) of the historical 8,760 m3/s. For the RCP8.5 scenario, the projected peak flood flow is expected to range from 123.36% (short-term) to 919.05% (long-term). However, the peak flood flow obtained from the MME mean is projected to be 83.36% (short-term) to 101.15% (medium-term) of the historical 8,760 m3/s under the RCP4.5 scenario and 84.70% (short-term) to 108.89% (long-term) under the RCP8.5 scenario.

Next, the daily streamflow was simulated by configuring the HSPF output time scale to daily. The average daily streamflow and maximum daily streamflow values for the 31 GCMs are presented in Tables 16 and 17, respectively. The detailed statistical characteristics of daily streamflow under the RCP4.5 and RCP8.5 scenarios, including skewness, coefficient of variation, confidence intervals, etc., can be found in the appendix.

Table 16

Statistics of daily streamflow for 31 GCMs under RCP4.5 scenario

No.ModelDaily streamflow (108m3)
P1 (2021–2030)
P2 (2031–2050)
P3 (2051–2100)
MeanMaxMeanMaxMeanMax
AC1 0.016 1.136 0.012 1.097 0.017 2.726 
AC2 0.008 0.873 0.019 2.048 0.022 3.922 
BC1 0.014 1.283 0.015 1.082 0.014 1.406 
BC2 0.010 0.963 0.014 1.419 0.017 1.480 
BNU 0.009 0.618 0.018 1.517 0.014 1.219 
CaE 0.011 0.935 0.016 0.744 0.013 1.493 
CCS 0.007 0.471 0.017 1.283 0.014 1.344 
CE1 0.006 0.377 0.009 0.566 0.011 1.147 
CE2 0.015 0.884 0.014 0.687 0.010 1.122 
10 CE5 0.009 0.852 0.010 0.830 0.010 1.431 
11 CM2 0.011 1.986 0.011 1.139 0.013 1.591 
12 CM3 0.025 2.812 0.018 2.405 0.014 2.146 
13 ECE 0.011 0.659 0.013 0.994 0.011 0.866 
14 FIO 0.006 0.398 0.013 1.456 0.009 1.246 
15 GE1 0.009 0.607 0.013 0.995 0.012 1.776 
16 GE2 0.011 1.179 0.009 0.644 0.012 1.406 
17 GE3 0.009 0.525 0.013 1.152 0.011 1.357 
18 GF2 0.013 1.066 0.012 1.295 0.020 2.134 
19 GF3 0.005 0.439 0.012 0.928 0.010 1.579 
20 GF4 0.008 0.506 0.012 1.493 0.009 1.205 
21 Ha5 0.016 2.122 0.019 1.616 0.015 1.246 
22 INC 0.009 0.767 0.009 1.270 0.013 1.167 
23 IP2 0.008 0.492 0.021 1.382 0.015 1.357 
24 IP3 0.011 1.056 0.016 2.196 0.012 1.715 
25 MI2 0.015 1.493 0.019 1.246 0.014 1.419 
26 MI3 0.013 1.542 0.018 1.320 0.012 1.332 
27 MI4 0.022 1.591 0.012 1.258 0.008 1.027 
28 MP1 0.007 0.560 0.007 0.998 0.009 1.105 
29 MR3 0.012 0.930 0.010 1.394 0.012 1.863 
30 NE1 0.009 0.854 0.008 1.139 0.013 1.270 
31 NE2 0.009 0.439 0.014 1.258 0.013 1.850 
Maximum 0.025 2.812 0.021 2.405 0.022 3.922 
Mean 0.011 0.981 0.014 1.253 0.013 1.547 
Minimum 0.005 0.377 0.007 0.566 0.008 0.866 
No.ModelDaily streamflow (108m3)
P1 (2021–2030)
P2 (2031–2050)
P3 (2051–2100)
MeanMaxMeanMaxMeanMax
AC1 0.016 1.136 0.012 1.097 0.017 2.726 
AC2 0.008 0.873 0.019 2.048 0.022 3.922 
BC1 0.014 1.283 0.015 1.082 0.014 1.406 
BC2 0.010 0.963 0.014 1.419 0.017 1.480 
BNU 0.009 0.618 0.018 1.517 0.014 1.219 
CaE 0.011 0.935 0.016 0.744 0.013 1.493 
CCS 0.007 0.471 0.017 1.283 0.014 1.344 
CE1 0.006 0.377 0.009 0.566 0.011 1.147 
CE2 0.015 0.884 0.014 0.687 0.010 1.122 
10 CE5 0.009 0.852 0.010 0.830 0.010 1.431 
11 CM2 0.011 1.986 0.011 1.139 0.013 1.591 
12 CM3 0.025 2.812 0.018 2.405 0.014 2.146 
13 ECE 0.011 0.659 0.013 0.994 0.011 0.866 
14 FIO 0.006 0.398 0.013 1.456 0.009 1.246 
15 GE1 0.009 0.607 0.013 0.995 0.012 1.776 
16 GE2 0.011 1.179 0.009 0.644 0.012 1.406 
17 GE3 0.009 0.525 0.013 1.152 0.011 1.357 
18 GF2 0.013 1.066 0.012 1.295 0.020 2.134 
19 GF3 0.005 0.439 0.012 0.928 0.010 1.579 
20 GF4 0.008 0.506 0.012 1.493 0.009 1.205 
21 Ha5 0.016 2.122 0.019 1.616 0.015 1.246 
22 INC 0.009 0.767 0.009 1.270 0.013 1.167 
23 IP2 0.008 0.492 0.021 1.382 0.015 1.357 
24 IP3 0.011 1.056 0.016 2.196 0.012 1.715 
25 MI2 0.015 1.493 0.019 1.246 0.014 1.419 
26 MI3 0.013 1.542 0.018 1.320 0.012 1.332 
27 MI4 0.022 1.591 0.012 1.258 0.008 1.027 
28 MP1 0.007 0.560 0.007 0.998 0.009 1.105 
29 MR3 0.012 0.930 0.010 1.394 0.012 1.863 
30 NE1 0.009 0.854 0.008 1.139 0.013 1.270 
31 NE2 0.009 0.439 0.014 1.258 0.013 1.850 
Maximum 0.025 2.812 0.021 2.405 0.022 3.922 
Mean 0.011 0.981 0.014 1.253 0.013 1.547 
Minimum 0.005 0.377 0.007 0.566 0.008 0.866 

The bold values represent the maximum and minimum values.

