ABSTRACT
In this study, the relationship between carbon dioxide (CO2) emissions and drought (Standardized Precipitation Evapotranspiration Index) is investigated using data from 51 states in the US for the period 1997–2020. For this purpose, firstly, information about previous studies and the results of these studies are given in the study. Later, as empirical analysis, cross-section dependency tests, slope homogeneity tests, unit root analyses, cointegration tests, and causality analyses were performed. Then, short- and long-term parameter estimates are made for the entire panel and for each case. Lastly, impulse-response analyses are made. When the results are evaluated in general, it is found that CO2 emissions and drought in the US affect each other in the short and long term. CO2 emissions have been shown to have an increasing effect on drought, especially in most of the states located in the southeastern region of the US. On the other hand, CO2 emissions have been found to cause an increase in the incidence of wet periods in a significant part of the states located in the northeastern region of the US.
HIGHLIGHTS
Studies show a close link between CO2 emissions and drought.
The US is a leading CO2 emitter globally.
This relationship was analyzed for 51 US states.
In southeastern states, higher CO2 levels are linked to more dry periods.
In northeastern states, higher CO2 levels are associated with more wet periods.
INTRODUCTION
Greenhouse gases, such as carbon dioxide (CO2) and methane, are released into the atmosphere through the utilization of fossil-based energy sources, altering the chemical composition of the troposphere, the lower layer of the atmosphere. This phenomenon leads to the emergence of climate change and variability (Sen 2022). Over the past three decades, global warming and climate change have become among the most pressing environmental issues. Greenhouse gases play a pivotal role in the onset of these challenges (Ozturk & Acaravci 2010). Carbon dioxide, a prominent greenhouse gas, accounts for approximately 75% of the greenhouse effect globally and around 80% in the United States (US), according to the latest data from the WDI online database (World Development Indicators | DataBank 2022).
Climate change, associated with the escalating emissions of greenhouse gases, is anticipated to result in a rise in global average temperature and an intensified hydrological cycle, leading to more frequent and severe droughts and floods (Houghton et al. 2001). Drought conditions entail reduced precipitation, water scarcity, elevated average temperatures, sea level elevation, and an increase in both the frequency and intensity of extreme weather events (Troccoli 2010).
In the Fifth National Climate Assessment (NCA5), it was stated that the 1.1 centigrade global warming observed in the industrial age is caused by greenhouse gas emissions resulting from human activities. It was stated that three-quarters of this global warming and emissions have occurred since the 1970s. It was reported that the US is most affected by this global warming and that disasters may occur due to warming caused by emissions in the future (NCA5 2023).
There are some studies in literature that examined the relationship between CO2 emissions and climate change. Matthews et al. (2009) stated that CO2 emissions will lead to climate change. Based on this, using carbon-climate response calculations, which they described as the ratio of temperature change to cumulative CO2 emissions, they estimated that the carbon-climate response would be in the range of 1.0–2.1 °C per trillion tons of carbon emitted. Davis et al. (2010) calculated the CO2 emissions that will result from fossil fuel use between 2010 and 2060, based on the current energy infrastructure. They stated that, according to their calculations, there will be 496 gigatons of CO2 emissions, which will cause an average warming of 1.3 °C. Hao et al. (2016) used 1995–2011 data from 29 provinces of China to examine the potential effects of climate change on China's CO2 emissions. According to their findings, they concluded that climate change has a significant but small impact on China's carbon emissions.
In addition to the studies examining the relationship between CO2 emissions and climate change in the literature, there are also studies examining the relationship between climate change and drought. Some studies examining the effects of climate change on drought in different parts of the world follow.
The study conducted by Wilhite and Hayes examined the effects and severity of drought in the US and they concluded that the effect and severity of drought have increased in recent years (Wilhite & Hayes 1998). These drought events are estimated to be two to three times more damaging to the US economy than the 1989 San Fransisco earthquake (Riebsame 2019; Mishra & Singh 2010). At least 50% of the US has been affected by some level of drought event since mid-summer 2020. Especially since the fall of 2022, the drought has increased its severity, and more than 85% of the land area of the US has been affected by drought (Rodziewicz et al. 2023).
Droughts have become more frequent in many countries in Europe as well as in the US (Demuth & Stahl 2001). According to Spinoni et al. (2015), Northern and Eastern Europe showed the highest frequency and severity of droughts from the early 1950s to the mid-1970s. Considering the whole of Europe, the 1950s were considered to be the years when the effects of meteorological droughts were felt the most. Southern and Western Europe (especially the Mediterranean region) showed the highest frequency and severity of droughts from the early 1990s. Overall, a continuous upward trend in drought events was observed across Europe from the early 1980s to the early 2010s (Spinoni et al. 2015).
In recent years, studies for Asian countries have shown that crop production has decreased in many parts of Asia due to rising temperatures and decreasing rainfall days (Bates et al. 2008; Kienzler et al. 2012). The increasing trend in the frequency of drought due to the effect of global warming causes countries in East Asia such as China, Japan, Korea, the Peninsula, and Mongolia to be highly affected by drought every year (Zhai et al. 2010; Zhang & Zhou 2015). When historical records were examined, it was seen that two major drought events occurred in the Northern China region in 1972 and 1997, and this drought caused the Yellow River to dry out (Zhang & Zhou 2015). In addition, due to the drought in Southwest China between 2009 and 2010, 21 million people had difficulties in obtaining drinking water and an economic loss of 30 billion dollars occurred (Yang et al. 2012). One of the regions most affected by the effects of drought in recent years is the Australian continent. Floods and drought events are common climate features in Australia (King et al. 2020). Whetton et al.’s (1993) study analyzed the impact of climate change caused by the greenhouse gas effect on flood and drought events in Australia and evaluated that there is an increase in high precipitation frequency and a decrease in low precipitation frequencies due to greenhouse gas effect in the simulations, and therefore, an increase in flood events will occur (Whetton et al. 1993). It is observed that in the Australian region, especially after long-term droughts, precipitation values tend to occur in the form of heavy rains instead of returning to average conditions (King et al. 2020). The Murray Darling Basin, one of Australia's largest crop production basins, was greatly affected by drought between 2017 and 2019, and Australian average rainfall was at a record low level in 2019, resulting in severe drought and significant agricultural impacts in the second half of the year (Dunne & Kuleshov 2023). It has been stated that the winter months of the year before the drought, which has been ongoing since 2017, were the fourth wettest winter since the early 1900s. It is estimated that the reason for this is the abnormally high sea surface temperature of the Indian Ocean (King et al. 2020). It is also stated that the severity of drought has increased in Africa over the last few decades as a result of changes in the climate (Gebrechorkos et al. 2022). It is observed that the frequency of occurrence of drought events has increased in recent years (Meier et al. 2007; Ayana et al. 2016; Haile et al. 2019). According to the Centre for Research on the Epidemiology of Disasters, drought caused more than 800,000 deaths and $2 billion in economic losses in Sub-Saharan Africa in the 20th and 21st centuries (Masih et al. 2014; Ekolu et al. 2022). It has been observed that droughts in the region occasionally occur in the same year as other extreme climatic events (Hillbruner & Moloney 2012; Nicholson 2014; Haile et al. 2019). Droughts and unprecedented flash floods in 2006, 2007, 2009, and 2020 can be cited as examples of these events (Nicholson 2014; Haile et al. 2019).
The above-mentioned studies examine the effects of CO2 emissions on climate change and climate change on drought. It is stated that the biggest cause of climate change is greenhouse gas emissions. A significant part of greenhouse gases comes from CO2 emissions. Therefore, examining the relationship between CO2 emissions, climate change, and drought is an important issue. However, there are a limited number of studies in the literature examining the relationship between CO2 emissions, climate change, and drought. One of these studies was conducted by Strezepek et al. In their 2010 study, Strzepek et al. applied the Standardized Precipitation Indices and the Palmer Drought Severity Index to the Intergovernmental Panel on Climate Change General Circulation Models to assess the impact of climate change on the frequency and intensity of droughts in the US over the next century. Although drought risk was not assessed under CO2 stabilization scenarios in the study, a comparison of SPI and Palmer Drought Severity Index results between emission scenarios provides evidence that lower CO2 concentrations are related to lower drought risk across the US (Strzepek et al. 2010). Likewise, in a study conducted by Hardin et al. (2017), the relationship between drought and CO2 emissions was discussed. In the study, the intense drought period between 2012 and 2014 in California and the period between 2009 and 2011, which is the pre-drought period, were compared and it was determined that there was a 33% increase in CO2 emissions due to drought.
In the study of Gregory et al. (1997), it was evaluated that with the increase in CO2 levels, precipitation decreased and evaporation increased. It was evaluated that these changes would lead to a decrease in soil moisture and drought events would become more frequent and severe. The research reveals that due to the high temperatures caused by increasing CO2 levels, there is a decrease in snow cover in winter and a decrease in soil water level in spring. The decrease in soil moisture indicates that the large decrease in precipitation exacerbates drought, although evaporation remains limited in summer. Furthermore, this study emphasizes that the incidence of long dry spells increases significantly with increasing CO2, which can have serious impacts on agriculture and water resources. These findings suggest that CO2 emissions have lasting effects on the hydrological cycle in the long term and that droughts will become more widespread and intense with global climate change.
Räisänen used 20 model experiments participating in the second phase of the Coupled Model Intercomparison Project (CMIP2) in his 2005 study to examine the effect of CO2 on high extreme and low extreme precipitation. In particular, he found that CO2 is well correlated with changes in long-term average precipitation. It was observed that low extreme precipitation increased where mean precipitation was low, while high extreme precipitation increased where mean precipitation was high. The difference between this high and low extreme precipitation is determined to increase with CO2.
In their 2024 study, Su et al. focus on understanding global drought changes under a carbon neutral scenario using CO2 removal and increase models. They used the Standardized Precipitation Evapotranspiration Index (SPEI) to assess drought severity. In their study, they found that CO2 increases in particular lead to an increase in potential evapotranspiration in excess of precipitation (PET), resulting in more intense droughts. In particular, low- and mid-latitude regions, including South Africa, Australia, and the Amazon, showed more significant drying due to CO2 increase. In addition, one of the important points in the study is that even if CO2 levels return to pre-industrial levels, the global water cycle continues to deteriorate, and many regions continue to experience persistent droughts. In addition, the study attributed about 65% of drought changes to increased PET, especially due to increasing temperatures, while the contribution of precipitation was assessed to be only around 35%. Therefore, although it seems likely that reducing CO2 emissions will stabilize some aspects of the climate, it is still stated that temperature and evapotranspiration will cause drought to persist for longer.
Cook et al. (2020) analyzed future drought patterns using CMIP6 models to determine how increasing CO2 emissions affect global drought risk. As a result of the studies, it is emphasized that as CO2 levels increase, temperature increases lead to higher evapotranspiration rates, precipitation patterns change, precipitation decreases in some regions and dry periods are prolonged, which causes more frequent and severe droughts, especially in mid-latitude and subtropical regions. In the study, western North America, Central America, Europe, and the Mediterranean, the Amazon, southern Africa, China, Southeast Asia, and Australia were shown among the regions that will be most affected by drought.
Vahedifard et al. (2024) examined the feedback loop between drought, soil drying, and CO2 emissions. The findings of the study show that as CO2 levels rise, drought conditions become more severe, causing the soil to crack and dry out. This leads to the release of more soil surface area and increased CO2 emissions from the soil surface, further intensifying global warming. This feedback loop reduces the soil's capability to retain moisture, accelerating evapotranspiration and weakening the soil's capability to sequester carbon, which in turn exacerbates drought conditions. As a result, CO2-induced drought not only worsens climate change, but also directly contributes to higher atmospheric CO2 levels.
Sen (2022) stated that there will be changes in flood frequency and severity with climate change, while rainfall intensity will decrease, and drought frequency and severity will be expected to increase in many regions. Another result obtained in his study is that it is possible for floods and droughts to increase sequentially in some water catchment areas.
When the literature is examined, it is seen that similar results are reached in the studies on drought and CO2 emissions, and it shows that the increase in CO2 emissions causes changes in climate parameters such as precipitation and temperature and may be related to drought events.
The hypothesis of this study is that ‘CO2 emissions, by driving climate change, influence the frequency and intensity of droughts through their impact on regional precipitation and temperature patterns’. To investigate whether this hypothesis is valid for the US, this study analyzed statistically the relationship between CO2 emissions and drought using data from 51 states in the US for the period 1997–2020. As seen in Figure 1, the US is one of the countries that emit the most CO2 emissions in the world. Therefore, this study is especially focused on the US and will make significant contributions to the literature in terms of investigating whether CO2 emissions cause drought for the 51 states of the US.
DATA AND METHODOLOGY
Here, CO2 refers to million metric tons of energy-related carbon dioxide, DR refers to SPEI drought indices, and m refers to months. For example, DR1 refers to SPEI January drought index, DR2 refers to SPEI February drought index, DR3 refers to SPEI March drought index, etc. Drought data are calculated for the 12-month period with the SPEI. CO2 emissions data are obtained from the U.S. Energy Information Administration (EIA 2022), and the 12-month period droughts data are obtained from the SPEI Global Drought Monitor. CO2 emissions data are taken in the logarithmic form.
Correlation matrix and descriptive statistics are given in Table 1. Examining the mean and median values of the variables, it is found that lnCO2 takes the highest values, while DR12 takes the lowest values. While the CO2 emission values range between 1 and 7, it takes an average value of 4. In this period, while the drought values vary between −3 and +3, the average drought value is 0.3.
. | lnCO2 . | DR1 . | DR2 . | DR3 . | DR4 . | DR5 . | DR6 . | DR7 . | DR8 . | DR9 . | DR10 . | DR11 . | DR12 . |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 4.24 | 0.24 | 0.25 | 0.25 | 0.26 | 0.25 | 0.25 | 0.24 | 0.24 | 0.23 | 0.23 | 0.23 | 0.22 |
Median | 4.38 | 0.25 | 0.31 | 0.30 | 0.31 | 0.27 | 0.31 | 0.29 | 0.29 | 0.30 | 0.27 | 0.29 | 0.22 |
Max. | 6.53 | 3.06 | 2.97 | 2.88 | 2.69 | 2.82 | 3.05 | 3.06 | 2.88 | 2.95 | 2.76 | 2.93 | 2.99 |
Min. | 0.88 | − 2.54 | − 2.52 | − 2.68 | − 2.30 | − 2.36 | − 2.24 | − 2.25 | − 2.37 | − 2.26 | − 2.54 | − 2.58 | − 2.60 |
Std. Dev. | 1.04 | 1.04 | 1.04 | 1.05 | 1.03 | 1.01 | 1.03 | 1.04 | 1.04 | 1.01 | 1.00 | 1.02 | 1.02 |
Obs. | 1,224 | 1,224 | 1,224 | 1,224 | 1,224 | 1,224 | 1,224 | 1,224 | 1,224 | 1,224 | 1,224 | 1,224 | 1,224 |
lnCO2 | 1 | ||||||||||||
DR1 | − 0.01 | 1 | |||||||||||
DR2 | − 0.01 | 0.96 | 1 | ||||||||||
DR3 | − 0.01 | 0.91 | 0.96 | 1 | |||||||||
DR4 | − 0.01 | 0.84 | 0.90 | 0.95 | 1 | ||||||||
DR5 | − 0.00 | 0.74 | 0.80 | 0.86 | 0.93 | 1 | |||||||
DR6 | − 0,00 | 0.60 | 0.67 | 0.72 | 0.80 | 0.90 | 1 | ||||||
DR7 | 0.00 | 0.51 | 0.57 | 0.62 | 0.71 | 0.83 | 0.95 | 1 | |||||
DR8 | 0.00 | 0.45 | 0.51 | 0.56 | 0.65 | 0.77 | 0.90 | 0.95 | 1 | ||||
DR9 | 0.00 | 0.35 | 0.42 | 0.46 | 0.54 | 0.66 | 0.78 | 0.85 | 0.92 | 1 | |||
DR10 | 0.00 | 0.28 | 0.35 | 0.39 | 0.48 | 0.60 | 0.72 | 0.79 | 0.87 | 0.93 | 1 | ||
DR11 | − 0.00 | 0.20 | 0.27 | 0.31 | 0.41 | 0.53 | 0.65 | 0.72 | 0.79 | 0.88 | 0.95 | 1 | |
DR12 | 0.01 | 0.13 | 0.20 | 0.23 | 0.33 | 0.46 | 0.58 | 0.66 | 0.72 | 0.81 | 0.90 | 0.97 | 1 |
. | lnCO2 . | DR1 . | DR2 . | DR3 . | DR4 . | DR5 . | DR6 . | DR7 . | DR8 . | DR9 . | DR10 . | DR11 . | DR12 . |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 4.24 | 0.24 | 0.25 | 0.25 | 0.26 | 0.25 | 0.25 | 0.24 | 0.24 | 0.23 | 0.23 | 0.23 | 0.22 |
Median | 4.38 | 0.25 | 0.31 | 0.30 | 0.31 | 0.27 | 0.31 | 0.29 | 0.29 | 0.30 | 0.27 | 0.29 | 0.22 |
Max. | 6.53 | 3.06 | 2.97 | 2.88 | 2.69 | 2.82 | 3.05 | 3.06 | 2.88 | 2.95 | 2.76 | 2.93 | 2.99 |
Min. | 0.88 | − 2.54 | − 2.52 | − 2.68 | − 2.30 | − 2.36 | − 2.24 | − 2.25 | − 2.37 | − 2.26 | − 2.54 | − 2.58 | − 2.60 |
Std. Dev. | 1.04 | 1.04 | 1.04 | 1.05 | 1.03 | 1.01 | 1.03 | 1.04 | 1.04 | 1.01 | 1.00 | 1.02 | 1.02 |
Obs. | 1,224 | 1,224 | 1,224 | 1,224 | 1,224 | 1,224 | 1,224 | 1,224 | 1,224 | 1,224 | 1,224 | 1,224 | 1,224 |
lnCO2 | 1 | ||||||||||||
DR1 | − 0.01 | 1 | |||||||||||
DR2 | − 0.01 | 0.96 | 1 | ||||||||||
DR3 | − 0.01 | 0.91 | 0.96 | 1 | |||||||||
DR4 | − 0.01 | 0.84 | 0.90 | 0.95 | 1 | ||||||||
DR5 | − 0.00 | 0.74 | 0.80 | 0.86 | 0.93 | 1 | |||||||
DR6 | − 0,00 | 0.60 | 0.67 | 0.72 | 0.80 | 0.90 | 1 | ||||||
DR7 | 0.00 | 0.51 | 0.57 | 0.62 | 0.71 | 0.83 | 0.95 | 1 | |||||
DR8 | 0.00 | 0.45 | 0.51 | 0.56 | 0.65 | 0.77 | 0.90 | 0.95 | 1 | ||||
DR9 | 0.00 | 0.35 | 0.42 | 0.46 | 0.54 | 0.66 | 0.78 | 0.85 | 0.92 | 1 | |||
DR10 | 0.00 | 0.28 | 0.35 | 0.39 | 0.48 | 0.60 | 0.72 | 0.79 | 0.87 | 0.93 | 1 | ||
DR11 | − 0.00 | 0.20 | 0.27 | 0.31 | 0.41 | 0.53 | 0.65 | 0.72 | 0.79 | 0.88 | 0.95 | 1 | |
DR12 | 0.01 | 0.13 | 0.20 | 0.23 | 0.33 | 0.46 | 0.58 | 0.66 | 0.72 | 0.81 | 0.90 | 0.97 | 1 |
The correlation matrix shows that CO2 emissions are positively correlated with droughts 7, 8, 9, 10, and 12, and negatively correlated with droughts 1, 2, 3, 4, 5, 6, and 11.
Standardized Precipitation Evapotranspiration Index
And W is obtained for from and for from , the sign of the resultant SPEI is reversed for (Vicente-Serrano et al. 2010; Tirivarombo et al. 2018; Abbasi et al. 2019; Danandeh Mehr & Vaheddoost 2020).
Obtained SPEI values can be interpreted as drought increases, it falls below −0.5 and as wetting increases, it rises above +0.5.
The SPEI is able to explain the possible effects of temperature variability and temperature extremes beyond the context of global warming. Hence, it is preferable to use SPEI for the detection, analysis and monitoring of droughts in any climatic region of the world, given the small additional data requirements of SPEI compared with SPI. According to its intensity and duration, the SPEI can measure the severity of drought and identify the beginning and end of drought periods. Similar to the SPI, the SPEI can be calculated over a wide range of climates, allowing for comparisons of drought severity over time and space. In addition, the SPEI drought index has a clear and understandable calculation procedure. However, an important advantage of the SPEI over the most widely used drought indices that take into account the impact of PET on drought severity is that its multiscale characteristics allow the description of different drought types and their effects in the global warming context (Vicente-Serrano et al. 2010).
Cross-section dependency tests
When applying panel data analysis, firstly, the cross-section dependency and the homogeneity of the slope should be analyzed. Cross-sectional dependence implies that anything that affects one state may also affect other states. The homogeneity of the slope, on the other hand, is whether the slope coefficients are homogeneous in the state sample since the states have different characteristics within themselves. Due to these two possibilities, it is crucial to investigate the presence of cross-sectional dependence and investigate whether the slope is homogeneous or heterogeneous.
In this study, Lagrange multiplier (LM), bias-adjusted LM (LMadj), and CDLM tests were applied to analyze cross-sectional dependence. The LM test, proposed by Breusch and Pagan in 1980, tests the impact on first-order conditions so that the probability of imposing the hypothesis is maximum. It is based on prediction, with the hypothesis introduced as parametric constraints. It provides researchers with a simple technique to evaluate the adequacy of their certain specifications (Breusch & Pagan 1980).
The CDLM test has a significant disadvantage. It may lack power in some cases where the population average pairwise correlations are zero, but the underlying individual population pairwise correlations are not zero. This may occur, for example, where the cross-dependence under the alternative hypothesis can be characterized as a factor model with a mean factor load of zero (Pesaran 2004).
Homogeneity tests
Unit root test
Panel cointegration test
Cointegration analysis is necessary to test whether two variables move together in the long run. If there is no long-term relationship between two variables, short-term analyses would not give accurate results. Therefore, the cointegration test is a necessary analysis to verify the long-term relationship of our data. Westerlund (2007) proposed new cointegration tests based on error correction for panel data. Two of the four tests are developed to check the alternative hypothesis that the panel as a whole is cointegrated, whereas the other two tests are developed to check the alternative hypothesis that there is at least one cointegrated cross-sectional unit. The asymptotic results show that the tests have restrictive normal distributions and are coherent.
AMG and PMG tests
The augmented mean group (AMG) test allows us to consider that the relationship between CO2 emissions and drought in different states may be heterogeneous and that each region may have different dynamics. The pooled mean group (PMG) test, on the other hand, allows for short- and long-term assessments for the states as a whole.
The first step indicates a standard first difference OLS regression with T − 1 period dummy variables in first differences , from where the estimation coefficients are collected and relabeled as . This process is subtracted from the pooled regression in first differences, as non-stationary and unobservable variables can severely distort the estimates in pooled level regressions. In the second step, is included in each of the N group-specific regressions, including linear trend terms, to capture omitted idiosyncratic processes that evolve linearly over time (Eberhardt & Teal 2010).
Dumitrescu-Hurlin panel causality test
After determining the correlation between CO2 emissions and drought, the Dumitrescu-Hurlin panel causality test was applied to determine the direction of the relationship between these two variables. This test is a critical step to determine whether CO2 emissions cause drought or vice versa by examining the directional relationships between the two variables.
Null hypothesis of no causality is not accepted when the Wald statistic is greater than the critical values (Bilgili et al. 2017).
Impulse response functions
A shock to one variable not only affects that variable but also spreads to all other endogenous variables. The impulse-response function analyzes the impact of a one-time shock to one of the variables on the present and future values of endogenous variables. If there is no simultaneous correlation between the variables, the interpretation of the impulse-response is simple. However, variables are often interrelated and can be viewed as having a common component that cannot be attributed to a particular variable. In this case, what needs to be done is to make the variables uncorrelated (Lütkepohl 1990; Killian 1998; Pesaran & Shin 1998).
RESULTS AND DISCUSSION
In this section of the study, the results obtained from the analyses applied in the study and the discussions about the results are given. In the study, first, cross-section dependency and homogeneity tests were performed. The results obtained from these tests are given in Table 2.
Test . | Statistic . | P value . |
---|---|---|
Cross-sectional dependence tests | ||
LM | 2,931 | 0.00 |
LMadj | 43.77 | 0.00 |
CDLM | 22.63 | 0.00 |
Homogeneity tests | ||
Δ | 0.75 | 0.45 |
Δadj | 1.11 | 0.27 |
Test . | Statistic . | P value . |
---|---|---|
Cross-sectional dependence tests | ||
LM | 2,931 | 0.00 |
LMadj | 43.77 | 0.00 |
CDLM | 22.63 | 0.00 |
Homogeneity tests | ||
Δ | 0.75 | 0.45 |
Δadj | 1.11 | 0.27 |
In Table 2, when the results of cross-sectional dependence tests are examined, all P values are less than 0.05. Then, it can be said that there is a cross-sectional dependency between the series. When the results of homogeneity tests are examined, all P values are greater than 0.05. So, it can be said that the null hypothesis that the slope is homogeneous is accepted and there is no state-specific heterogeneity.
Since it is determined that there is cross-section dependency according to the cross-sectional dependence test results, second-generation unit root tests should be used when investigating the stationarity of the series. In Table 3, the results obtained from the CIPS unit root test, which is the second-generation unit root test, are given.
Panel CIPS test . | Intercept . | Intercept and trend . | ||||
---|---|---|---|---|---|---|
lnCO2 | − 2,282a | − 2,756a | ||||
drought1 | − 4,281a | − 4,413a | ||||
drought2 | − 4,214a | − 4,305a | ||||
drought3 | − 4,302a | − 4,483a | ||||
drought4 | − 4,285a | − 4,413a | ||||
drought5 | − 4,242a | − 4,390a | ||||
drought6 | − 4,272a | − 4,444a | ||||
drought7 | − 4,484a | − 4,697a | ||||
drought8 | − 4,648a | − 4,821a | ||||
drought9 | − 4,678a | − 4,839a | ||||
drought10 | − 4,425a | − 4,565a | ||||
drought11 | − 4,094a | − 4,280a | ||||
drought12 | − 4,327a | − 4,405a | ||||
Critical values | 10% | 5% | 1% | 10% | 5% | 1% |
−2.02 | −2.08 | −2.19 | −2.52 | −2.58 | −2.69 |
Panel CIPS test . | Intercept . | Intercept and trend . | ||||
---|---|---|---|---|---|---|
lnCO2 | − 2,282a | − 2,756a | ||||
drought1 | − 4,281a | − 4,413a | ||||
drought2 | − 4,214a | − 4,305a | ||||
drought3 | − 4,302a | − 4,483a | ||||
drought4 | − 4,285a | − 4,413a | ||||
drought5 | − 4,242a | − 4,390a | ||||
drought6 | − 4,272a | − 4,444a | ||||
drought7 | − 4,484a | − 4,697a | ||||
drought8 | − 4,648a | − 4,821a | ||||
drought9 | − 4,678a | − 4,839a | ||||
drought10 | − 4,425a | − 4,565a | ||||
drought11 | − 4,094a | − 4,280a | ||||
drought12 | − 4,327a | − 4,405a | ||||
Critical values | 10% | 5% | 1% | 10% | 5% | 1% |
−2.02 | −2.08 | −2.19 | −2.52 | −2.58 | −2.69 |
aIllustrates 1% statistical significance.