Table 17

Statistics of daily streamflow for 31 GCMs under RCP8.5 scenario

No.ModelDaily streamflow (108 m3)
P1 (2021–2030)
P2 (2031–2050)
P3 (2051–2100)
MeanMaxMeanMaxMeanMax
AC1 0.015 1.210 0.014 0.867 0.022 2.146 
AC2 0.012 1.579 0.013 1.214 0.019 2.603 
BC1 0.011 0.710 0.011 1.357 0.012 1.136 
BC2 0.017 1.174 0.015 1.180 0.018 1.579 
BNU 0.012 0.867 0.015 1.037 0.017 1.344 
CaE 0.012 1.480 0.016 2.603 0.017 1.579 
CCS 0.011 0.561 0.016 1.530 0.015 1.900 
CE1 0.013 1.232 0.013 1.140 0.013 1.764 
CE2 0.009 1.087 0.013 1.480 0.014 1.702 
10 CE5 0.009 0.507 0.012 1.129 0.010 1.066 
11 CM2 0.011 0.867 0.011 0.724 0.011 1.468 
12 CM3 0.009 0.397 0.014 0.757 0.011 0.900 
13 ECE 0.016 0.812 0.010 0.608 0.011 1.200 
14 FIO 0.014 1.125 0.011 1.332 0.013 1.246 
15 GE1 0.015 0.965 0.013 1.406 0.011 1.077 
16 GE2 0.012 1.295 0.012 1.320 0.013 1.456 
17 GE3 0.017 0.967 0.011 0.680 0.012 1.067 
18 GF2 0.013 0.660 0.012 0.937 0.019 1.394 
19 GF3 0.012 1.246 0.009 0.834 0.013 1.456 
20 GF4 0.013 0.493 0.017 1.949 0.011 1.505 
21 Ha5 0.016 1.690 0.012 1.419 0.018 1.912 
22 INC 0.011 0.715 0.010 0.963 0.015 1.332 
23 IP2 0.016 0.855 0.017 0.937 0.021 1.924 
24 IP3 0.011 0.553 0.012 2.048 0.012 1.199 
25 MI2 0.010 0.823 0.019 1.332 0.014 1.628 
26 MI3 0.011 1.125 0.012 0.780 0.007 1.332 
27 MI4 0.007 0.349 0.008 0.673 0.009 1.225 
28 MP1 0.008 1.053 0.009 0.995 0.007 1.382 
29 MR3 0.011 0.967 0.014 1.382 0.015 1.801 
30 NE1 0.015 1.382 0.012 0.786 0.015 1.591 
31 NE2 0.011 0.672 0.013 1.219 0.015 1.246 
Maximum 0.017 1.690 0.019 2.603 0.022 2.603 
Mean 0.012 0.949 0.013 1.181 0.014 1.489 
Minimum 0.007 0.349 0.008 0.608 0.007 0.900 
No.ModelDaily streamflow (108 m3)
P1 (2021–2030)
P2 (2031–2050)
P3 (2051–2100)
MeanMaxMeanMaxMeanMax
AC1 0.015 1.210 0.014 0.867 0.022 2.146 
AC2 0.012 1.579 0.013 1.214 0.019 2.603 
BC1 0.011 0.710 0.011 1.357 0.012 1.136 
BC2 0.017 1.174 0.015 1.180 0.018 1.579 
BNU 0.012 0.867 0.015 1.037 0.017 1.344 
CaE 0.012 1.480 0.016 2.603 0.017 1.579 
CCS 0.011 0.561 0.016 1.530 0.015 1.900 
CE1 0.013 1.232 0.013 1.140 0.013 1.764 
CE2 0.009 1.087 0.013 1.480 0.014 1.702 
10 CE5 0.009 0.507 0.012 1.129 0.010 1.066 
11 CM2 0.011 0.867 0.011 0.724 0.011 1.468 
12 CM3 0.009 0.397 0.014 0.757 0.011 0.900 
13 ECE 0.016 0.812 0.010 0.608 0.011 1.200 
14 FIO 0.014 1.125 0.011 1.332 0.013 1.246 
15 GE1 0.015 0.965 0.013 1.406 0.011 1.077 
16 GE2 0.012 1.295 0.012 1.320 0.013 1.456 
17 GE3 0.017 0.967 0.011 0.680 0.012 1.067 
18 GF2 0.013 0.660 0.012 0.937 0.019 1.394 
19 GF3 0.012 1.246 0.009 0.834 0.013 1.456 
20 GF4 0.013 0.493 0.017 1.949 0.011 1.505 
21 Ha5 0.016 1.690 0.012 1.419 0.018 1.912 
22 INC 0.011 0.715 0.010 0.963 0.015 1.332 
23 IP2 0.016 0.855 0.017 0.937 0.021 1.924 
24 IP3 0.011 0.553 0.012 2.048 0.012 1.199 
25 MI2 0.010 0.823 0.019 1.332 0.014 1.628 
26 MI3 0.011 1.125 0.012 0.780 0.007 1.332 
27 MI4 0.007 0.349 0.008 0.673 0.009 1.225 
28 MP1 0.008 1.053 0.009 0.995 0.007 1.382 
29 MR3 0.011 0.967 0.014 1.382 0.015 1.801 
30 NE1 0.015 1.382 0.012 0.786 0.015 1.591 
31 NE2 0.011 0.672 0.013 1.219 0.015 1.246 
Maximum 0.017 1.690 0.019 2.603 0.022 2.603 
Mean 0.012 0.949 0.013 1.181 0.014 1.489 
Minimum 0.007 0.349 0.008 0.608 0.007 0.900 

The bold values represent the maximum and minimum values.

The daily streamflow under both the RCP4.5 and RCP8.5 scenarios shows a distribution with an average kurtosis of 183.056 and 160.786, respectively, and skewness of 10.884 and 10.396, respectively. These findings indicate a more peaked data distribution that is skewed to the right, suggesting a higher frequency of extreme values compared to a normal distribution. Moreover, the coefficient of variation fluctuates around 4.3, indicating considerable variability in the data. The values in the dataset are relatively dispersed, similar to the pattern observed in daily precipitation.

According to the results, the maximum values of the maximum daily streamflow for 2021–2100 are 392 million m3 under the RCP4.5 scenario and 260.3 million m3 under the RCP8.5 scenario. Both are simulated using meteorological data from the ACCESS1-3 model, occurring on 18 July 2069 and 23 August 2088, respectively. The MME mean of daily streamflow and the MME mean of daily precipitation are illustrated in Figure 12. The results indicate that the maximum daily streamflow values of the MME mean under the RCP4.5 and RCP8.5 scenarios are 30.5012 and 31.8099 million m3, respectively, occurring on 18 July 2040 and 18 July 2081.

Table 18 lists the comparison of historical and simulated data. According to the available measured data, the historical maximum daily streamflow was 172.37 million m3 on 3 August 2012 (Figure 10 and Table 18). The average daily streamflow for 2001–2016 was 1.0053 million m3.

Table 18

Historical daily streamflow and future daily streamflow modeled by HSPF

ScenarioPeriodTypeMean (104 m3)Ratios (%)Max (104 m3)Ratios (%)
Historical phase 2001–2016 Measured 100.53 100 17,237.05 100 
RCP4.5 P1 (2021–2030) MME 110.72 110.14 2,389.00 13.86 
Min 51.11 50.84 3,774.46 21.90 
Max 248.39 247.08 28,123.44 163.16 
P2 (2031–2050) MME 137.13 136.41 3,050.12 17.70 
Min 71.69 71.31 5,661.69 32.85 
Max 207.25 206.16 24,052.94 139.54 
P3 (2051–2100) MME 129.62 128.94 2,859.47 16.59 
Min 84.92 84.47 8,659.06 50.24 
Maximum 219.35 218.19 39,224.80 227.56 
RCP8.5 P1 (2021–2030) MME 122.53 121.88 2,398.68 13.92 
Min 73.24 72.85 3,490.76 20.25 
Max 174.32 173.40 16,898.74 98.04 
P2 (2031–2050) MME 127.64 126.97 2,401.57 13.93 
Min 76.80 76.40 6,081.08 35.28 
Max 192.20 191.19 26,026.52 150.99 
P3 (2051–2100) MME 138.61 137.88 3,180.99 18.45 
Min 72.23 71.85 9,004.44 52.24 
Max 220.93 219.77 26,026.52 150.99 
ScenarioPeriodTypeMean (104 m3)Ratios (%)Max (104 m3)Ratios (%)
Historical phase 2001–2016 Measured 100.53 100 17,237.05 100 
RCP4.5 P1 (2021–2030) MME 110.72 110.14 2,389.00 13.86 
Min 51.11 50.84 3,774.46 21.90 
Max 248.39 247.08 28,123.44 163.16 
P2 (2031–2050) MME 137.13 136.41 3,050.12 17.70 
Min 71.69 71.31 5,661.69 32.85 
Max 207.25 206.16 24,052.94 139.54 
P3 (2051–2100) MME 129.62 128.94 2,859.47 16.59 
Min 84.92 84.47 8,659.06 50.24 
Maximum 219.35 218.19 39,224.80 227.56 
RCP8.5 P1 (2021–2030) MME 122.53 121.88 2,398.68 13.92 
Min 73.24 72.85 3,490.76 20.25 
Max 174.32 173.40 16,898.74 98.04 
P2 (2031–2050) MME 127.64 126.97 2,401.57 13.93 
Min 76.80 76.40 6,081.08 35.28 
Max 192.20 191.19 26,026.52 150.99 
P3 (2051–2100) MME 138.61 137.88 3,180.99 18.45 
Min 72.23 71.85 9,004.44 52.24 
Max 220.93 219.77 26,026.52 150.99 

MME represents the MME mean of 31 GCMs. Min means the minimum of the mean and maximum output of each GCM among 31 GCMs, and max means the maximum.

Firstly, with the maximum daily streamflow values obtained from each GCM, the projected future maximum daily streamflow under the RCP4.5 scenario is expected to be 227.56% (long-term) of historical, with a minimum value of 21.9% (short-term) of historical. The future average daily streamflow under the RCP4.5 scenario is projected to be 50.84% (short-term) – 247.08% (short-term) of the historical average daily streamflow. Moreover, under the RCP8.5 scenario, the projected future maximum daily streamflow ranges from 20.25% (short-term) to 150.99% (long-term) of the historical, and average daily streamflow ranges from 72.85% (short-term) to 219.77% (long-term) of the historical.

Secondly, with the MME mean values obtained from the 31 GCMs, it is found that the range of future maximum daily streamflow under the RCP4.5 scenario is 13.86% (short-term) to 17.7% (medium-term) of the historical maximum daily streamflow, and 13.92% (short-term) to 18.45% (long-term) for the RCP8.5 scenario. The future multi-year average daily streamflow increases by 10.14% (short-term) to 36.41% (medium-term) for the RCP4.5 scenario and 21.88% (short-term) – 37.88% (long-term) for the RCP8.5 scenario.

Prediction results of monthly streamflow

First, the historical monthly streamflow is depicted in Figure 13(c). The historical maximum monthly streamflow was 954 million m3, occurring in August 2012. Additionally, the multi-year average monthly streamflow is highest in August and lowest in February. Monthly streamflow is derived by aggregating daily streamflow values. The maximum streamflow values for each month for the 31 GCMs under the RCP4.5 and RCP8.5 scenarios, along with the MME mean values, are presented in Figure 13.
Figure 13

Maximum (a), mean (b), monthly streamflow for each month of 2021–2100 for 31 GCMs under RCP4.5 and RCP8.5 scenarios and historical monthly streamflow (c).

Figure 13

Maximum (a), mean (b), monthly streamflow for each month of 2021–2100 for 31 GCMs under RCP4.5 and RCP8.5 scenarios and historical monthly streamflow (c).

Close modal

The results reveal that the single-model maximum monthly streamflow is 2,738.60 million m3 for the RCP4.5 scenario and 3,069.96 million m3 for the RCP8.5 scenario, occurring in July 2069 and August 2088, respectively. The maximum monthly streamflow for the MME mean is 312.34 million m3 (August 2085) for the RCP4.5 scenario and 359.87 million m3 (August 2088) for the RCP8.5 scenario.

Secondly, the extent and direction of change in average monthly streamflow over the years relative to historical monthly streamflow under different scenarios are detailed in Table 19 and Table 20, and illustrated in Figure 14. The table presents the minimum, mean, and maximum values of the multi-year average monthly streamflow for each month across the 31 GCMs. Notably, the future maximum monthly streamflow is anticipated to increase compared to the historical phase, while the minimum monthly streamflow is predicted to decrease.
Table 19

Changes in minimum, mean, and maximum multi-year average monthly streamflow for the 31 future GCMs under the RCP4.5 scenario from the historical phase

MonthIncrease and decrease in monthly streamflow (%)
P1 (2021–2030)
P2 (2031–2050)
P3 (2051–2100)
MinMeanMaxMinMeanMaxMinMeanMax
−92.29 −87.08 −45.18 −99.75 −95.85 −81.72 −99.81 −95.75 −80.50 
−99.99 −98.62 −81.68 −99.99 −96.43 −70.65 −99.87 −96.71 −85.19 
−99.97 −98.45 −94.68 −99.91 −97.62 −91.82 −99.60 −96.85 −87.38 
−99.98 −80.81 5.44 −99.53 −75.92 −14.36 −97.93 −69.83 19.40 
−99.97 −84.92 −15.08 −99.54 −73.40 −17.95 −99.02 −76.60 −42.00 
−97.15 −31.65 60.33 −88.58 −6.53 178.75 −59.83 −23.07 53.10 
2.71 168.49 636.94 6.74 213.10 575.43 54.36 184.66 613.65 
−21.10 71.37 356.92 17.57 111.37 271.64 24.19 104.62 289.08 
−71.03 −0.12 157.76 −57.36 52.45 315.58 −33.19 41.72 172.68 
10 −82.06 −46.54 40.54 −59.44 −23.60 40.41 −73.77 −23.93 26.28 
11 −98.87 −80.46 −27.06 −94.65 −67.24 −15.96 −90.65 −60.93 −36.53 
12 −99.94 −93.75 −48.16 −99.63 −92.51 −73.10 −99.24 −90.68 −75.00 
MonthIncrease and decrease in monthly streamflow (%)
P1 (2021–2030)
P2 (2031–2050)
P3 (2051–2100)
MinMeanMaxMinMeanMaxMinMeanMax
−92.29 −87.08 −45.18 −99.75 −95.85 −81.72 −99.81 −95.75 −80.50 
−99.99 −98.62 −81.68 −99.99 −96.43 −70.65 −99.87 −96.71 −85.19 
−99.97 −98.45 −94.68 −99.91 −97.62 −91.82 −99.60 −96.85 −87.38 
−99.98 −80.81 5.44 −99.53 −75.92 −14.36 −97.93 −69.83 19.40 
−99.97 −84.92 −15.08 −99.54 −73.40 −17.95 −99.02 −76.60 −42.00 
−97.15 −31.65 60.33 −88.58 −6.53 178.75 −59.83 −23.07 53.10 
2.71 168.49 636.94 6.74 213.10 575.43 54.36 184.66 613.65 
−21.10 71.37 356.92 17.57 111.37 271.64 24.19 104.62 289.08 
−71.03 −0.12 157.76 −57.36 52.45 315.58 −33.19 41.72 172.68 
10 −82.06 −46.54 40.54 −59.44 −23.60 40.41 −73.77 −23.93 26.28 
11 −98.87 −80.46 −27.06 −94.65 −67.24 −15.96 −90.65 −60.93 −36.53 
12 −99.94 −93.75 −48.16 −99.63 −92.51 −73.10 −99.24 −90.68 −75.00 
Table 20

Changes in minimum, mean, and maximum multi-year average monthly streamflow for the 31 future GCMs under the RCP8.5 scenario from the historical phase

MonthIncrease and decrease in monthly streamflow (%)
P1 (2021–2030)
P2 (2031–2050)
P3 (2051–2100)
MinMeanMaxMinMeanMaxMinMeanMax
−91.45 −87.77 −63.65 −99.98 −95.68 −63.14 −99.59 −96.15 −88.51 
−99.99 −98.49 −79.21 −99.98 −97.79 −68.07 −99.79 −97.27 −84.41 
−99.98 −95.62 −69.21 −99.75 −96.78 −84.66 −99.50 −95.28 −85.36 
−99.98 −80.61 −28.02 −99.52 −71.49 27.00 −99.22 −61.74 17.04 
−99.98 −82.98 −31.69 −98.37 −73.84 36.62 −97.73 −68.74 104.85 
−96.49 −34.96 90.18 −78.53 −25.28 34.91 −72.55 −18.93 85.10 
18.97 153.35 316.72 54.91 172.46 388.81 48.55 189.72 354.49 
20.61 103.82 242.23 25.46 111.94 220.56 14.83 123.96 287.97 
−57.73 34.22 170.44 −66.89 20.59 212.87 −57.56 61.12 235.96 
10 −68.90 −25.50 90.38 −73.10 −25.81 40.74 −61.04 −19.26 31.73 
11 −96.85 −64.72 13.17 −95.54 −66.06 −5.91 −87.93 −60.88 −16.10 
12 −99.67 −92.56 −64.30 −99.69 −92.22 −80.55 −99.30 −87.71 −55.35 
MonthIncrease and decrease in monthly streamflow (%)
P1 (2021–2030)
P2 (2031–2050)
P3 (2051–2100)
MinMeanMaxMinMeanMaxMinMeanMax
−91.45 −87.77 −63.65 −99.98 −95.68 −63.14 −99.59 −96.15 −88.51 
−99.99 −98.49 −79.21 −99.98 −97.79 −68.07 −99.79 −97.27 −84.41 
−99.98 −95.62 −69.21 −99.75 −96.78 −84.66 −99.50 −95.28 −85.36 
−99.98 −80.61 −28.02 −99.52 −71.49 27.00 −99.22 −61.74 17.04 
−99.98 −82.98 −31.69 −98.37 −73.84 36.62 −97.73 −68.74 104.85 
−96.49 −34.96 90.18 −78.53 −25.28 34.91 −72.55 −18.93 85.10 
18.97 153.35 316.72 54.91 172.46 388.81 48.55 189.72 354.49 
20.61 103.82 242.23 25.46 111.94 220.56 14.83 123.96 287.97 
−57.73 34.22 170.44 −66.89 20.59 212.87 −57.56 61.12 235.96 
10 −68.90 −25.50 90.38 −73.10 −25.81 40.74 −61.04 −19.26 31.73 
11 −96.85 −64.72 13.17 −95.54 −66.06 −5.91 −87.93 −60.88 −16.10 
12 −99.67 −92.56 −64.30 −99.69 −92.22 −80.55 −99.30 −87.71 −55.35 
Figure 14

Comparison of minimum (a,b), mean (c,d), and maximum (e,f) values of multi-year average monthly flows for 31 GCMs under RCP4.5 and RCP8.5 scenarios for different time periods and historical periods.