Examining the results derived from the CIPS test, it can be concluded that all variables are stationary at level. Since all series are stationary at level, it may be analyzed if there is a cointegration relationship between the variables. Since the Westerlund cointegration test provides more reliable and consistent results in the presence of cross-sectional dependence between the series, the Westerlund cointegration test is applied as a cointegration test.
When Table 4 is examined, it is seen that H0 was rejected according to the test results for the cointegration between lnCO2 and DR1, DR2, DR3, DR4, DR5, DR6, DR7, and DR8, but H0 was accepted for the cointegration between lnCO2 and DR9, DR10, DR11, and DR12. That is, there is a cointegration relationship between lnCO2 and DR9, DR10, DR11, and DR12 variables in at least one cross-sectional unit. And according to the and test results, H0 was rejected. That is, for the entire panel, there is a cointegration relationship between the lnCO2 and drought variables.
Relationship tested . | . | . | . | . |
---|---|---|---|---|
lnCO2 and drought1 | −2.66a | −11.87 | −18.95a | −11.53a |
lnCO2 and drought2 | −2.67a | −11.99 | −19.21a | −11.71a |
lnCO2 and drought3 | −2.63a | −11.67 | −18.86a | −11.44a |
lnCO2 and drought4 | −2.59b | −11.39 | −18.36a | −11.07a |
lnCO2 and drought5 | −2.63a | −11.43 | −18.44a | −11.04a |
lnCO2 and drought6 | −2.56b | −11.03 | −17.31a | −10.53b |
lnCO2 and drought7 | −2.52c | −10.86 | −17.28a | −10.31c |
lnCO2 and drought8 | −2.54b | −10.72 | −17.46a | −10.19c |
lnCO2 and drought9 | −2.42 | −10.44 | −16.82b | −9.92 |
lnCO2 and drought10 | −2.38 | −10.40 | −16.53b | −9.91 |
lnCO2 and drought11 | −2.41 | −10.73 | −16.74b | −10.17c |
lnCO2 and drought12 | −2.44 | −10.78 | −16.87b | −10.19c |
Relationship tested . | . | . | . | . |
---|---|---|---|---|
lnCO2 and drought1 | −2.66a | −11.87 | −18.95a | −11.53a |
lnCO2 and drought2 | −2.67a | −11.99 | −19.21a | −11.71a |
lnCO2 and drought3 | −2.63a | −11.67 | −18.86a | −11.44a |
lnCO2 and drought4 | −2.59b | −11.39 | −18.36a | −11.07a |
lnCO2 and drought5 | −2.63a | −11.43 | −18.44a | −11.04a |
lnCO2 and drought6 | −2.56b | −11.03 | −17.31a | −10.53b |
lnCO2 and drought7 | −2.52c | −10.86 | −17.28a | −10.31c |
lnCO2 and drought8 | −2.54b | −10.72 | −17.46a | −10.19c |
lnCO2 and drought9 | −2.42 | −10.44 | −16.82b | −9.92 |
lnCO2 and drought10 | −2.38 | −10.40 | −16.53b | −9.91 |
lnCO2 and drought11 | −2.41 | −10.73 | −16.74b | −10.17c |
lnCO2 and drought12 | −2.44 | −10.78 | −16.87b | −10.19c |
Notes: The optimal lag and lead lengths are both set to 1 and the optimal Barlett Kernel window width is set to 3.
aIndicates 1% statistical significance.
bIndicates 5% statistical significance.
cIndicates 10% statistical significance.
Since it was understood that there was a cointegration relationship between the variables, the long-term parameters of the variables were estimated using the AMG estimation method.
In Table 5, the results obtained as a result of the analysis of the effects of CO2 emissions on 12-month period SPEI drought index variable for each month are given. When Table 5 is examined, it is seen that CO2 influences drought in 17 of 51 states in different months. The states with the longest impact of CO2 emissions on drought are Pennsylvania and Tennessee, for 8 months. CO2 emissions increase the January SPEI drought index in seven states: Arizona, Connecticut, District of Columbia, Hawaii, New York, Pennsylvania, and Virginia. CO2 emissions increase the February SPEI drought index in eight states: Arizona, Connecticut, District of Columbia, Hawaii, New Jersey, New York, Pennsylvania, and Virginia. CO2 emissions increase the March SPEI drought index in seven states: Arizona, Connecticut, District of Columbia, Florida, New York, Pennsylvania, and Virginia. CO2 emissions increase the April SPEI drought index in six states: Connecticut, District of Columbia, Florida, New York, Pennsylvania, and Virginia. While CO2 emissions reduce the May SPEI drought index in Tennessee, they increase it in five states: Connecticut, District of Columbia, New York, Pennsylvania, and Virginia. While CO2 emissions reduce the June SPEI drought index in Tennessee, they increase it in two states: Ohio and Pennsylvania. While CO2 emissions increase the July SPEI drought index in Pennsylvania, they reduce it in three states: Oregon, South Carolina, and Tennessee. While CO2 emissions increase the August SPEI drought index in Pennsylvania, they reduce it in three states: Arkansas, South Carolina, and Tennessee. CO2 emissions reduce the September SPEI drought index in five states: Alabama, Arkansas, Georgia, South Carolina, and Tennessee. CO2 emissions reduce the October SPEI drought index in six states: Alabama, Georgia, Louisiana, North and South Carolina, and Tennessee. CO2 emissions reduce the November SPEI drought index in five states: Alabama, Georgia, North and South Carolina, and Tennessee. CO2 emissions reduce the December SPEI drought index in six states: Alabama, Georgia, Louisiana, North and South Carolina, and Tennessee.
State . | DR1 . | DR2 . | DR3 . | DR4 . | DR5 . | DR6 . | DR7 . | DR8 . | DR9 . | DR10 . | DR11 . | DR12 . |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Alabama | 1,666 | 1,807 | 1,211 | 0,711 | − 1,469 | − 3,368 | − 4,642 | − 4,971 | − 6,125b | − 7,364a | − 7,574a | − 7,971a |
Alaska | − 1,909 | − 1,227 | − 1,024 | − 0,604 | − 0,306 | 0,224 | − 0,056 | − 0,021 | 0,310 | − 0,387 | − 0,723 | − 1,365 |
Arizona | 5,323a | 4,887b | 3,579c | 2,539 | 2,555 | 1,724 | 1,181 | 0,615 | 1,059 | 1,198 | 2,362 | 2,366 |
Arkansas | − 2,974 | − 2,453 | − 3,073 | − 2,982 | − 3,925 | − 3,190 | − 4,229 | − 5,536c | − 6,282b | − 5,264 | − 3,840 | − 5,204 |
California | 1,332 | 4,452 | 3,063 | 0,126 | 0,173 | − 0,585 | − 1,883 | − 1,965 | − 1,551 | − 1,687 | − 0,403 | 2,170 |
Colorado | − 0,332 | − 0,086 | 0,339 | − 0,325 | 0,726 | 0,587 | − 0,577 | − 0,816 | − 0,772 | − 1,133 | − 1,014 | − 1,410 |
Connecticut | 6,486b | 6,963b | 7,106b | 7,621a | 5,145b | 3,917 | 3,094 | 2,848 | 2,197 | 2,331 | 2,225 | 2,351 |
Delaware | 2,601 | 3,380 | 3,277 | 2,503 | 3,582 | 2,551 | 1,954 | − 0,305 | − 1,723 | − 2,576 | − 2,911 | − 2,772 |
Dist. of Col. | 6,128b | 6,588b | 7,486a | 7,193a | 5,939b | 4,476 | 4,250 | 3,284 | 1,257 | 2,514 | 1,339 | 1,203 |
Florida | 5,563 | 5,749 | 7,103c | 6,851c | 4,517 | 2,784 | 1,878 | 2,715 | − 0,583 | − 0,316 | − 2,329 | − 3,408 |
Georgia | 2,652 | 1,816 | 1,615 | 0,584 | − 1,037 | − 2,002 | − 2,822 | − 3,305 | − 4,110c | − 4,735b | − 5,066b | − 5,268b |
Hawaii | 3,616b | 4,047b | 1,798 | 0,765 | 0,042 | − 0,307 | − 1,051 | − 1,192 | − 0,425 | − 0,878 | − 0,544 | − 0,572 |
Idaho | 1,942 | 1,633 | − 0,312 | − 1,419 | − 2,004 | − 3,021 | − 2,945 | − 3,291 | − 1,530 | − 0,879 | − 1,875 | − 2,259 |
Illinois | − 1,789 | − 0,992 | − 2,256 | − 3,032 | − 2,970 | − 2,196 | − 3,566 | − 3,651 | − 1,861 | − 2,406 | − 2,340 | − 2,583 |
Indiana | 1,120 | 2,248 | 1,752 | 1,441 | 1,727 | 2,500 | 1,084 | 0,776 | 1,832 | 0,060 | 0,604 | 0,807 |
Iowa | 1,091 | 1,378 | 0,336 | − 0,083 | 0,111 | 1,714 | 1,100 | 1,980 | 2,651 | 2,674 | 2,788 | 2,557 |
Kansas | − 1,371 | − 1,386 | − 1,810 | − 3,283 | − 2,844 | − 1,985 | − 2,798 | − 2,503 | − 1,984 | − 2,550 | − 2,602 | − 3,128 |
Kentucky | − 1,191 | − 0,361 | − 0,088 | − 0,185 | − 0,856 | − 1,103 | − 2,059 | − 2,612 | − 2,640 | − 3,363 | − 3,186 | − 3,111 |
Louisiana | − 5,137 | − 4,930 | − 6,861 | − 7,969 | − 5,778 | − 6,588 | − 7,311 | − 8,601 | − 9,154 | − 11,908c | − 8,607 | − 11,004c |
Maine | 0,219 | 0,630 | − 0,028 | 0,710 | 1,165 | 0,972 | 1,171 | 1,420 | 1,345 | 0,794 | 0,756 | 1,015 |
Maryland | 1,835 | 2,870 | 2,523 | 1,829 | 1,865 | 1,395 | 0,566 | − 0,642 | − 0,994 | − 0,971 | − 1,820 | − 1,565 |
Massachusetts | 0,644 | 2,368 | 2,783 | 2,836 | 2,137 | 0,055 | − 1,240 | − 0,486 | 0,738 | 2,135 | 1,469 | 1,896 |
Michigan | 0,448 | 1,371 | − 3,020 | − 2,980 | − 3,303 | − 0,503 | − 1,987 | − 3,254 | 1,810 | − 1,227 | − 1,568 | − 0,047 |
Minnesota | − 0,724 | − 0,218 | − 0,633 | − 0,049 | − 1,597 | − 1,792 | − 3,414 | − 4,110 | − 1,545 | − 0,945 | 0,402 | 0,392 |
Mississippi | 0,512 | 0,763 | 0,649 | − 0,495 | − 0,912 | − 0,517 | − 1,046 | 0,349 | 0,317 | 0,121 | 0,213 | − 0,756 |
Missouri | − 0,830 | − 0,524 | − 1,453 | − 1,902 | − 2,454 | − 2,473 | − 3,994 | − 4,247 | − 3,520 | − 4,072 | − 4,052 | − 3,873 |
Montana | − 0,957 | − 0,364 | − 0,862 | − 1,319 | − 0,004 | − 2,080 | − 2,182 | − 2,193 | − 0,436 | − 1,550 | − 0,748 | − 0,536 |
Nebraska | − 3,162 | − 3,305 | − 3,446 | − 4,411 | − 2,830 | − 2,773 | − 4,173 | − 2,315 | − 1,676 | − 2,270 | − 1,951 | − 1,634 |
Nevada | − 1,626 | − 0,514 | − 0,342 | − 1,182 | 1,010 | − 0,527 | − 1,700 | − 2,240 | − 1,235 | − 1,242 | − 1,449 | − 0,750 |
New Hamp. | 2,516 | 2,712 | 2,125 | 2,421 | 2,377 | 2,097 | 1,989 | 2,469 | 2,358 | 2,571 | 2,288 | 2,418 |