Figure 14

Comparison of minimum (a,b), mean (c,d), and maximum (e,f) values of multi-year average monthly flows for 31 GCMs under RCP4.5 and RCP8.5 scenarios for different time periods and historical periods.

Close modal

Breaking down the results, the minimum values indicate that, under the RCP4.5 scenario, only July and August (excluding the short-term) experienced an increase in streamflow compared to the historical phase. The future maximum monthly streamflow during the year occurs in August (long-term) with a 24.19% increase over the historical phase, while the minimum monthly streamflow occurs in February (short-term) and is 99.99% lower than the historical phase. Similarly, under the RCP8.5 scenario, July and August show increased streamflow in the future compared to the historical period. The maximum monthly streamflow during the year in the future multi-year average monthly streamflow occurs in August (medium-term), reflecting a 20.60% increase over the historical period, while the minimum monthly streamflow occurs in February (short-term) and is 99.99% lower than the historical phase.

Moving on to the MME mean results, an increase in streamflow is observed in future July and August under the RCP4.5 scenario compared to the historical phase. The maximum monthly streamflow during the year for the different future periods occurs in August, showing increases of 71.37% (short-term), 111.37% (medium-term), and 104.62% (long-term) compared to the historical period, while the minimum monthly streamflow occurs in February, with reductions of 98.62% (short-term), 96.43% (medium-term), and 96.71% (long-term) compared to the historical phase.

Furthermore, there is an increase in future streamflow from July to September compared to the historical phase under the RCP8.5 scenario. The maximum monthly streamflow for different future periods occurs in August, indicating increases of 103.82% (short-term), 111.95% (medium-term), and 123.96% (long-term) compared to the historical phase, while the minimum monthly streamflow occurs in February, with reductions of 98.49% (short-term), 97.79% (medium-term), and 97.27% (long-term) compared to the historical phase.

Finally, the maximum results show an increase in streamflow in the RCP4.5 scenario for the future months from June to October and April (excluding the medium-term) compared to the historical phase. The maximum monthly streamflow for different future periods occurs in August, with increases of 356.92% (short-term), 271.64% (medium-term) and 289.08% (long-term) compared to the historical phase, while the minimum monthly streamflow occurs in March (short-term) and is 94.68% lower than the historical phase.

Similarly, there is an increase in streamflow for the RCP8.5 scenario in future months from June to November (short-term) and April to October (medium-term and long-term) compared to the historical phase. The maximum monthly streamflow for different future periods occurs in August, with increases of 242.23% (short-term), 220.56% (medium-term) and 287.97% (long-term) compared to the historical phase, while the minimum monthly streamflow occurs in January (long-term) and is 63.65% lower than the historical phase.

The MME mean values of streamflow for corresponding months in each season were aggregated to derive seasonal streamflow (Figure 14), representing the average seasonal streamflow for each period. The results are presented in Tables 21 and 22. During the historical phase, the highest summer streamflow (June-August) constituted 61.46% of the total annual streamflow, while the lowest winter streamflow (December–February) accounted for 8.29% of the total annual streamflow. Results indicate that under the RCP4.5 scenario, the four seasons exhibit the largest average multi-year streamflow in the summer and the smallest in the winter. Summer multi-year average streamflow is 92.89–133.03% higher than the historical phase, expected to contribute to 85.91% (short-term) to 88.63% (medium-term) of the total annual streamflow. Conversely, the multi-year average streamflow in winter is 93.04–94.62% lower than the historical period and is projected to contribute 0.29% (medium-term) to 0.46% (short-term) of the total annual streamflow.

Table 21

Seasonal streamflows during different periods

ScenarioPeriodStreamflow (104 m3)
SpringSummerAutumnWinter
Baseline P0 (2001–2020) 2,505.3 18,578.9 6,471.6 2672.4 
RCP4.5 P1 (2021–2030) 286.7 35,837.7 4,123.7 186.0 
P2 (2031–2050) 423.2 43,293.5 6,228.1 143.9 
P3 (2051–2100) 455.0 40,602.3 6,042.3 163.1 
RCP8.5 P1 (2021–2030) 329.3 38,476.5 5,748.0 194.6 
P2 (2031–2050) 463.5 40,657.3 5,360.4 138.5 
P3 (2051–2100) 595.8 43,103.9 6,656.1 188.8 
ScenarioPeriodStreamflow (104 m3)
SpringSummerAutumnWinter
Baseline P0 (2001–2020) 2,505.3 18,578.9 6,471.6 2672.4 
RCP4.5 P1 (2021–2030) 286.7 35,837.7 4,123.7 186.0 
P2 (2031–2050) 423.2 43,293.5 6,228.1 143.9 
P3 (2051–2100) 455.0 40,602.3 6,042.3 163.1 
RCP8.5 P1 (2021–2030) 329.3 38,476.5 5,748.0 194.6 
P2 (2031–2050) 463.5 40,657.3 5,360.4 138.5 
P3 (2051–2100) 595.8 43,103.9 6,656.1 188.8 
Table 22

Seasonal distribution of streamflows

ScenarioPeriodProportion (%)
SpringSummerAutumnWinter
Baseline P0 (2001–2020) 8.29 61.46 21.41 8.84 
RCP4.5 P1 (2021–2030) 0.71 88.63 10.20 0.46 
P2 (2031–2050) 0.84 86.43 12.43 0.29 
P3 (2051–2100) 0.96 85.91 12.78 0.35 
RCP8.5 P1 (2021–2030) 0.74 85.98 12.85 0.43 
P2 (2031–2050) 0.99 87.21 11.50 0.30 
P3 (2051–2100) 1.18 85.28 13.17 0.37 
ScenarioPeriodProportion (%)
SpringSummerAutumnWinter
Baseline P0 (2001–2020) 8.29 61.46 21.41 8.84 
RCP4.5 P1 (2021–2030) 0.71 88.63 10.20 0.46 
P2 (2031–2050) 0.84 86.43 12.43 0.29 
P3 (2051–2100) 0.96 85.91 12.78 0.35 
RCP8.5 P1 (2021–2030) 0.74 85.98 12.85 0.43 
P2 (2031–2050) 0.99 87.21 11.50 0.30 
P3 (2051–2100) 1.18 85.28 13.17 0.37 

Under the RCP8.5 scenario, similarly, the summer has the largest average multi-year streamflow and the winter has the smallest average multi-year streamflow. Summer multi-year average streamflow is 107.10–132.00% higher than the historical phase and is expected to account for 85.28% (long-term) to 87.21% (medium-term) of the total annual streamflow. Winter multi-year average streamflow is 92.72–94.82% lower than the historical phase and is expected to account for 0.30% (medium-term) to 0.43% (short-term) of the total annual streamflow.

Annual prediction results of streamflow

Firstly, the annual streamflow of the Qinglong River during the baseline period (2001–2020) is shown in Figure 15(c). The multi-year average annual streamflow for this period was 384.4 million m3, with an increasing trend of 146.2 million m3/10a. The maximum annual streamflow reached 1,474.7 million m3 (2012), while the minimum was recorded at 191.9 million m3 (2020).
Figure 15

Measured annual streamflow series for the (c) baseline phase and simulated annual streamflow series for the Qinglong River streamflow under different future scenarios ((a) RCP4.5; (b) RCP8.5).

Figure 15

Measured annual streamflow series for the (c) baseline phase and simulated annual streamflow series for the Qinglong River streamflow under different future scenarios ((a) RCP4.5; (b) RCP8.5).

Close modal

By aggregating daily streamflow data, we determined the annual streamflow for 31 GCMs from 2021 to 2100, presented in Tables 23 and 24. Results indicate that the maximum annual streamflow under the RCP4.5 scenario between 2021 and 2100 is 3.515 billion m3, occurring in 2091. For the RCP8.5 scenario, the maximum annual streamflow is 4.772 billion m3, observed in 2088. Additionally, the minimum annual streamflow under the RCP4.5 and RCP8.5 scenarios during the same period is recorded in 2022 and 2097, respectively, at 1.316 and 0.337 million m3.