New Jersey | 4,090 | 5,008c | 4,575 | 3,707 | 4,047 | 2,558 | 1,210 | 0,370 | − 0,356 | − 0,867 | − 1,966 | − 0,882 |
New Mexico | 4,048 | 3,461 | 2,552 | 1,480 | 0,596 | 0,085 | − 0,597 | − 1,058 | 0,436 | − 0,565 | 0,176 | − 0,168 |
New York | 5,949b | 7,610a | 8,551b | 9,020a | 7,486a | 4,587 | 3,270 | 1,918 | 0,684 | 1,614 | 0,504 | 1,500 |
N. Carolina | 4,783 | 5,034 | 4,271 | 3,506 | 0,352 | − 1,673 | − 3,681 | − 3,796 | − 5,197 | − 5,848b | − 7,159a | − 8,071a |
N. Dakota | 4,931 | 4,104 | 3,525 | 1,544 | 1,763 | 2,303 | 1,670 | 0,823 | 2,424 | 2,846 | 5,110 | 4,107 |
Ohio | 1,501 | 3,415 | 3,420 | 3,239 | 4,124 | 5,648c | 4,032 | 3,805 | 4,479 | 2,825 | 3,446 | 3,338 |
Oklahoma | − 0,090 | − 0,142 | − 1,102 | − 2,065 | − 2,001 | − 2,502 | − 4,238 | − 3,672 | − 3,247 | − 4,137 | − 3,822 | − 4,440 |
Oregon | − 4,042 | − 2,641 | − 4,497 | − 4,727 | − 4,496 | − 6,646 | − 7,612c | − 6,377 | − 5,114 | − 5,648 | − 6,379 | − 5,706 |
Pennsylvania | 6,770b | 8,395a | 8,380a | 7,801a | 7,511a | 9,028a | 7,642b | 5,896c | 4,562 | 4,918 | 4,138 | 4,313 |
Rhode Island | 1,738 | 1,504 | 2,910 | 2,501 | 1,428 | 0,485 | − 0,517 | 0,681 | 0,843 | 1,945 | 1,529 | 0,677 |
S. Carolina | 1,980 | 1,230 | 1,065 | − 0,118 | − 1,506 | − 3,083 | − 4,783b | − 4,916b | − 5,064a | − 5,693a | − 5,815a | − 6,305a |
S. Dakota | 3,266 | 2,201 | 2,458 | 2,603 | 1,534 | 2,262 | 6,069 | 5,653 | 6,814 | 6,759 | 7,206 | 7,300 |
Tennessee | − 2,577 | − 2,768 | − 3,128 | − 3,491 | − 4,601b | − 4,952b | − 6,307a | − 7,057a | − 8,131a | − 8,470a | − 7,926a | − 8,435a |
Texas | 4,760 | 3,231 | 3,040 | 3,372 | 3,604 | 4,932 | 4,514 | 5,309 | 2,183 | 2,738 | 3,692 | 2,508 |
Utah | 2,912 | 3,374 | 2,965 | 2,312 | 4,461 | 3,238 | 2,024 | 1,478 | 1,461 | 1,568 | 2,104 | 1,554 |
Vermont | 0,825 | 1,131 | − 0,267 | 0,410 | 0,897 | − 0,472 | − 1,484 | − 0,700 | − 0,763 | − 1,074 | − 1,085 | − 1,657 |
Virginia | 4,738c | 5,678b | 5,271b | 5,182c | 4,883c | 3,633 | 2,299 | 2,121 | 0,759 | 0,191 | − 0,966 | − 1,745 |
Washington | 0,770 | 1,047 | − 0,722 | − 0,887 | − 1,831 | − 2,873 | − 2,557 | − 2,043 | − 0,259 | − 1,072 | − 2,859 | − 4,011 |
West Virginia | − 0,489 | 2,107 | 1,669 | 1,403 | 1,013 | 1,412 | 0,421 | − 0,629 | − 1,137 | − 1,644 | − 0,732 | − 0,584 |
Wisconsin | 2,636 | 3,137 | 0,830 | 1,859 | − 0,601 | 0,642 | − 1,113 | − 1,827 | 2,349 | 0,021 | 0,296 | 0,131 |
Wyoming | − 0,575 | − 0,770 | − 1,015 | − 2,947 | 1,308 | 0,578 | − 0,781 | − 0,458 | 0,185 | − 0,297 | 0,489 | − 0,614 |
State . | DR1 . | DR2 . | DR3 . | DR4 . | DR5 . | DR6 . | DR7 . | DR8 . | DR9 . | DR10 . | DR11 . | DR12 . |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Alabama | 1,666 | 1,807 | 1,211 | 0,711 | − 1,469 | − 3,368 | − 4,642 | − 4,971 | − 6,125b | − 7,364a | − 7,574a | − 7,971a |
Alaska | − 1,909 | − 1,227 | − 1,024 | − 0,604 | − 0,306 | 0,224 | − 0,056 | − 0,021 | 0,310 | − 0,387 | − 0,723 | − 1,365 |
Arizona | 5,323a | 4,887b | 3,579c | 2,539 | 2,555 | 1,724 | 1,181 | 0,615 | 1,059 | 1,198 | 2,362 | 2,366 |
Arkansas | − 2,974 | − 2,453 | − 3,073 | − 2,982 | − 3,925 | − 3,190 | − 4,229 | − 5,536c | − 6,282b | − 5,264 | − 3,840 | − 5,204 |
California | 1,332 | 4,452 | 3,063 | 0,126 | 0,173 | − 0,585 | − 1,883 | − 1,965 | − 1,551 | − 1,687 | − 0,403 | 2,170 |
Colorado | − 0,332 | − 0,086 | 0,339 | − 0,325 | 0,726 | 0,587 | − 0,577 | − 0,816 | − 0,772 | − 1,133 | − 1,014 | − 1,410 |
Connecticut | 6,486b | 6,963b | 7,106b | 7,621a | 5,145b | 3,917 | 3,094 | 2,848 | 2,197 | 2,331 | 2,225 | 2,351 |
Delaware | 2,601 | 3,380 | 3,277 | 2,503 | 3,582 | 2,551 | 1,954 | − 0,305 | − 1,723 | − 2,576 | − 2,911 | − 2,772 |
Dist. of Col. | 6,128b | 6,588b | 7,486a | 7,193a | 5,939b | 4,476 | 4,250 | 3,284 | 1,257 | 2,514 | 1,339 | 1,203 |
Florida | 5,563 | 5,749 | 7,103c | 6,851c | 4,517 | 2,784 | 1,878 | 2,715 | − 0,583 | − 0,316 | − 2,329 | − 3,408 |
Georgia | 2,652 | 1,816 | 1,615 | 0,584 | − 1,037 | − 2,002 | − 2,822 | − 3,305 | − 4,110c | − 4,735b | − 5,066b | − 5,268b |
Hawaii | 3,616b | 4,047b | 1,798 | 0,765 | 0,042 | − 0,307 | − 1,051 | − 1,192 | − 0,425 | − 0,878 | − 0,544 | − 0,572 |
Idaho | 1,942 | 1,633 | − 0,312 | − 1,419 | − 2,004 | − 3,021 | − 2,945 | − 3,291 | − 1,530 | − 0,879 | − 1,875 | − 2,259 |
Illinois | − 1,789 | − 0,992 | − 2,256 | − 3,032 | − 2,970 | − 2,196 | − 3,566 | − 3,651 | − 1,861 | − 2,406 | − 2,340 | − 2,583 |
Indiana | 1,120 | 2,248 | 1,752 | 1,441 | 1,727 | 2,500 | 1,084 | 0,776 | 1,832 | 0,060 | 0,604 | 0,807 |
Iowa | 1,091 | 1,378 | 0,336 | − 0,083 | 0,111 | 1,714 | 1,100 | 1,980 | 2,651 | 2,674 | 2,788 | 2,557 |
Kansas | − 1,371 | − 1,386 | − 1,810 | − 3,283 | − 2,844 | − 1,985 | − 2,798 | − 2,503 | − 1,984 | − 2,550 | − 2,602 | − 3,128 |
Kentucky | − 1,191 | − 0,361 | − 0,088 | − 0,185 | − 0,856 | − 1,103 | − 2,059 | − 2,612 | − 2,640 | − 3,363 | − 3,186 | − 3,111 |
Louisiana | − 5,137 | − 4,930 | − 6,861 | − 7,969 | − 5,778 | − 6,588 | − 7,311 | − 8,601 | − 9,154 | − 11,908c | − 8,607 | − 11,004c |
Maine | 0,219 | 0,630 | − 0,028 | 0,710 | 1,165 | 0,972 | 1,171 | 1,420 | 1,345 | 0,794 | 0,756 | 1,015 |
Maryland | 1,835 | 2,870 | 2,523 | 1,829 | 1,865 | 1,395 | 0,566 | − 0,642 | − 0,994 | − 0,971 | − 1,820 | − 1,565 |
Massachusetts | 0,644 | 2,368 | 2,783 | 2,836 | 2,137 | 0,055 | − 1,240 | − 0,486 | 0,738 | 2,135 | 1,469 | 1,896 |
Michigan | 0,448 | 1,371 | − 3,020 | − 2,980 | − 3,303 | − 0,503 | − 1,987 | − 3,254 | 1,810 | − 1,227 | − 1,568 | − 0,047 |
Minnesota | − 0,724 | − 0,218 | − 0,633 | − 0,049 | − 1,597 | − 1,792 | − 3,414 | − 4,110 | − 1,545 | − 0,945 | 0,402 | 0,392 |
Mississippi | 0,512 | 0,763 | 0,649 | − 0,495 | − 0,912 | − 0,517 | − 1,046 | 0,349 | 0,317 | 0,121 | 0,213 | − 0,756 |
Missouri | − 0,830 | − 0,524 | − 1,453 | − 1,902 | − 2,454 | − 2,473 | − 3,994 | − 4,247 | − 3,520 | − 4,072 | − 4,052 | − 3,873 |
Montana | − 0,957 | − 0,364 | − 0,862 | − 1,319 | − 0,004 | − 2,080 | − 2,182 | − 2,193 | − 0,436 | − 1,550 | − 0,748 | − 0,536 |
Nebraska | − 3,162 | − 3,305 | − 3,446 | − 4,411 | − 2,830 | − 2,773 | − 4,173 | − 2,315 | − 1,676 | − 2,270 | − 1,951 | − 1,634 |
Nevada | − 1,626 | − 0,514 | − 0,342 | − 1,182 | 1,010 | − 0,527 | − 1,700 | − 2,240 | − 1,235 | − 1,242 | − 1,449 | − 0,750 |
New Hamp. | 2,516 | 2,712 | 2,125 | 2,421 | 2,377 | 2,097 | 1,989 | 2,469 | 2,358 | 2,571 | 2,288 | 2,418 |
New Jersey | 4,090 | 5,008c | 4,575 | 3,707 | 4,047 | 2,558 | 1,210 | 0,370 | − 0,356 | − 0,867 | − 1,966 | − 0,882 |
New Mexico | 4,048 | 3,461 | 2,552 | 1,480 | 0,596 | 0,085 | − 0,597 | − 1,058 | 0,436 | − 0,565 | 0,176 | − 0,168 |
New York | 5,949b | 7,610a | 8,551b | 9,020a | 7,486a | 4,587 | 3,270 | 1,918 | 0,684 | 1,614 | 0,504 | 1,500 |
N. Carolina | 4,783 | 5,034 | 4,271 | 3,506 | 0,352 | − 1,673 | − 3,681 | − 3,796 | − 5,197 | − 5,848b | − 7,159a | − 8,071a |
N. Dakota | 4,931 | 4,104 | 3,525 | 1,544 | 1,763 | 2,303 | 1,670 | 0,823 | 2,424 | 2,846 | 5,110 | 4,107 |
Ohio | 1,501 | 3,415 | 3,420 | 3,239 | 4,124 | 5,648c | 4,032 | 3,805 | 4,479 | 2,825 | 3,446 | 3,338 |
Oklahoma | − 0,090 | − 0,142 | − 1,102 | − 2,065 | − 2,001 | − 2,502 | − 4,238 | − 3,672 | − 3,247 | − 4,137 | − 3,822 | − 4,440 |
Oregon | − 4,042 | − 2,641 | − 4,497 | − 4,727 | − 4,496 | − 6,646 | − 7,612c | − 6,377 | − 5,114 | − 5,648 | − 6,379 | − 5,706 |
Pennsylvania | 6,770b | 8,395a | 8,380a | 7,801a | 7,511a | 9,028a | 7,642b | 5,896c | 4,562 | 4,918 | 4,138 | 4,313 |
Rhode Island | 1,738 | 1,504 | 2,910 | 2,501 | 1,428 | 0,485 | − 0,517 | 0,681 | 0,843 | 1,945 | 1,529 | 0,677 |
S. Carolina | 1,980 | 1,230 | 1,065 | − 0,118 | − 1,506 | − 3,083 | − 4,783b | − 4,916b | − 5,064a | − 5,693a | − 5,815a | − 6,305a |
S. Dakota | 3,266 | 2,201 | 2,458 | 2,603 | 1,534 | 2,262 | 6,069 | 5,653 | 6,814 | 6,759 | 7,206 | 7,300 |
Tennessee | − 2,577 | − 2,768 | − 3,128 | − 3,491 | − 4,601b | − 4,952b | − 6,307a | − 7,057a | − 8,131a | − 8,470a | − 7,926a | − 8,435a |
Texas | 4,760 | 3,231 | 3,040 | 3,372 | 3,604 | 4,932 | 4,514 | 5,309 | 2,183 | 2,738 | 3,692 | 2,508 |
Utah | 2,912 | 3,374 | 2,965 | 2,312 | 4,461 | 3,238 | 2,024 | 1,478 | 1,461 | 1,568 | 2,104 | 1,554 |
Vermont | 0,825 | 1,131 | − 0,267 | 0,410 | 0,897 | − 0,472 | − 1,484 | − 0,700 | − 0,763 | − 1,074 | − 1,085 | − 1,657 |
Virginia | 4,738c | 5,678b | 5,271b | 5,182c | 4,883c | 3,633 | 2,299 | 2,121 | 0,759 | 0,191 | − 0,966 | − 1,745 |
Washington | 0,770 | 1,047 | − 0,722 | − 0,887 | − 1,831 | − 2,873 | − 2,557 | − 2,043 | − 0,259 | − 1,072 | − 2,859 | − 4,011 |
West Virginia | − 0,489 | 2,107 | 1,669 | 1,403 | 1,013 | 1,412 | 0,421 | − 0,629 | − 1,137 | − 1,644 | − 0,732 | − 0,584 |
Wisconsin | 2,636 | 3,137 | 0,830 | 1,859 | − 0,601 | 0,642 | − 1,113 | − 1,827 | 2,349 | 0,021 | 0,296 | 0,131 |
Wyoming | − 0,575 | − 0,770 | − 1,015 | − 2,947 | 1,308 | 0,578 | − 0,781 | − 0,458 | 0,185 | − 0,297 | 0,489 | − 0,614 |
aIndicates 1% statistical significance.bIndicates 5% statistical significance.cIndicates 10% statistical significance.