Table 23

Statistics of annual streamflow for 31 GCMs under RCP4.5 scenario

No.ModelAnnual streamflow (108 m3)
P1 (2021–2030)
P2 (2031–2050)
P3 (2051–2100)
MinMaxMinMaxMinMax
AC1 1.22 10.79 0.39 18.46 0.31 35.15 
AC2 0.24 8.58 0.01 20.13 1.76 33.27 
BC1 0.18 18.11 1.51 15.88 0.26 17.58 
BC2 0.18 10.04 0.12 18.09 0.85 18.95 
BNU 0.54 7.19 0.98 18.40 0.59 14.29 
CaE 0.46 9.28 1.10 15.42 0.22 15.23 
CCS 0.19 6.66 1.41 16.29 0.23 18.67 
CE1 0.68 4.52 0.30 9.28 0.23 12.75 
CE2 0.54 15.33 0.14 15.82 0.41 16.35 
10 CE5 0.49 12.58 0.13 13.93 0.27 12.87 
11 CM2 1.20 14.78 0.22 10.09 0.10 15.62 
12 CM3 0.30 25.57 0.01 21.41 0.44 22.10 
13 ECE 0.06 9.74 1.05 9.98 0.65 12.04 
14 FIO 0.82 3.80 1.47 15.54 0.74 10.31 
15 GE1 0.39 7.47 0.66 13.80 0.17 22.34 
16 GE2 0.94 14.57 0.78 9.08 0.37 17.57 
17 GE3 0.26 6.47 0.25 16.33 0.48 16.17 
18 GF2 1.82 10.15 0.68 14.86 0.22 20.58 
19 GF3 0.23 4.12 0.59 18.37 0.31 20.66 
20 GF4 0.89 6.11 0.89 15.63 0.36 13.21 
21 Ha5 0.55 23.09 2.36 18.92 0.79 19.34 
22 INC 0.01 8.13 0.98 9.65 0.49 14.50 
23 IP2 0.59 6.69 0.37 19.43 0.79 19.13 
24 IP3 0.32 9.60 1.38 16.57 0.42 19.37 
25 MI2 0.36 15.74 0.93 14.36 0.76 13.97 
26 MI3 0.35 14.16 0.57 16.41 0.21 14.61 
27 MI4 2.10 24.80 0.18 19.93 0.20 11.76 
28 MP1 0.56 9.31 0.11 11.60 0.24 12.86 
29 MR3 1.24 11.78 0.04 12.70 0.13 18.47 
30 NE1 0.33 9.60 0.11 11.69 0.57 12.27 
31 NE2 0.86 6.87 0.82 11.77 0.49 18.87 
Maximum 2.10 25.57 2.36 21.41 1.76 35.15 
Mean 0.61 11.15 0.66 15.16 0.45 17.45 
Minimum 0.01 3.80 0.01 9.08 0.10 10.31 
No.ModelAnnual streamflow (108 m3)
P1 (2021–2030)
P2 (2031–2050)
P3 (2051–2100)
MinMaxMinMaxMinMax
AC1 1.22 10.79 0.39 18.46 0.31 35.15 
AC2 0.24 8.58 0.01 20.13 1.76 33.27 
BC1 0.18 18.11 1.51 15.88 0.26 17.58 
BC2 0.18 10.04 0.12 18.09 0.85 18.95 
BNU 0.54 7.19 0.98 18.40 0.59 14.29 
CaE 0.46 9.28 1.10 15.42 0.22 15.23 
CCS 0.19 6.66 1.41 16.29 0.23 18.67 
CE1 0.68 4.52 0.30 9.28 0.23 12.75 
CE2 0.54 15.33 0.14 15.82 0.41 16.35 
10 CE5 0.49 12.58 0.13 13.93 0.27 12.87 
11 CM2 1.20 14.78 0.22 10.09 0.10 15.62 
12 CM3 0.30 25.57 0.01 21.41 0.44 22.10 
13 ECE 0.06 9.74 1.05 9.98 0.65 12.04 
14 FIO 0.82 3.80 1.47 15.54 0.74 10.31 
15 GE1 0.39 7.47 0.66 13.80 0.17 22.34 
16 GE2 0.94 14.57 0.78 9.08 0.37 17.57 
17 GE3 0.26 6.47 0.25 16.33 0.48 16.17 
18 GF2 1.82 10.15 0.68 14.86 0.22 20.58 
19 GF3 0.23 4.12 0.59 18.37 0.31 20.66 
20 GF4 0.89 6.11 0.89 15.63 0.36 13.21 
21 Ha5 0.55 23.09 2.36 18.92 0.79 19.34 
22 INC 0.01 8.13 0.98 9.65 0.49 14.50 
23 IP2 0.59 6.69 0.37 19.43 0.79 19.13 
24 IP3 0.32 9.60 1.38 16.57 0.42 19.37 
25 MI2 0.36 15.74 0.93 14.36 0.76 13.97 
26 MI3 0.35 14.16 0.57 16.41 0.21 14.61 
27 MI4 2.10 24.80 0.18 19.93 0.20 11.76 
28 MP1 0.56 9.31 0.11 11.60 0.24 12.86 
29 MR3 1.24 11.78 0.04 12.70 0.13 18.47 
30 NE1 0.33 9.60 0.11 11.69 0.57 12.27 
31 NE2 0.86 6.87 0.82 11.77 0.49 18.87 
Maximum 2.10 25.57 2.36 21.41 1.76 35.15 
Mean 0.61 11.15 0.66 15.16 0.45 17.45 
Minimum 0.01 3.80 0.01 9.08 0.10 10.31 

The bold values represent the maximum and minimum values.

Table 24

Statistics of annual streamflow for 31 GCMs under RCP8.5 scenario

No.ModelAnnual streamflow (108 m3)
P1 (2021–2030)
P2 (2031–2050)
P3 (2051–2100)
MinMaxMinMaxMinMax
AC1 0.27 19.54 0.06 13.48 0.82 34.63 
AC2 1.94 14.30 0.56 16.96 0.34 47.72 
BC1 0.07 10.31 0.91 12.81 0.17 14.53 
BC2 1.50 14.49 0.51 15.56 0.40 32.16 
BNU 0.45 8.84 1.96 11.36 0.32 17.84 
CaE 1.42 14.81 1.07 19.33 0.67 18.12 
CCS 0.53 9.82 0.87 12.93 0.81 15.89 
CE1 0.48 15.84 0.46 16.38 0.21 18.36 
CE2 0.24 9.49 0.84 11.75 0.44 20.95 
10 CE5 0.30 8.10 0.25 12.96 0.50 15.00 
11 CM2 0.53 9.68 0.62 10.45 0.28 16.34 
12 CM3 0.78 5.76 1.00 12.27 0.03 13.54 
13 ECE 1.52 11.66 0.03 6.39 0.08 12.79 
14 FIO 0.44 13.52 0.34 12.53 0.05 10.78 
15 GE1 1.26 11.07 0.18 18.71 0.38 12.37 
16 GE2 0.76 12.84 0.44 13.38 0.12 14.71 
17 GE3 1.12 17.18 1.05 8.61 0.51 14.86 
18 GF2 0.47 10.51 0.58 9.80 1.24 19.20 
19 GF3 0.65 16.41 0.24 11.26 0.22 14.60 
20 GF4 2.31 7.04 0.49 20.66 0.003 14.19 
21 Ha5 0.85 21.73 0.17 9.78 0.23 20.11 
22 INC 1.96 12.85 0.02 14.18 0.34 13.35 
23 IP2 1.50 10.05 1.22 16.78 0.50 22.09 
24 IP3 1.03 12.37 0.07 20.58 0.45 15.35 
25 MI2 0.47 10.12 1.24 18.85 0.46 15.98 
26 MI3 0.15 8.55 0.39 14.02 0.05 13.55 
27 MI4 0.36 6.78 0.03 8.30 0.25 13.95 
28 MP1 0.34 12.24 0.32 9.78 0.01 15.09 
29 MR3 0.58 10.33 0.40 17.89 0.07 19.91 
30 NE1 1.32 11.47 0.58 12.55 0.37 16.42 
31 NE2 1.03 10.88 0.43 11.85 0.11 19.49 
Maximum 2.31 21.73 1.96 20.66 1.24 47.72 
Mean 0.86 11.89 0.56 13.62 0.34 18.19 
Minimum 0.07 5.76 0.02 6.39 0.003 10.78 
No.ModelAnnual streamflow (108 m3)
P1 (2021–2030)
P2 (2031–2050)
P3 (2051–2100)
MinMaxMinMaxMinMax
AC1 0.27 19.54 0.06 13.48 0.82 34.63 
AC2 1.94 14.30 0.56 16.96 0.34 47.72 
BC1 0.07 10.31 0.91 12.81 0.17 14.53 
BC2 1.50 14.49 0.51 15.56 0.40 32.16 
BNU 0.45 8.84 1.96 11.36 0.32 17.84 
CaE 1.42 14.81 1.07 19.33 0.67 18.12 
CCS 0.53 9.82 0.87 12.93 0.81 15.89 
CE1 0.48 15.84 0.46 16.38 0.21 18.36 
CE2 0.24 9.49 0.84 11.75 0.44 20.95 
10 CE5 0.30 8.10 0.25 12.96 0.50 15.00 
11 CM2 0.53 9.68 0.62 10.45 0.28 16.34 
12 CM3 0.78 5.76 1.00 12.27 0.03 13.54 
13 ECE 1.52 11.66 0.03 6.39 0.08 12.79 
14 FIO 0.44 13.52 0.34 12.53 0.05 10.78 
15 GE1 1.26 11.07 0.18 18.71 0.38 12.37 
16 GE2 0.76 12.84 0.44 13.38 0.12 14.71 
17 GE3 1.12 17.18 1.05 8.61 0.51 14.86 
18 GF2 0.47 10.51 0.58 9.80 1.24 19.20 
19 GF3 0.65 16.41 0.24 11.26 0.22 14.60 
20 GF4 2.31 7.04 0.49 20.66 0.003 14.19 
21 Ha5 0.85 21.73 0.17 9.78 0.23 20.11 
22 INC 1.96 12.85 0.02 14.18 0.34 13.35 
23 IP2 1.50 10.05 1.22 16.78 0.50 22.09 
24 IP3 1.03 12.37 0.07 20.58 0.45 15.35 
25 MI2 0.47 10.12 1.24 18.85 0.46 15.98 
26 MI3 0.15 8.55 0.39 14.02 0.05 13.55 
27 MI4 0.36 6.78 0.03 8.30 0.25 13.95 
28 MP1 0.34 12.24 0.32 9.78 0.01 15.09 
29 MR3 0.58 10.33 0.40 17.89 0.07 19.91 
30 NE1 1.32 11.47 0.58 12.55 0.37 16.42 
31 NE2 1.03 10.88 0.43 11.85 0.11 19.49 
Maximum 2.31 21.73 1.96 20.66 1.24 47.72 
Mean 0.86 11.89 0.56 13.62 0.34 18.19 
Minimum 0.07 5.76 0.02 6.39 0.003 10.78 

The bold values represent the maximum and minimum values.

Table 25

Analysis of future annual streamflow

ScenarioPeriodPercentage increase in average annual streamflow compared to baseline phase (%)Annual streamflow trend (108 m3/10a)
Baseline P0 (2001–2020) – 1.462 
RCP4.5 P1 (2021–2030) 5.18 1.418 
P2 (2031–2050) 30.34 0.341 
P3 (2051–2100) 22.95 0.008 
RCP8.5 P1 (2021–2030) 16.41 −0.525 
P2 (2031–2050) 21.27 −0.026 
P3 (2051–2100) 31.48 0.192 
ScenarioPeriodPercentage increase in average annual streamflow compared to baseline phase (%)Annual streamflow trend (108 m3/10a)
Baseline P0 (2001–2020) – 1.462 
RCP4.5 P1 (2021–2030) 5.18 1.418 
P2 (2031–2050) 30.34 0.341 
P3 (2051–2100) 22.95 0.008 
RCP8.5 P1 (2021–2030) 16.41 −0.525 
P2 (2031–2050) 21.27 −0.026 
P3 (2051–2100) 31.48 0.192 

Subsequently, the MME mean of annual streamflow was calculated and compared with the historical phase's annual streamflow, as shown in Table 25. Under the RCP4.5 scenario, the maximum projected annual streamflow is 656.23 million m3, anticipated in 2091, with the minimum at 240.28 million m3 in 2030. Projections indicate an increase in annual streamflow by 5.18% in the short-term, 30.34% in the medium-term, and 22.95% in the long-term. Similarly, under the RCP8.5 scenario, the maximum future annual streamflow is 672.10 million m3, occurring in 2044, while the minimum is 340.20 million m3 in 2030. Projections suggest an increase in annual streamflow by 16.41% in the short-term, 21.27% in the medium-term, and 31.48% in the long-term.

Discussion

This study predicted and analyzed potential changes in future temperature, precipitation, and streamflow under various climate change scenarios in the Qinglong River watershed.

Climate change

First, under both the RCP4.5 and RCP8.5 scenarios, temperatures in the study watershed exhibit an increasing trend from 2021 to 2100. This upward trajectory and the magnitude of temperature rise are more pronounced in scenarios with higher GHG emissions. Additionally, temperatures experienced significant increases in all seasons during the middle and late parts of the century.

Second, the RCP4.5 and RCP8.5 scenarios indicate significantly higher precipitation in the study watershed. The multi-year average daily precipitation for 2021–2100 under both climate scenarios increases by over 100% compared to the historical phase. Both summer and winter precipitation are notably higher compared to the historical period. The escalation in precipitation is more pronounced under high GHG emission scenarios, evident in the comparison of the RCP4.5 and RCP8.5 multi-timescale precipitation maxima.

Moreover, when combining the precipitation results of the RCP4.5 and RCP8.5 scenarios, future precipitation is expected to be concentrated in the summer and minimized in the winter.

As the Qinglong River is a tributary of the Luan River, relevant precipitation research results from the Luan River can offer valuable insights for this study. Zeng et al.’s (2012) findings on the climate change of the Luan River align with the projected climate change results of the Qinglong River in this study. Additionally, Yang et al. (2019) predicted seasonal precipitation for the Luan River from 2020 to 2030 as 63, 312, 77, and 6 mm, respectively. This aligns with the seasonal distribution of precipitation in the watershed in the results of this study. However, precipitation in the Qinglong River during the four seasons of 2021–2030 significantly exceeds these values. This could be attributed to the synthesis of results from multiple RCP scenarios in this study or the fact that the Luan River basin is larger and has a substantial north-south temperature difference, making it more susceptible to meteorological and hydrological droughts. In contrast, the Qinglong River watershed, with higher forest coverage and closer proximity to the ocean, is more susceptible to the influence of East Asian and Okhotsk Sea atmospheric circulation changes, resulting in increased precipitation.

Changes in streamflow

The results of streamflow projections across various time scales indicate that both peak flood flow and water resources in the Qinglong River watershed are expected to increase from 2021 to 2100 compared to the historical period. This trend aligns with findings from Yang Wenting's study on the Luan River's streamflow. Concurrently, it is evident that climate change driven by GHG emissions can significantly impact watershed streamflow dynamics.

Initially, the majority of peak streamflow values, derived from hourly streamflow data from 31 GCMs, surpassed the peak flood flow of the 100-year flood, a crucial design criterion for the Taolinkou Reservoir. According to the MME mean of the 31 GCMs, future peak flood flows are anticipated to fall between the peak flows associated with 50- and 20-year floods. Consequently, there is a need for heightened flood control measures, particularly in the middle and late parts of the century. The maximum daily streamflow projections under the RCP4.5 and RCP8.5 scenarios indicate values at 247.08 and 219.77%, respectively, of the historical maximum daily streamflow. This has implications for potential future waterlogging issues in cities surrounding the watershed. Furthermore, multi-year average summer streamflow and annual streamflow exhibit increases relative to the historical phase at different periods under both scenarios, with more significant increases observed under the RCP8.5 scenario. This implies a future abundance of water resources in the Qinglong River watershed. Notably, streamflow increases more prominently under high GHG emission scenarios, consistent with precipitation patterns.