Accordingly, while CO2 emissions generally increase the SPEI drought index in the first 6 months of the year, they reduce it in the last 6 months of the year. Negative values of the SPEI indicate dry periods, and positive values indicate wetting periods. Therefore, a decrease in SPEI values indicates a transition from a wetting period to a dry period, and an increase indicates a transition from a dry period to a more wetting period. Therefore, this situation can be explained as CO2 emissions generally lead to drought in the last 6 months of the year. This study seeks to empirically test the hypothesis that CO2 emissions, by driving climate change, can increase the frequency and intensity of droughts through their impact on regional precipitation and temperature patterns. The results of this study support the hypothesis that CO2 emissions, through their impact on climate change, contribute to changes in drought patterns in the US.
After estimating the parameters on state bases with the AMG analysis, error correction-based PMG analyses are performed to see short- and long-term panel estimations.
According to Table 6, since the error correction term values are negative and statistically significant, it can be said that there are cointegration relationships between the variables. According to the long-term analysis results, CO2 emissions have long-term effects on droughts in all months. According to the short-term analysis results, CO2 emissions affect the SPEI drought index in February, April, May, June, July, September, November, and December, while they do not affect the SPEI drought index in other months. It can be seen that CO2 emissions affect drought both in the short- and long-run, increase the SPEI drought index (in other words increase the wetting) in the short-run, and decrease the SPEI drought index (namely, increase the drought) in the long-run. Studies in the literature (such as Strzepek et al. 2010; Hardin et al. 2017) have also found that in periods when CO2 emissions increase, drought also increases and there is a direct relationship between them. Therefore, the findings obtained from this analysis are in line with the previous studies in the literature.
Dep. var. . | ΔDR1 . | ΔDR2 . | ΔDR3 . | ΔDR4 . | ΔDR5 . | ΔDR6 . |
---|---|---|---|---|---|---|
Long run | lnCO2 −1.46a (0.00) | lnCO2 −1.67a (0.00) | lnCO2 −1.67a (0.00) | lnCO2 −1.89a (0.00) | lnCO2 −1.57a (0.00) | lnCO2 −1.29a (0.00) |
Short run | ΔlnCO2 −0.22 (0.76) | ΔlnCO2 1.23c (0.095) | ΔlnCO2 0.91 (0.22) | ΔlnCO2 1.32c (0.09) | ΔlnCO2 1.43b (0.03) | ΔlnCO2 1.35a (0.0095) |
Constant | 6.23a(0.00) | 6.94a (0.00) | 6.98a (0.00) | 7.50a (0.00) | 6.45a (0.00) | 5.59a (0.00) |
Error correction | −0.96a (0.00) | −0.93a (0.00) | −0.95a (0.00) | −0.90a (0.00) | −0.93a (0.00) | −0.97a (0.00) |
Dep. var. | ΔDR7 | ΔDR8 | ΔDR9 | ΔDR10 | ΔDR11 | ΔDR12 |
Long run | lnCO2 −1.23a (0.00) | lnCO2 −1.17a (0.00) | lnCO2 −1.09a (0.00) | lnCO2 −0.95a (0.00) | lnCO2 −1.20a (0.00) | lnCO2 −1.04a (0.00) |
Short run | ΔlnCO2 0.96c (0.07) | ΔlnCO2 0.82 (0.13) | ΔlnCO2 0.99c (0.08) | ΔlnCO2 0.33 (0.61) | ΔlnCO2 1.44b (0.03) | ΔlnCO2 1.66b (0.02) |
Constant | 5.48a (0.00) | 5.20a (0.00) | 4.83a (0.00) | 4.17a (0.00) | 5.07a (0.00) | 4.48a (0.00) |
Error correction | −1.01a (0.00) | −1.01a (0.00) | −1,01a (0.00) | −0.98a (0.00) | −0.95a (0.00) | −0.97a (0.00) |
Dep. var. . | ΔDR1 . | ΔDR2 . | ΔDR3 . | ΔDR4 . | ΔDR5 . | ΔDR6 . |
---|---|---|---|---|---|---|
Long run | lnCO2 −1.46a (0.00) | lnCO2 −1.67a (0.00) | lnCO2 −1.67a (0.00) | lnCO2 −1.89a (0.00) | lnCO2 −1.57a (0.00) | lnCO2 −1.29a (0.00) |
Short run | ΔlnCO2 −0.22 (0.76) | ΔlnCO2 1.23c (0.095) | ΔlnCO2 0.91 (0.22) | ΔlnCO2 1.32c (0.09) | ΔlnCO2 1.43b (0.03) | ΔlnCO2 1.35a (0.0095) |
Constant | 6.23a(0.00) | 6.94a (0.00) | 6.98a (0.00) | 7.50a (0.00) | 6.45a (0.00) | 5.59a (0.00) |
Error correction | −0.96a (0.00) | −0.93a (0.00) | −0.95a (0.00) | −0.90a (0.00) | −0.93a (0.00) | −0.97a (0.00) |
Dep. var. | ΔDR7 | ΔDR8 | ΔDR9 | ΔDR10 | ΔDR11 | ΔDR12 |
Long run | lnCO2 −1.23a (0.00) | lnCO2 −1.17a (0.00) | lnCO2 −1.09a (0.00) | lnCO2 −0.95a (0.00) | lnCO2 −1.20a (0.00) | lnCO2 −1.04a (0.00) |
Short run | ΔlnCO2 0.96c (0.07) | ΔlnCO2 0.82 (0.13) | ΔlnCO2 0.99c (0.08) | ΔlnCO2 0.33 (0.61) | ΔlnCO2 1.44b (0.03) | ΔlnCO2 1.66b (0.02) |
Constant | 5.48a (0.00) | 5.20a (0.00) | 4.83a (0.00) | 4.17a (0.00) | 5.07a (0.00) | 4.48a (0.00) |
Error correction | −1.01a (0.00) | −1.01a (0.00) | −1,01a (0.00) | −0.98a (0.00) | −0.95a (0.00) | −0.97a (0.00) |
Note: Probability values are shown in parentheses.
aIndicates 1% statistical significance.
bIndicates 5% statistical significance.
cIndicates 10% statistical significance.
In the next step, the Dumitrescu-Hurlin panel causality test, which is used to test causality in heterogeneous panel data models, was conducted to investigate the mutual causality relationship between the variables.
In Table 7, when the causality relationships between the variables are analyzed, it is found that SPEI drought index values in all months are the causes of CO2 emissions. When the causality relationships from CO2 emissions to SPEI drought index values are examined, it is found that CO2 emissions in all months except January and April are the causes of SPEI drought index values.
DR1 → lnCO2 | DR2 → lnCO2 | DR3 → lnCO2 | DR4 → lnCO2 | DR5 → lnCO2 | DR6 → lnCO2 |
1.46b (0.02) | 1.75a (0.00) | 1.63a (0.00) | 1.79a (0.00) | 2.22a (0.00) | 2.08a (0.00) |
lnCO2 → DR1 | lnCO2 → DR2 | lnCO2 → DR3 | lnCO2 → DR4 | lnCO2 → DR5 | lnCO2 → DR6 |
1.25 (0.20) | 1.40b (0.04) | 1.38c (0.06) | 1.31 (0.12) | 1.41b (0.04) | 1.50b (0.01) |
DR7 → lnCO2 | DR8 → lnCO2 | DR9 → lnCO2 | DR10 → lnCO2 | DR11 → lnCO2 | DR12 → lnCO2 |
1.79a (0.00) | 1.60a (0.00) | 1.90a (0.00) | 1.49b (0.01) | 1.84a (0.00) | 1.82a (0.00) |
lnCO2 → DR7 | lnCO2 → DR8 | lnCO2 → DR9 | lnCO2 → DR10 | lnCO2 → DR11 | lnCO2 → DR12 |
1.61a (0.00) | 1.64a (0.00) | 1.66a (0.00) | 1.51a (0.0096) | 1.53a (0.008) | 1.36c (0.07) |
DR1 → lnCO2 | DR2 → lnCO2 | DR3 → lnCO2 | DR4 → lnCO2 | DR5 → lnCO2 | DR6 → lnCO2 |
1.46b (0.02) | 1.75a (0.00) | 1.63a (0.00) | 1.79a (0.00) | 2.22a (0.00) | 2.08a (0.00) |
lnCO2 → DR1 | lnCO2 → DR2 | lnCO2 → DR3 | lnCO2 → DR4 | lnCO2 → DR5 | lnCO2 → DR6 |
1.25 (0.20) | 1.40b (0.04) | 1.38c (0.06) | 1.31 (0.12) | 1.41b (0.04) | 1.50b (0.01) |
DR7 → lnCO2 | DR8 → lnCO2 | DR9 → lnCO2 | DR10 → lnCO2 | DR11 → lnCO2 | DR12 → lnCO2 |
1.79a (0.00) | 1.60a (0.00) | 1.90a (0.00) | 1.49b (0.01) | 1.84a (0.00) | 1.82a (0.00) |
lnCO2 → DR7 | lnCO2 → DR8 | lnCO2 → DR9 | lnCO2 → DR10 | lnCO2 → DR11 | lnCO2 → DR12 |
1.61a (0.00) | 1.64a (0.00) | 1.66a (0.00) | 1.51a (0.0096) | 1.53a (0.008) | 1.36c (0.07) |
Note: Wald Statistic: probability values are given in parentheses.
aIndicates 1% statistical significance.
bIndicates 5% statistical significance.
cIndicates 10% statistical significance.
To examine the causality results by states, the individual results of the Dumitrescu-Hurlin panel Granger causality tests are given in Table 8.
. | Null hypothesis: No causality . | |||||
---|---|---|---|---|---|---|
State . | lnCO2 → DR1 . | lnCO2 → DR2 . | lnCO2 → DR3 . | lnCO2 → DR4 . | lnCO2 → DR5 . | lnCO2 → DR6 . |
Alabama | 3,993c(0,059) | 4,838b(0,040) | 4,090c(0,057) | 4,440b(0,048) | 4,527b(0,046) | 5,204b(0,034) |
Alaska | 7,828b(0,011) | 7,607b(0,012) | 6,634b(0,018) | 5,943b(0,024) | 5,094b(0,035) | 6,345b(0,020) |
Arizona | 0,031 (0,862) | 0,005 (0,944) | 0,102 (0,753) | 0,078 (0,783) | 0,027 (0,871) | 0,024 (0,878) |
Arkansas | 0,004 (0,950) | 0,043 (0,839) | 0,214 (0,649) | 0,352 (0,559) | 1,644 (0,214) | 2,182 (0,155) |
California | 0,288 (0,598) | 0,142 (0,710) | 0,031 (0,861) | 0,001 (0,972) | 0,001 (0,972) | 0,011 (0,916) |
Colorado | 3,765c(0,067) | 4,042c(0,058) | 4,297c(0,051) | 2,975c(0,100) | 2,378 (0,139) | 1,928 (0,180) |
Connecticut | 0,777 (0,389) | 0,738 (0,400) | 0,830 (0,373) | 0,391 (0,539) | 0,790 (0,385) | 1,696 (0,208) |
Delaware | 1,068 (0,314) | 1,241 (0,278) | 1,270 (0,273) | 1,446 (0,243) | 0,965 (0,338) | 0,427 (0,521) |
Dist. of Col. | 0,059 (0,810) | 0,039 (0,846) | 0,108 (0,745) | 0,277 (0,604) | 0,103 (0,752) | 0,015 (0,904) |
Florida | 1,989 (0,174) | 2,297 (0,145) | 2,236 (0,150) | 1,991 (0,174) | 1,851 (0,189) | 1,731 (0,203) |
Georgia | 1,726 (0,204) | 2,658 (0,119) | 2,873 (0,106) | 3,436c(0,079) | 4,490b(0,047) | 4,997b(0,037) |
Hawaii | 0,014 (0,908) | 0,396 (0,536) | 0,674 (0,421) | 0,533 (0,474) | 0,509 (0,484) | 0,499 (0,488) |
Idaho | 0,380 (0,545) | 0,074 (0,789) | 0,235 (0,633) | 0,223 (0,642) | 0,078 (0,782) | 0,809 (0,379) |
Illinois | 2,940 (0,102) | 3,321c(0,083) | 2,481 (0,131) | 3,402c(0,080) | 3,679c(0,069) | 3,606c(0,072) |
Indiana | 2,103 (0,162) | 2,215 (0,152) | 1,771 (0,198) | 1,156 (0,295) | 1,212 (0,284) | 0,855 (0,366) |
Iowa | 0,926 (0,347) | 1,006 (0,328) | 1,152 (0,296) | 0,675 (0,421) | 0,462 (0,505) | 0,013 (0,911) |
Kansas | 0,187 (0,670) | 0,172 (0,683) | 0,195 (0,664) | 0,113 (0,740) | 0,019 (0,891) | 0,019 (0,892) |
Kentucky | 5,922b(0,024) | 6,003b(0,024) | 6,074b(0,023) | 3,310c(0,084) | 4,022c(0,059) | 2,431 (0,135) |
Louisiana | 1,521 (0,232) | 1,609 (0,219) | 0,657 (0,427) | 0,980 (0,334) | 2,274 (0,147) | 2,409 (0,136) |
Maine | 0,216 (0,647) | 0,048 (0,829) | 0,050 (0,825) | 0,005 (0,946) | 0,011 (0,918) | 0,037 (0,850) |
Maryland | 0,204 (0,657) | 0,344 (0,564) | 0,496 (0,489) | 0,695 (0,414) | 0,609 (0,444) | 0,476 (0,498) |
Massachusetts | 0,017 (0,897) | 0,033 (0,858) | 0,011 (0,918) | 0,016 (0,900) | 0,041 (0,842) | 0,237 (0,632) |
Michigan | 2,631 (0,120) | 2,833 (0,108) | 1,919 (0,181) | 2,090 (0,164) | 2,682 (0,117) | 2,924 (0,103) |
Minnesota | 0,029 (0,867) | 0,022 (0,885) | 0,022 (0,883) | 0,134 (0,719) | 0,266 (0,612) | 1,310 (0,266) |
Mississippi | 0,746 (0,398) | 0,745 (0,398) | 0,717 (0,407) | 0,587 (0,452) | 0,049 (0,827) | 0,058 (0,812) |
Missouri | 0,872 (0,361) | 0,926 (0,347) | 1,351 (0,259) | 1,729 (0,203) | 1,944 (0,178) | 2,235 (0,150) |
Montana | 0,345 (0,563) | 0,595 (0,450) | 0,619 (0,441) | 0,543 (0,470) | 0,536 (0,473) | 0,976 (0,335) |
Nebraska | 0,904 (0,353) | 0,934 (0,345) | 0,775 (0,389) | 0,925 (0,348) | 0,182 (0,674) | 0,040 (0,843) |
Nevada | 0,089 (0,769) | 0,000 (0,997) | 0,008 (0,929) | 0,093 (0,764) | 0,003 (0,953) | 0,017 (0,896) |
New Hamp. | 0,602 (0,447) | 0,703 (0,412) | 0,627 (0,438) | 0,719 (0,407) | 1,218 (0,283) | 1,859 (0,188) |
New Jersey | 0,079 (0,782) | 0,026 (0,874) | 0,005 (0,947) | 0,034 (0,856) | 0,000 (0,994) | 0,038 (0,848) |
New Mexico | 0,278 (0,604) | 0,284 (0,600) | 0,150 (0,702) | 0,097 (0,759) | 0,103 (0,752) | 0,078 (0,784) |
New York | 0,012 (0,913) | 0,001 (0,970) | 0,008 (0,929) | 0,139 (0,713) | 0,077 (0,785) | 0,008 (0,929) |
N. Carolina | 2,906 (0,104) | 3,749c(0,067) | 3,907c(0,062) | 4,288c(0,052) | 5,163b(0,034) | 4,874b(0,039) |
N. Dakota | 0,460 (0,505) | 0,481 (0,496) | 0,660 (0,426) | 0,794 (0,384) | 0,460 (0,506) | 0,000 (0,983) |
Ohio | 0,692 (0,415) | 0,556 (0,465) | 0,707 (0,410) | 0,661 (0,426) | 0,841 (0,370) | 0,741 (0,400) |
Oklahoma | 2,445 (0,134) | 2,652 (0,119) | 2,447 (0,133) | 1,289 (0,270) | 0,476 (0,498) | 0,749 (0,397) |
Oregon | 0,416 (0,526) | 0,870 (0,362) | 0,324 (0,575) | 0,335 (0,569) | 1,050 (0,318) | 0,295 (0,593) |
Pennsylvania | 0,029 (0,867) | 0,013 (0,911) | 0,010 (0,923) | 0,013 (0,909) | 0,002 (0,966) | 0,096 (0,760) |
Rhode Island | 0,176 (0,679) | 0,198 (0,661) | 0,131 (0,722) | 0,000 (0,986) | 0,043 (0,838) | 0,322 (0,577) |
S. Carolina | 3,466c(0,077) | 4,274c(0,052) | 4,235c(0,053) | 4,762b(0,041) | 6,042b(0,023) | 5,517b(0,029) |
S. Dakota | 2,420 (0,135) | 2,865 (0,106) | 3,103c(0,093) | 2,372 (0,139) | 2,308 (0,144) | 2,158 (0,157) |
Tennessee | 4,092c(0,057) | 4,534b(0,046) | 5,699b(0,027) | 5,694b(0,027) | 7,065b(0,015) | 7,226b(0,014) |
Texas | 1,170 (0,292) | 1,327 (0,263) | 2,078 (0,165) | 2,552 (0,126) | 3,333c(0,083) | 3,545c(0,074) |
Utah | 0,489 (0,493) | 0,177 (0,678) | 0,081 (0,779) | 0,325 (0,575) | 0,296 (0,592) | 0,415 (0,527) |
Vermont | 0,082 (0,777) | 0,033 (0,857) | 0,015 (0,902) | 0,005 (0,947) | 0,177 (0,678) | 0,027 (0,872) |
Virginia | 0,112 (0,742) | 0,322 (0,577) | 0,271 (0,608) | 0,385 (0,542) | 0,351 (0,560) | 0,592 (0,451) |
Washington | 0,188 (0,669) | 0,354 (0,558) | 0,244 (0,627) | 0,112 (0,741) | 0,044 (0,836) | 0,001 (0,971) |
West Virginia | 0,292 (0,595) | 0,407 (0,531) | 0,777 (0,389) | 1,147 (0,297) | 0,808 (0,379) | 0,585 (0,453) |
Wisconsin | 0,334 (0,570) | 0,404 (0,532) | 0,218 (0,645) | 1,240 (0,279) | 1,281 (0,271) | 3,841c(0,064) |
Wyoming | 1,531 (0,230) | 2,330 (0,143) | 2,552 (0,126) | 1,086 (0,310) | 0,228 (0,638) | 0,214 (0,649) |
. | lnCO2 → DR7 . | lnCO2 → DR8 . | lnCO2 → DR9 . | lnCO2 → DR10 . | lnCO2 → DR11 . | lnCO2 → DR12 . |
Alabama | 4,879b(0,039) | 5,125b(0,035) | 4,301c(0,051) | 4,127c(0,056) | 3,842c(0,064) | 2,816 (0,109) |
Alaska | 8,972a(0,007) | 5,022b(0,037) | 6,078b(0,023) | 6,047b(0,023) | 7,085b(0,015) | 6,970b(0,016) |
Arizona | 0,139 (0,714) | 0,379 (0,545) | 0,191 (0,666) | 0,386 (0,541) | 0,478 (0,497) | 0,276 (0,605) |
Arkansas | 2,146 (0,158) | 2,883 (0,105) | 3,756c(0,067) | 4,518b(0,046) | 5,968b(0,024) | 5,010b(0,037) |
California | 0,016 (0,901) | 0,020 (0,888) | 0,019 (0,892) | 0,007 (0,936) | 0,017 (0,897) | 0,137 (0,715) |
Colorado | 1,207 (0,285) | 0,985 (0,333) | 1,335 (0,262) | 0,906 (0,353) | 0,892 (0,356) | 0,764 (0,393) |
Connecticut | 1,267 (0,274) | 0,747 (0,398) | 0,256 (0,618) | 0,437 (0,516) | 0,172 (0,683) | 0,050 (0,826) |
Delaware | 0,535 (0,473) | 0,900 (0,354) | 1,037 (0,321) | 0,738 (0,401) | 0,766 (0,392) | 0,392 (0,538) |
Dist. of Col. | 0,056 (0,816) | 0,510 (0,483) | 0,561 (0,463) | 0,489 (0,493) | 0,730 (0,403) | 0,736 (0,401) |
Florida | 1,395 (0,251) | 1,352 (0,259) | 2,300 (0,145) | 1,232 (0,280) | 0,821 (0,376) | 0,012 (0,913) |
Georgia | 5,405b(0,031) | 6,591b(0,018) | 6,190b(0,022) | 6,181b(0,022) | 5,788b(0,026) | 5,096b(0,035) |
Hawaii | 0,899 (0,354) | 0,506 (0,485) | 0,417 (0,526) | 0,277 (0,605) | 0,273 (0,607) | 1,310 (0,266) |
Idaho | 1,031 (0,322) | 1,044 (0,319) | 0,259 (0,616) | 0,323 (0,576) | 0,521 (0,479) | 0,202 (0,658) |
Illinois | 3,384c(0,081) | 2,702 (0,116) | 1,716 (0,205) | 0,957 (0,340) | 0,840 (0,370) | 0,570 (0,459) |
Indiana | 0,679 (0,420) | 0,533 (0,474) | 1,126 (0,301) | 1,350 (0,259) | 1,581 (0,223) | 0,796 (0,383) |
Iowa | 0,001 (0,975) | 0,021 (0,886) | 0,082 (0,778) | 0,067 (0,798) | 0,064 (0,803) | 0,043 (0,837) |
Kansas | 0,100 (0,756) | 0,047 (0,831) | 0,055 (0,818) | 0,092 (0,765) | 0,054 (0,819) | 0,100 (0,755) |
Kentucky | 2,208 (0,153) | 2,241 (0,150) | 4,090c(0,057) | 5,100b(0,035) | 6,003b(0,024) | 5,748b(0,026) |
Louisiana | 2,895 (0,104) | 2,103 (0,162) | 0,354 (0,559) | 0,393 (0,538) | 1,270 (0,273) | 1,334 (0,262) |
Maine | 0,000 (0,997) | 0,000 (0,996) | 0,139 (0,713) | 0,076 (0,785) | 0,152 (0,701) | 0,134 (0,718) |
Maryland | 0,799 (0,382) | 1,652 (0,213) | 2,268 (0,148) | 2,415 (0,136) | 2,693 (0,116) | 2,595 (0,123) |
Massachusetts | 0,453 (0,508) | 0,724 (0,405) | 0,948 (0,342) | 0,992 (0,331) | 1,032 (0,322) | 0,893 (0,356) |
Michigan | 3,049c(0,096) | 3,161c(0,091) | 2,472 (0,132) | 2,171 (0,156) | 1,830 (0,191) | 1,639 (0,215) |
Minnesota | 1,718 (0,205) | 1,581 (0,223) | 1,989 (0,174) | 1,763 (0,199) | 1,473 (0,239) | 1,162 (0,294) |
Mississippi | 0,003 (0,955) | 0,002 (0,967) | 0,217 (0,647) | 0,380 (0,544) | 0,503 (0,487) | 0,815 (0,377) |
Missouri | 2,163 (0,157) | 1,432 (0,246) | 1,401 (0,250) | 1,331 (0,262) | 0,976 (0,335) | 0,622 (0,440) |
Montana | 0,288 (0,598) | 0,092 (0,765) | 0,630 (0,437) | 0,335 (0,569) | 0,507 (0,485) | 0,640 (0,433) |
Nebraska | 0,108 (0,745) | 0,167 (0,687) | 0,161 (0,692) | 0,105 (0,749) | 0,088 (0,769) | 0,062 (0,806) |
Nevada | 0,038 (0,847) | 0,006 (0,941) | 0,015 (0,904) | 0,106 (0,749) | 0,138 (0,715) | 0,351 (0,560) |
New Hamp. | 1,736 (0,202) | 1,504 (0,234) | 1,480 (0,238) | 1,380 (0,254) | 0,862 (0,364) | 0,568 (0,460) |
New Jersey | 0,001 (0,982) | 0,022 (0,883) | 0,019 (0,891) | 0,010 (0,921) | 0,075 (0,787) | 0,036 (0,851) |
New Mexico | 0,504 (0,486) | 0,811 (0,379) | 1,378 (0,254) | 1,382 (0,253) | 1,127 (0,301) | 1,158 (0,295) |
New York | 0,000 (0,995) | 0,003 (0,958) | 0,048 (0,829) | 0,013 (0,911) | 0,068 (0,797) | 0,067 (0,799) |
N. Carolina | 6,261b(0,021) | 7,565b(0,012) | 7,099b(0,015) | 6,552b(0,019) | 4,515b(0,046) | 3,899c(0,062) |
N. Dakota | 0,089 (0,769) | 0,002 (0,967) | 0,000 (0,984) | 0,000 (0,995) | 0,007 (0,933) | 0,011 (0,917) |
Ohio | 0,713 (0,409) | 1,102 (0,306) | 1,043 (0,319) | 0,914 (0,350) | 1,274 (0,272) | 0,866 (0,363) |
Oklahoma | 0,490 (0,492) | 0,516 (0,481) | 0,491 (0,492) | 0,268 (0,610) | 0,077 (0,784) | 0,151 (0,702) |
Oregon | 0,165 (0,689) | 0,490 (0,492) | 1,532 (0,230) | 1,191 (0,288) | 1,759 (0,200) | 2,991c(0,099) |
Pennsylvania | 0,086 (0,773) | 0,026 (0,873) | 0,001 (0,979) | 0,001 (0,971) | 0,063 (0,805) | 0,086 (0,772) |
Rhode Island | 0,236 (0,632) | 0,199 (0,661) | 0,359 (0,556) | 0,119 (0,733) | 0,018 (0,896) | 0,030 (0,863) |
S. Carolina | 6,962b(0,016) | 6,989b(0,016) | 6,984b(0,016) | 6,205b(0,022) | 5,734b(0,027) | 4,331b(0,050) |
S. Dakota | 2,343 (0,142) | 2,105 (0,162) | 1,817 (0,193) | 1,745 (0,201) | 1,630 (0,216) | 1,442 (0,244) |
Tennessee | 4,568b(0,045) | 4,739b(0,042) | 3,777c(0,067) | 3,424c(0,079) | 4,104c(0,056) | 3,711c(0,068) |
Texas | 3,259c(0,086) | 3,656c(0,070) | 2,619 (0,121) | 2,340 (0,142) | 2,041 (0,169) | 1,445 (0,243) |