The study also suggests that the intra-annual distribution of future streamflow will be altered due to climate change effects. Under both climate change scenarios, only July and August show an increase in multi-year average monthly streamflow compared to the historical phase, with July experiencing the most substantial increase. Coupled with the MME mean results, a significant rise in summer streamflow is anticipated, leading to the ratio of summer streamflow to total annual streamflow increasing from 61.46 to over 85%. This underscores the expectation that streamflow will become more concentrated in the summer in the future. Notably, while precipitation contributes significantly to the rise in seasonal streamflow, the substantial reduction in streamflow during spring and winter, observed in both scenarios, contrasts with seasonal precipitation variation. Given that the study watershed lies in the East Asian monsoon climate zone, characterized by less precipitation in spring and winter, rising temperatures in these seasons lead to increased evaporation during the dry season. The rise in precipitation cannot compensate for the heightened evapotranspiration, further accentuating the uneven intra-annual distribution of streamflow due to climate change. Additionally, the short-term, medium-term, and long-term multi-year average seasonal streamflow in the Qinglong River watershed under the RCP8.5 scenario surpass that under the RCP4.5 scenario. This underscores the significant impact of the high-temperature GHG emission scenario on the increase in seasonal streamflow in the Qinglong River watershed. In summary, the watershed must implement relevant measures in water storage and peak regulation in the future to meet flood control and drought resistance needs.

The interaction among streamflow, precipitation, and temperature changes is evident in our study. Firstly, through the statistical characteristics of the data, we observe positive values for kurtosis, skewness, and coefficient of variation in both precipitation and streamflow. In contrast, temperature consistently exhibits negative values, indicating a right-skewed distribution for precipitation and streamflow and a left-skewed distribution for temperature. A cross-sectional comparison reveals the correlation between temperature and precipitation. Considering the consistent distribution of seasonal precipitation and streamflow, it suggests that precipitation is a more significant contributing factor compared to temperature. Precipitation directly influences the hydrological process of surface streamflow, resulting in a concentration of streamflow during the summer, offsetting the impact of high-temperature evaporation. However, temperature also plays a role to a certain extent.

The East Asian monsoon, highly influenced by temperature, experiences a significant impact as rising temperatures lead to greater variations in sea and land temperature gradients. This intensifies the East Asian monsoon, resulting in increased precipitation and affecting streamflow. The observed increasing trends in temperature, precipitation, and streamflow in our study underscore this phenomenon.

Limitations of the study

This study also comes with certain limitations. The range of extremes in streamflow derived from the GCMs' predictions is excessively wide. Although MME averaging reduces some of the uncertainties associated with individual models, it can inadvertently narrow the spectrum of data variation, potentially compromising the overall analysis (Bannister et al. 2017). The streamflow analysis in this study involved amalgamating the predictions of the 31 GCMs with the results of the MME mean derived from these models. However, there is room for improvement, particularly in predicting streamflow extremes. For instance, considering all results from the 31 GCMs, the projected maximum annual streamflow is 238% of the historical maximum under the RCP4.5 scenario and 324% under the RCP8.5 scenario. In contrast, when using the MME mean, the maximum annual streamflow is 44.5% of the historical maximum for the RCP4.5 scenario and 45.6% for the RCP8.5 scenario. Similarly, the projected minimum annual streamflow is 0.69% of the historical minimum for the RCP4.5 scenario and 0.18% for the RCP8.5 scenario, while the minimum annual streamflow using the MME mean is 12.5% of the historical minimum for the RCP4.5 scenario and 17.7% for the RCP8.5 scenario. This underscores the need to explore more rational approaches to mitigate uncertainty and enhance the accuracy of extreme value predictions.

Short-term and long-term streamflow predictions differ. Referring to Burgan's study, which utilized diverse algorithms for daily streamflow prediction, can offer insights (Burgan 2022). Future research should involve varying simulation methods to compare result reliability. Moreover, this study does not account for future changes in the watershed's surface, including modifications in land use types, when projecting streamflow. Ju et al.’s (2023) study indicates that urban growth also has a certain impact on surface streamflow. Studying changes in streamflow requires a comprehensive consideration of multiple factors. These considerations should be addressed in subsequent research on streamflow changes (Zhou et al. 2023).

In this study, the assessment of climate change impacts on the streamflow of the Qinglong River relied on data from 31 GCMs and HSPF simulations. Changes in temperature, precipitation, and streamflow for the period 2021–2100 under RCP4.5 and RCP8.5 scenarios were examined using the MME mean of HSPF simulation results. The study yielded the following conclusions:

The results indicate significant increases in peak flood flows on hourly and daily scales under both RCP4.5 and RCP8.5 scenarios, surpassing historical maximums. The MME mean for 31 GCMs shows a maximum increase in average annual streamflow of 30.34% under RCP4.5 and 31.48% under RCP8.5. However, monthly and seasonal streamflow distribution will become more heterogeneous. This suggests a potential for increased flood risks and underscores the importance of future water resource management in the watershed.

Data cannot be made publicly available; readers should contact the corresponding author for details.

The authors declare there is no conflict.