Utah | 0,647 (0,431) | 0,727 (0,404) | 0,398 (0,535) | 0,041 (0,841) | 0,064 (0,804) | 0,132 (0,721) |
Vermont | 0,037 (0,849) | 0,111 (0,743) | 0,110 (0,743) | 0,000 (0,991) | 0,004 (0,953) | 0,056 (0,816) |
Virginia | 1,003 (0,328) | 1,351 (0,259) | 2,033 (0,169) | 2,079 (0,165) | 1,136 (0,299) | 0,961 (0,339) |
Washington | 0,010 (0,922) | 0,059 (0,811) | 0,303 (0,588) | 0,603 (0,447) | 0,177 (0,679) | 0,156 (0,697) |
West Virginia | 0,265 (0,612) | 0,471 (0,500) | 0,531 (0,475) | 0,447 (0,512) | 0,894 (0,356) | 0,710 (0,409) |
Wisconsin | 6,547b(0,019) | 7,472b(0,013) | 6,835b(0,017) | 4,424b(0,048) | 4,827b(0,040) | 4,255c(0,052) |
Wyoming | 0,133 (0,719) | 1,116 (0,303) | 1,193 (0,288) | 0,732 (0,402) | 0,841 (0,370) | 0,852 (0,367) |
. | Null hypothesis: No causality . | |||||
---|---|---|---|---|---|---|
State . | lnCO2 → DR1 . | lnCO2 → DR2 . | lnCO2 → DR3 . | lnCO2 → DR4 . | lnCO2 → DR5 . | lnCO2 → DR6 . |
Alabama | 3,993c(0,059) | 4,838b(0,040) | 4,090c(0,057) | 4,440b(0,048) | 4,527b(0,046) | 5,204b(0,034) |
Alaska | 7,828b(0,011) | 7,607b(0,012) | 6,634b(0,018) | 5,943b(0,024) | 5,094b(0,035) | 6,345b(0,020) |
Arizona | 0,031 (0,862) | 0,005 (0,944) | 0,102 (0,753) | 0,078 (0,783) | 0,027 (0,871) | 0,024 (0,878) |
Arkansas | 0,004 (0,950) | 0,043 (0,839) | 0,214 (0,649) | 0,352 (0,559) | 1,644 (0,214) | 2,182 (0,155) |
California | 0,288 (0,598) | 0,142 (0,710) | 0,031 (0,861) | 0,001 (0,972) | 0,001 (0,972) | 0,011 (0,916) |
Colorado | 3,765c(0,067) | 4,042c(0,058) | 4,297c(0,051) | 2,975c(0,100) | 2,378 (0,139) | 1,928 (0,180) |
Connecticut | 0,777 (0,389) | 0,738 (0,400) | 0,830 (0,373) | 0,391 (0,539) | 0,790 (0,385) | 1,696 (0,208) |
Delaware | 1,068 (0,314) | 1,241 (0,278) | 1,270 (0,273) | 1,446 (0,243) | 0,965 (0,338) | 0,427 (0,521) |
Dist. of Col. | 0,059 (0,810) | 0,039 (0,846) | 0,108 (0,745) | 0,277 (0,604) | 0,103 (0,752) | 0,015 (0,904) |
Florida | 1,989 (0,174) | 2,297 (0,145) | 2,236 (0,150) | 1,991 (0,174) | 1,851 (0,189) | 1,731 (0,203) |
Georgia | 1,726 (0,204) | 2,658 (0,119) | 2,873 (0,106) | 3,436c(0,079) | 4,490b(0,047) | 4,997b(0,037) |
Hawaii | 0,014 (0,908) | 0,396 (0,536) | 0,674 (0,421) | 0,533 (0,474) | 0,509 (0,484) | 0,499 (0,488) |
Idaho | 0,380 (0,545) | 0,074 (0,789) | 0,235 (0,633) | 0,223 (0,642) | 0,078 (0,782) | 0,809 (0,379) |
Illinois | 2,940 (0,102) | 3,321c(0,083) | 2,481 (0,131) | 3,402c(0,080) | 3,679c(0,069) | 3,606c(0,072) |
Indiana | 2,103 (0,162) | 2,215 (0,152) | 1,771 (0,198) | 1,156 (0,295) | 1,212 (0,284) | 0,855 (0,366) |
Iowa | 0,926 (0,347) | 1,006 (0,328) | 1,152 (0,296) | 0,675 (0,421) | 0,462 (0,505) | 0,013 (0,911) |
Kansas | 0,187 (0,670) | 0,172 (0,683) | 0,195 (0,664) | 0,113 (0,740) | 0,019 (0,891) | 0,019 (0,892) |
Kentucky | 5,922b(0,024) | 6,003b(0,024) | 6,074b(0,023) | 3,310c(0,084) | 4,022c(0,059) | 2,431 (0,135) |
Louisiana | 1,521 (0,232) | 1,609 (0,219) | 0,657 (0,427) | 0,980 (0,334) | 2,274 (0,147) | 2,409 (0,136) |
Maine | 0,216 (0,647) | 0,048 (0,829) | 0,050 (0,825) | 0,005 (0,946) | 0,011 (0,918) | 0,037 (0,850) |
Maryland | 0,204 (0,657) | 0,344 (0,564) | 0,496 (0,489) | 0,695 (0,414) | 0,609 (0,444) | 0,476 (0,498) |
Massachusetts | 0,017 (0,897) | 0,033 (0,858) | 0,011 (0,918) | 0,016 (0,900) | 0,041 (0,842) | 0,237 (0,632) |
Michigan | 2,631 (0,120) | 2,833 (0,108) | 1,919 (0,181) | 2,090 (0,164) | 2,682 (0,117) | 2,924 (0,103) |
Minnesota | 0,029 (0,867) | 0,022 (0,885) | 0,022 (0,883) | 0,134 (0,719) | 0,266 (0,612) | 1,310 (0,266) |
Mississippi | 0,746 (0,398) | 0,745 (0,398) | 0,717 (0,407) | 0,587 (0,452) | 0,049 (0,827) | 0,058 (0,812) |
Missouri | 0,872 (0,361) | 0,926 (0,347) | 1,351 (0,259) | 1,729 (0,203) | 1,944 (0,178) | 2,235 (0,150) |
Montana | 0,345 (0,563) | 0,595 (0,450) | 0,619 (0,441) | 0,543 (0,470) | 0,536 (0,473) | 0,976 (0,335) |
Nebraska | 0,904 (0,353) | 0,934 (0,345) | 0,775 (0,389) | 0,925 (0,348) | 0,182 (0,674) | 0,040 (0,843) |
Nevada | 0,089 (0,769) | 0,000 (0,997) | 0,008 (0,929) | 0,093 (0,764) | 0,003 (0,953) | 0,017 (0,896) |
New Hamp. | 0,602 (0,447) | 0,703 (0,412) | 0,627 (0,438) | 0,719 (0,407) | 1,218 (0,283) | 1,859 (0,188) |
New Jersey | 0,079 (0,782) | 0,026 (0,874) | 0,005 (0,947) | 0,034 (0,856) | 0,000 (0,994) | 0,038 (0,848) |
New Mexico | 0,278 (0,604) | 0,284 (0,600) | 0,150 (0,702) | 0,097 (0,759) | 0,103 (0,752) | 0,078 (0,784) |
New York | 0,012 (0,913) | 0,001 (0,970) | 0,008 (0,929) | 0,139 (0,713) | 0,077 (0,785) | 0,008 (0,929) |
N. Carolina | 2,906 (0,104) | 3,749c(0,067) | 3,907c(0,062) | 4,288c(0,052) | 5,163b(0,034) | 4,874b(0,039) |
N. Dakota | 0,460 (0,505) | 0,481 (0,496) | 0,660 (0,426) | 0,794 (0,384) | 0,460 (0,506) | 0,000 (0,983) |
Ohio | 0,692 (0,415) | 0,556 (0,465) | 0,707 (0,410) | 0,661 (0,426) | 0,841 (0,370) | 0,741 (0,400) |
Oklahoma | 2,445 (0,134) | 2,652 (0,119) | 2,447 (0,133) | 1,289 (0,270) | 0,476 (0,498) | 0,749 (0,397) |
Oregon | 0,416 (0,526) | 0,870 (0,362) | 0,324 (0,575) | 0,335 (0,569) | 1,050 (0,318) | 0,295 (0,593) |
Pennsylvania | 0,029 (0,867) | 0,013 (0,911) | 0,010 (0,923) | 0,013 (0,909) | 0,002 (0,966) | 0,096 (0,760) |
Rhode Island | 0,176 (0,679) | 0,198 (0,661) | 0,131 (0,722) | 0,000 (0,986) | 0,043 (0,838) | 0,322 (0,577) |
S. Carolina | 3,466c(0,077) | 4,274c(0,052) | 4,235c(0,053) | 4,762b(0,041) | 6,042b(0,023) | 5,517b(0,029) |
S. Dakota | 2,420 (0,135) | 2,865 (0,106) | 3,103c(0,093) | 2,372 (0,139) | 2,308 (0,144) | 2,158 (0,157) |
Tennessee | 4,092c(0,057) | 4,534b(0,046) | 5,699b(0,027) | 5,694b(0,027) | 7,065b(0,015) | 7,226b(0,014) |
Texas | 1,170 (0,292) | 1,327 (0,263) | 2,078 (0,165) | 2,552 (0,126) | 3,333c(0,083) | 3,545c(0,074) |
Utah | 0,489 (0,493) | 0,177 (0,678) | 0,081 (0,779) | 0,325 (0,575) | 0,296 (0,592) | 0,415 (0,527) |
Vermont | 0,082 (0,777) | 0,033 (0,857) | 0,015 (0,902) | 0,005 (0,947) | 0,177 (0,678) | 0,027 (0,872) |
Virginia | 0,112 (0,742) | 0,322 (0,577) | 0,271 (0,608) | 0,385 (0,542) | 0,351 (0,560) | 0,592 (0,451) |
Washington | 0,188 (0,669) | 0,354 (0,558) | 0,244 (0,627) | 0,112 (0,741) | 0,044 (0,836) | 0,001 (0,971) |
West Virginia | 0,292 (0,595) | 0,407 (0,531) | 0,777 (0,389) | 1,147 (0,297) | 0,808 (0,379) | 0,585 (0,453) |
Wisconsin | 0,334 (0,570) | 0,404 (0,532) | 0,218 (0,645) | 1,240 (0,279) | 1,281 (0,271) | 3,841c(0,064) |
Wyoming | 1,531 (0,230) | 2,330 (0,143) | 2,552 (0,126) | 1,086 (0,310) | 0,228 (0,638) | 0,214 (0,649) |
. | lnCO2 → DR7 . | lnCO2 → DR8 . | lnCO2 → DR9 . | lnCO2 → DR10 . | lnCO2 → DR11 . | lnCO2 → DR12 . |
Alabama | 4,879b(0,039) | 5,125b(0,035) | 4,301c(0,051) | 4,127c(0,056) | 3,842c(0,064) | 2,816 (0,109) |
Alaska | 8,972a(0,007) | 5,022b(0,037) | 6,078b(0,023) | 6,047b(0,023) | 7,085b(0,015) | 6,970b(0,016) |
Arizona | 0,139 (0,714) | 0,379 (0,545) | 0,191 (0,666) | 0,386 (0,541) | 0,478 (0,497) | 0,276 (0,605) |
Arkansas | 2,146 (0,158) | 2,883 (0,105) | 3,756c(0,067) | 4,518b(0,046) | 5,968b(0,024) | 5,010b(0,037) |
California | 0,016 (0,901) | 0,020 (0,888) | 0,019 (0,892) | 0,007 (0,936) | 0,017 (0,897) | 0,137 (0,715) |
Colorado | 1,207 (0,285) | 0,985 (0,333) | 1,335 (0,262) | 0,906 (0,353) | 0,892 (0,356) | 0,764 (0,393) |
Connecticut | 1,267 (0,274) | 0,747 (0,398) | 0,256 (0,618) | 0,437 (0,516) | 0,172 (0,683) | 0,050 (0,826) |
Delaware | 0,535 (0,473) | 0,900 (0,354) | 1,037 (0,321) | 0,738 (0,401) | 0,766 (0,392) | 0,392 (0,538) |
Dist. of Col. | 0,056 (0,816) | 0,510 (0,483) | 0,561 (0,463) | 0,489 (0,493) | 0,730 (0,403) | 0,736 (0,401) |
Florida | 1,395 (0,251) | 1,352 (0,259) | 2,300 (0,145) | 1,232 (0,280) | 0,821 (0,376) | 0,012 (0,913) |
Georgia | 5,405b(0,031) | 6,591b(0,018) | 6,190b(0,022) | 6,181b(0,022) | 5,788b(0,026) | 5,096b(0,035) |
Hawaii | 0,899 (0,354) | 0,506 (0,485) | 0,417 (0,526) | 0,277 (0,605) | 0,273 (0,607) | 1,310 (0,266) |
Idaho | 1,031 (0,322) | 1,044 (0,319) | 0,259 (0,616) | 0,323 (0,576) | 0,521 (0,479) | 0,202 (0,658) |
Illinois | 3,384c(0,081) | 2,702 (0,116) | 1,716 (0,205) | 0,957 (0,340) | 0,840 (0,370) | 0,570 (0,459) |
Indiana | 0,679 (0,420) | 0,533 (0,474) | 1,126 (0,301) | 1,350 (0,259) | 1,581 (0,223) | 0,796 (0,383) |
Iowa | 0,001 (0,975) | 0,021 (0,886) | 0,082 (0,778) | 0,067 (0,798) | 0,064 (0,803) | 0,043 (0,837) |
Kansas | 0,100 (0,756) | 0,047 (0,831) | 0,055 (0,818) | 0,092 (0,765) | 0,054 (0,819) | 0,100 (0,755) |
Kentucky | 2,208 (0,153) | 2,241 (0,150) | 4,090c(0,057) | 5,100b(0,035) | 6,003b(0,024) | 5,748b(0,026) |
Louisiana | 2,895 (0,104) | 2,103 (0,162) | 0,354 (0,559) | 0,393 (0,538) | 1,270 (0,273) | 1,334 (0,262) |
Maine | 0,000 (0,997) | 0,000 (0,996) | 0,139 (0,713) | 0,076 (0,785) | 0,152 (0,701) | 0,134 (0,718) |
Maryland | 0,799 (0,382) | 1,652 (0,213) | 2,268 (0,148) | 2,415 (0,136) | 2,693 (0,116) | 2,595 (0,123) |
Massachusetts | 0,453 (0,508) | 0,724 (0,405) | 0,948 (0,342) | 0,992 (0,331) | 1,032 (0,322) | 0,893 (0,356) |
Michigan | 3,049c(0,096) | 3,161c(0,091) | 2,472 (0,132) | 2,171 (0,156) | 1,830 (0,191) | 1,639 (0,215) |
Minnesota | 1,718 (0,205) | 1,581 (0,223) | 1,989 (0,174) | 1,763 (0,199) | 1,473 (0,239) | 1,162 (0,294) |
Mississippi | 0,003 (0,955) | 0,002 (0,967) | 0,217 (0,647) | 0,380 (0,544) | 0,503 (0,487) | 0,815 (0,377) |
Missouri | 2,163 (0,157) | 1,432 (0,246) | 1,401 (0,250) | 1,331 (0,262) | 0,976 (0,335) | 0,622 (0,440) |
Montana | 0,288 (0,598) | 0,092 (0,765) | 0,630 (0,437) | 0,335 (0,569) | 0,507 (0,485) | 0,640 (0,433) |
Nebraska | 0,108 (0,745) | 0,167 (0,687) | 0,161 (0,692) | 0,105 (0,749) | 0,088 (0,769) | 0,062 (0,806) |
Nevada | 0,038 (0,847) | 0,006 (0,941) | 0,015 (0,904) | 0,106 (0,749) | 0,138 (0,715) | 0,351 (0,560) |
New Hamp. | 1,736 (0,202) | 1,504 (0,234) | 1,480 (0,238) | 1,380 (0,254) | 0,862 (0,364) | 0,568 (0,460) |
New Jersey | 0,001 (0,982) | 0,022 (0,883) | 0,019 (0,891) | 0,010 (0,921) | 0,075 (0,787) | 0,036 (0,851) |
New Mexico | 0,504 (0,486) | 0,811 (0,379) | 1,378 (0,254) | 1,382 (0,253) | 1,127 (0,301) | 1,158 (0,295) |
New York | 0,000 (0,995) | 0,003 (0,958) | 0,048 (0,829) | 0,013 (0,911) | 0,068 (0,797) | 0,067 (0,799) |
N. Carolina | 6,261b(0,021) | 7,565b(0,012) | 7,099b(0,015) | 6,552b(0,019) | 4,515b(0,046) | 3,899c(0,062) |
N. Dakota | 0,089 (0,769) | 0,002 (0,967) | 0,000 (0,984) | 0,000 (0,995) | 0,007 (0,933) | 0,011 (0,917) |
Ohio | 0,713 (0,409) | 1,102 (0,306) | 1,043 (0,319) | 0,914 (0,350) | 1,274 (0,272) | 0,866 (0,363) |
Oklahoma | 0,490 (0,492) | 0,516 (0,481) | 0,491 (0,492) | 0,268 (0,610) | 0,077 (0,784) | 0,151 (0,702) |
Oregon | 0,165 (0,689) | 0,490 (0,492) | 1,532 (0,230) | 1,191 (0,288) | 1,759 (0,200) | 2,991c(0,099) |
Pennsylvania | 0,086 (0,773) | 0,026 (0,873) | 0,001 (0,979) | 0,001 (0,971) | 0,063 (0,805) | 0,086 (0,772) |
Rhode Island | 0,236 (0,632) | 0,199 (0,661) | 0,359 (0,556) | 0,119 (0,733) | 0,018 (0,896) | 0,030 (0,863) |
S. Carolina | 6,962b(0,016) | 6,989b(0,016) | 6,984b(0,016) | 6,205b(0,022) | 5,734b(0,027) | 4,331b(0,050) |
S. Dakota | 2,343 (0,142) | 2,105 (0,162) | 1,817 (0,193) | 1,745 (0,201) | 1,630 (0,216) | 1,442 (0,244) |
Tennessee | 4,568b(0,045) | 4,739b(0,042) | 3,777c(0,067) | 3,424c(0,079) | 4,104c(0,056) | 3,711c(0,068) |
Texas | 3,259c(0,086) | 3,656c(0,070) | 2,619 (0,121) | 2,340 (0,142) | 2,041 (0,169) | 1,445 (0,243) |
Utah | 0,647 (0,431) | 0,727 (0,404) | 0,398 (0,535) | 0,041 (0,841) | 0,064 (0,804) | 0,132 (0,721) |
Vermont | 0,037 (0,849) | 0,111 (0,743) | 0,110 (0,743) | 0,000 (0,991) | 0,004 (0,953) | 0,056 (0,816) |
Virginia | 1,003 (0,328) | 1,351 (0,259) | 2,033 (0,169) | 2,079 (0,165) | 1,136 (0,299) | 0,961 (0,339) |
Washington | 0,010 (0,922) | 0,059 (0,811) | 0,303 (0,588) | 0,603 (0,447) | 0,177 (0,679) | 0,156 (0,697) |
West Virginia | 0,265 (0,612) | 0,471 (0,500) | 0,531 (0,475) | 0,447 (0,512) | 0,894 (0,356) | 0,710 (0,409) |
Wisconsin | 6,547b(0,019) | 7,472b(0,013) | 6,835b(0,017) | 4,424b(0,048) | 4,827b(0,040) | 4,255c(0,052) |
Wyoming | 0,133 (0,719) | 1,116 (0,303) | 1,193 (0,288) | 0,732 (0,402) | 0,841 (0,370) | 0,852 (0,367) |
aIndicates 1% statistical significance.bIndicates 5% statistical significance.cIndicates 10% statistical significance.
If Dumitrescu-Hurlin panel causality results are examined by states, it is seen that there is causality from CO2 emissions to the SPEI January drought index in 6 states, from CO2 emissions to SPEI February and March drought indexes in 8 different states, from CO2 emissions to SPEI April, May, June, August, September, October, November, and December drought indexes in 9 different states, and from CO2 emissions to SPEI July drought index in 10 states. To be stated for all months, there are causalities from CO2 emissions to SPEI drought indexes in Alabama, Alaska, Arkansas, Colorado, Georgia, Illinois, Kentucky, Michigan, Oregon, South and North Carolina, South Dakota, Tennessee, Texas, and Wisconsin.
It is seen that the results obtained from the AMG and PMG analyses and the causality analyses are generally consistent with each other. In the AMG and PMG analyses, it was determined that CO2 emissions, as a driver of climate change, contribute to the occurrence and severity of droughts by altering regional climate patterns. As a result of causality analyses, it was found that there are mutual causality relationships between CO2 emissions and drought.
According to the results obtained from the impulse-response analysis, DR1, DR2, DR11, and DR12 respond negatively until the 5th period in the face of an unexpected increase in CO2 emissions and follow a slightly fluctuating course after the 5th period. DR3, DR4, DR5, DR6, DR7, DR8, DR9, and DR10 react negatively to an unexpected increase in CO2 emissions until the 3rd period and follow a fluctuating course after the 3rd period. The results obtained from the impulse-response analysis showed that CO2 emissions decreased the SPEI drought indices, that is, increased drought, in line with our expectations.
CONCLUSIONS
The drought problem, which is increasingly on the agenda due to climate change, is being examined by many researchers as it is a vital issue. The drought problem is one of the most important problems of humanity. If its further progress cannot be prevented, it will cause people to face hunger, thirst, and various health problems after a while. Therefore, the causes and consequences of drought should be investigated, and various studies should be carried out to prevent it. In this study, firstly, a literature review was conducted and studies on the relationship between CO2 emissions, climate change, and drought were analyzed. It was observed that there are a limited number of studies examining the relationship between drought and CO2. Then the mutual relations between CO2 emissions and droughts were discussed by using the 1997–2020 SPEI drought index and CO2 emissions data of 51 states of the US.
In the study, cross-section dependence, slope homogeneity, Westerlund cointegration, AMG and PMG analyses, Dumitrescu-Hurlin panel and state-based causality analyses, and impulse-response analysis were conducted as empirical applications. According to the findings obtained from analyses, it was determined that there are mutual interactions between CO2 emissions and the SPEI drought index.
The results of the AMG analyses show that CO2 emissions were found to be effective on the SPEI drought index in 17 of 51 states, and the states where CO2 emissions had the longest effect on the SPEI drought index were Pennsylvania and Tennessee. When the coefficients are examined, it is understood that from these two states, CO2 emissions increase wetting in Pennsylvania and increase drought in Tennessee. This situation is an expected result for Tennessee, which experienced the worst drought in history from 2007 to early 2009 (Goodrich et al. 2011). It is determined that CO2 emissions led to drought in Alabama, Arkansas, Georgia, Louisiana, North and South Carolina, Oregon, and Tennessee in various months, especially in the last 6 months of the year. According to the results obtained from PMG analyses, it was determined that for the whole panel, CO2 emissions generally increase wetting in the short run, while CO2 emissions increase drought in the long run. According to the results of causality analysis, it was determined that CO2 emissions cause drought. And according to the results obtained from the impulse-response analysis, CO2 emissions decrease the SPEI drought indices, that is, increase drought. When the results obtained from all these analyses are evaluated together, it is concluded that our hypothesis that CO2 emissions, by driving climate change, can increase the frequency and intensity of droughts through their impact on regional precipitation and temperature patterns is valid for the states of the US. In order to prevent drought, which is an important problem for humanity, it is necessary to reduce CO2 emissions. Therefore, it would be appropriate to take measures to reduce CO2 emissions in the US.
Previous studies have extensively documented the impact of climate change, driven largely by greenhouse gas emissions, on precipitation variability and drought patterns. CO2 emissions are recognized for exacerbating global warming, which leads to changes in regional hydrological cycles, impacting both drought and wet periods. In this study, considering that CO2 emissions have an increasing effect on air temperatures in the US, it has been determined that dry periods may occur in some regions due to a decrease in precipitation regimes, and that periods with high amounts of precipitation may occur in some regions. It has been determined that especially in the northeastern states of the US, the rainfall expectation is high, and the number of wet periods is quite high, whereas in the states located in the southeastern region, the number of dry periods with low rainfall values is expected to be quite high. The findings obtained coincide with the findings of previous studies in the literature.
In order to prevent drought, which is an important problem for humanity, it is necessary to reduce CO2 emissions. Therefore, it would be appropriate to take measures to reduce CO2 emissions in the US. Natural disasters due to climate change occur in the US, which is the most polluting country in the world, along with China, due to industrial production. In addition, due to the damage caused by global warming to natural life, the natural order is disrupted, and new types of deadly diseases appear. Therefore, the effects of climate change will impact not only future generations but also people living today. The US did not participate in the Kyoto Protocol, which is one of the steps taken to limit global warming and greenhouse gas emissions, with the thought that the welfare level in the country would decrease. This study investigates how CO2 emissions, as a major driver of global warming, contribute to altered precipitation regimes and increased drought risk in specific regions of the US, thus analyzing the indirect effects of emissions on hydrological cycles. As a consequence, it would be appropriate for the US to take the necessary measures against climate change and to take measures to limit CO2 emissions so that the welfare level of the country does not decrease.
This study aims to explore the relationship between CO2 emissions and drought occurrence in the US, focusing on how CO2-driven climate change may contribute to drought conditions over time. For this purpose, various statistical analyses were applied both for the entire US (on a panel basis) and for the states of the US. As a result of the analyses, the relationships between CO2 emissions and drought were determined on a state and panel basis. It is thought that this study will make significant contributions to the literature, as both panel-based and state-level relationships are presented and the relationships between SPEI drought indices and CO2 emissions are analyzed statistically. Similar studies can be done for other countries. Different analyses can be made using different drought indices. Analyses can be differentiated by using different analysis methods or different variables.
FUNDING
The author declares that no funds, grants, or other support were received during the preparation of this manuscript.
AUTHOR CONTRIBUTIONS
The entire work was prepared by a single author.
DECLARATION OF GENERATIVE AI AND AI-ASSISTED TECHNOLOGIES IN THE WRITING PROCESS
During the preparation of this study, the author did not use any service tools.
CONSENT FOR PUBLICATION
The final version of the manuscript was reviewed and approved by the author.
DATA AVAILABILITY STATEMENT
All relevant data are available from an online repository or repositories: For the SPEI data: https://spei.csic.es/map/maps.html For the CO2 data: https://www.eia.gov/environment/emissions/state/.
CONFLICT OF INTEREST
The authors declare there is no conflict.