Ahmed
K.
,
Sachindra
D. A.
,
Shahid
S.
,
Iqbal
Z.
,
Nawaz
N.
&
Khan
N.
2020
Multi-model ensemble predictions of precipitation and temperature using machine learning algorithms
.
Atmospheric Research
236
,
104806
.
Ahsan
S.
,
Bhat
M. S.
,
Alam
A.
,
Farooq
H.
&
Shiekh
H. A.
2022
Complementary use of multi-model climate ensemble and Bayesian model averaging for projecting river hydrology in the Himalaya
.
Environmental Science and Pollution Research
30
(
13
),
38898
38920
.
Albek
M.
,
Albek
E. A.
,
Göncü
S.
&
Şimşek Uygun
B.
2019
Ensemble streamflow projections for a small watershed with HSPF model
.
Environmental Science and Pollution Research
26
,
36023
36036
.
Auer
C.
,
Kriegler
E.
,
Carlsen
H.
,
Kok
K.
,
Pedde
S.
,
Krey
V.
&
Müller
B.
2021
Climate change scenario services: From science to facilitating action
.
One Earth
4
(
8
),
1074
1082
.
Badora
D.
,
Wawer
R.
,
Nierobca
A.
,
Krol-Badziak
A.
,
Kozyra
J.
,
Jurga
B.
&
Nowocien
E.
2022
Modelling the hydrology of an upland catchment of Bystra river in 2050 climate using RCP 4.5 and RCP 8.5 emission scenario forecasts
.
Agriculture
12
(
3
),
403
.
Bannister
D.
,
Herzog
M.
,
Graf
H.-F.
,
Hosking
J. S.
&
Short
C. A.
2017
An assessment of recent and future temperature change over the Sichuan Basin, China, using CMIP5 climate models
.
Journal of Climate
30
(
17
),
6701
6722
.
Burgan
H. I.
2022
Comparison of different ANN (FFBP GRNN RBF) algorithms and multiple linear regression for daily streamflow prediction in Kocasu river – Turkey
.
Fresenius Environmental Bulletin
31
,
4699
4708
.
Chen
Q.
,
Chen
H.
,
Zhang
J.
,
Hou
Y.
,
Shen
M.
,
Chen
J.
&
Xu
C.
2020
Impacts of climate change and LULC change on runoff in the Jinsha River Basin
.
Journal of Geographical Sciences
30
(
1
),
85
102
.
Choi
J.
,
Socolofsky Scott
A.
&
Olivera
F.
2008
Hourly disaggregation of daily rainfall in Texas using measured hourly precipitation at other locations
.
Journal of Hydrologic Engineering
13
(
6
),
476
487
.
Donigian
A.
&
Imhoff
J.
2006
History and evolution of watershed modeling derived from the Stanford watershed model
. In:
Watershed models
(
Singh, V. P., Frevert, D. K.,
eds.).
CRC Press
,
Boca Raton, FL
, pp.
21
45
.
Duan
Q.
&
Duan
A.
2020
The energy and water cycles under climate change
.
National Science Review
7
(
3
),
553
557
.
Gao
D.
,
Chen
T.
,
Yang
K.
,
Zhou
J.
&
Ao
T.
2020
Projecting the impacts of climate change on streamflow in the upper reaches of the Yangtze River basin
.
Journal of Water and Climate Change
12
(
5
),
1724
1743
.
Gudmundsson
L.
,
Bremnes
J. B.
,
Haugen
J. E.
&
Engen-Skaugen
T.
2012
Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods
.
Hydrology and Earth System Sciences
16
(
9
),
3383
3390
.
Huntington
T. G.
2006
Evidence for intensification of the global water cycle: Review and synthesis
.
Journal of Hydrology
319
(
1
),
83
95
.
Intergovernmental Panel on Climate Change
.
2015
Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the IPCC Fifth Assessment Report
.
Cambridge University Press
,
Cambridge
.
Intergovernmental Panel on Climate Change
.
2022
Global Warming of 1.5 °C: IPCC Special Report on Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty
.
Cambridge University Press
,
Cambridge
.
Ju
X.
,
Li
W.
,
Li
J.
,
He
L.
,
Mao
J.
&
Han
L.
2023
Future climate change and urban growth together affect surface runoff in a large-scale urban agglomeration
.
Sustainable Cities and Society
99
,
104970
.
Kinerson
R. S.
,
Kittle
J. L.
,
Duda
P. B.
,
2009
BASINS: Better assessment science integrating point and nonpoint sources
. In:
Decision Support Systems for Risk-Based Management of Contaminated Sites
(
Marcomini
A.
,
Suter Ii
G. W.
&
Critto
A.
, eds).
Springer US
,
Boston, MA
, pp.
1
24
.
Kittle
J. L.
1998
A Tool for the Generation and Analysis of Model Simulation Scenarios for Watersheds (GenScn)
. Vol.
98
.
Aqua Terra Consultants
.
Koirala
S.
,
Hirabayashi
Y.
,
Mahendran
R.
&
Kanae
S.
2014
Global assessment of agreement among streamflow projections using CMIP5 model outputs
.
Environmental Research Letters
9
(
6
),
064017
.
Kundzewicz
Z. W.
2008
Climate change impacts on the hydrological cycle
.
Ecohydrology and Hydrobiology
8
,
195
203
.
Lee
J. Y.
,
Marotzke
J.
,
Bala
G.
,
Cao
L.
,
Corti
S.
,
Dunne
J. P.
,
Engelbrecht
F.
,
Fischer
E.
,
Fyfe
J. C.
,
Jones
C.
,
Maycock
A.
,
Mutemi
J.
,
Ndiaye
O.
,
Panickal
S.
,
Zhou
T.
,
2021
Future global climate: Scenario-based projections and near-term information
. In:
Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
(
Masson-Delmotte
V.
,
Zhai
P. P. A. C. S. L.
,
Péan
C.
,
Berger
S.
,
Caud
N.
,
Chen
Y.
,
Goldfarb
L.
,
Gomis
M. I.
,
Huang
M.
,
Leitzell
K.
,
Lonnoy
E.
,
Matthews
J. B. R.
,
Maycock
T. K.
,
Waterfield
T.
,
Yelekçi
O.
,
Yu
R.
&
Zhou
B.
, eds).
Cambridge University Press
,
Cambridge
,
UK
;
New York, NY, USA
, pp.
553
672
.
Li
L.
,
Yao
N.
,
Li
Y.
,
Liu
D. L.
,
Wang
B.
&
Ayantobo
O. O.
2019
Future projections of extreme temperature events in different sub-regions of China
.
Atmospheric Research
217
,
150
164
.
Liang
Z.
,
Jia
Z.
,
Wang
L.
&
Shang
R.
2010
Dynamic change analysis of land utilization in water source conservation areas in Taolinkou Reservoir
.
Inner Mongolia Agricultural Science and Technology
223
(
3
),
58
59
.
(in Chinese)
.
Liu
X. P.
,
Lu
M. Z.
,
Chai
Y. Z.
,
Tang
J.
&
Gao
J. Y.
2021
A comprehensive framework for HSPF hydrological parameter sensitivity, optimization and uncertainty evaluation based on SVM surrogate model- A case study in Qinglong River watershed, China
.
Environmental Modelling & Software
143
,
105126
.
Manfreda
S.
,
Iacobellis
V.
,
Gioia
A.
,
Fiorentino
M.
&
Kochanek
K.
2018
The impact of climate on hydrological extremes
.
Water
10
(
6
),
802
.
Moazami Goudarzi
F.
,
Sarraf
A.
&
Ahmadi
H.
2020
Prediction of runoff within Maharlu basin for future 60 years using RCP scenarios
.
Arabian Journal of Geosciences
13
(
14
),
605
.
Moss
R. H.
,
Edmonds
J. A.
,
Hibbard
K. A.
,
Manning
M. R.
,
Rose
S. K.
,
van Vuuren
D. P.
,
Carter
T. R.
,
Emori
S.
,
Kainuma
M.
,
Kram
T.
,
Meehl
G. A.
,
Mitchell
J. F. B.
,
Nakicenovic
N.
,
Riahi
K.
,
Smith
S. J.
,
Stouffer
R. J.
,
Thomson
A. M.
,
Weyant
J. P.
&
Wilbanks
T. J.
2010
The next generation of scenarios for climate change research and assessment
.
Nature
463
(
7282
),
747
756
.
Piani
C.
,
Haerter
J. O.
&
Coppola
E.
2010
Statistical bias correction for daily precipitation in regional climate models over Europe
.
Theoretical and Applied Climatology
99
(
1
),
187
192
.
Putnam
A. E.
&
Broecker
W. S.
2017
Human-induced changes in the distribution of rainfall
.
Science Advances
3
(
5
),
e1600871
.
Su
R.
&
Sun
R.
2021
Editorial: Impact of climate change on the hydrological cycle
.
Journal of Water and Climate Change
12
(
7
),
V
.
Tan
M. L.
,
Ibrahim
A. L.
,
Yusop
Z.
,
Chua
V. P.
&
Chan
N. W.
2017
Climate change impacts under CMIP5 RCP scenarios on water resources of the Kelantan River Basin, Malaysia
.
Atmospheric Research
189
,
1
10
.
Taylor
K. E.
2001
Summarizing multiple aspects of model performance in a single diagram
.
Journal of Geophysical Research: Atmospheres
106
(
D7
),
7183
7192
.
Thomson
A. M.
,
Calvin
K. V.
,
Smith
S. J.
,
Kyle
G. P.
,
Volke
A.
,
Patel
P.
,
Delgado-Arias
S.
,
Bond-Lamberty
B.
,
Wise
M. A.
,
Clarke
L. E.
&
Edmonds
J. A.
2011
RCP4.5: A pathway for stabilization of radiative forcing by 2100
.
Climatic Change
109
(
1
),
77
.
van Vuuren
D. P.
,
Edmonds
J.
,
Kainuma
M.
,
Riahi
K.
,
Thomson
A.
,
Hibbard
K.
,
Hurtt
G. C.
,
Kram
T.
,
Krey
V.
,
Lamarque
J.-F.
,
Masui
T.
,
Meinshausen
M.
,
Nakicenovic
N.
,
Smith
S. J.
&
Rose
S. K.
2011
The representative concentration pathways: An overview
.
Climatic Change
109
(
1
),
5
.
Wang
J.
,
Song
C.
,
Reager
J. T.
,
Yao
F.
,
Famiglietti
J. S.
,
Sheng
Y.
,
MacDonald
G. M.
,
Brun
F.
,
Schmied
H. M.
,
Marston
R. A.
&
Wada
Y.
2018
Recent global decline in endorheic basin water storages
.
Nature Geoscience
11
(
12
),
926
932
.
Wang
J.
,
Hu
L.
,
Li
D.
&
Ren
M.
2020
Potential impacts of projected climate change under CMIP5 RCP scenarios on streamflow in the Wabash River Basin
.
Advances in Meteorology
2020
,
9698423
.
Wu
Z.
2009
Analysis of design peak flow in the Estuary Section of Qinglong River
.
Water Sciences and Engineering Technology
(
6
),
14
16
.
(in Chinese)
.
Yang
L.
,
Meng
X.
&
Zhang
X.
2011
SRTM DEM and its application advances
.
International Journal of Remote Sensing
32
(
14
),
3875
3896
.
Yao
N.
,
Li
L.
,
Feng
P.
,
Feng
H.
,
Li Liu
D.
,
Liu
Y.
,
Jiang
K.
,
Hu
X.
&
Li
Y.
2020
Projections of drought characteristics in China based on a standardized precipitation and evapotranspiration index and multiple GCMs
.
Science of the Total Environment
704
,
135245
.
Zeng
S.
,
Xia
J.
,
She
D.
,
Du
H.
&
Zhang
L.
2012
Impacts of climate change on water resources in the Luan River basin in North China
.
Water International
37
(
5
),
552
563
.
Zhang
J.
,
Lei
X.
&
Li
Q.
2018
Two model performance comparisons with multisite observations based on uncertainty methods for modeling hydrologic dynamics
.
Journal of Irrigation and Drainage Engineering
144
(
1
),
04017060
.
Zhou
S.
,
Yu
B.
,
Lintner
B. R.
,
Findell
K. L.
&
Zhang
Y.
2023
Projected increase in global runoff dominated by land surface changes
.
Nature Climate Change
13
(
5
),
442
449
.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

Supplementary data