In this study, the relationship between carbon dioxide (CO2) emissions and drought (Standardized Precipitation Evapotranspiration Index) is investigated using data from 51 states in the US for the period 1997–2020. For this purpose, firstly, information about previous studies and the results of these studies are given in the study. Later, as empirical analysis, cross-section dependency tests, slope homogeneity tests, unit root analyses, cointegration tests, and causality analyses were performed. Then, short- and long-term parameter estimates are made for the entire panel and for each case. Lastly, impulse-response analyses are made. When the results are evaluated in general, it is found that CO2 emissions and drought in the US affect each other in the short and long term. CO2 emissions have been shown to have an increasing effect on drought, especially in most of the states located in the southeastern region of the US. On the other hand, CO2 emissions have been found to cause an increase in the incidence of wet periods in a significant part of the states located in the northeastern region of the US.

  • Studies show a close link between CO2 emissions and drought.

  • The US is a leading CO2 emitter globally.

  • This relationship was analyzed for 51 US states.

  • In southeastern states, higher CO2 levels are linked to more dry periods.

  • In northeastern states, higher CO2 levels are associated with more wet periods.

Greenhouse gases, such as carbon dioxide (CO2) and methane, are released into the atmosphere through the utilization of fossil-based energy sources, altering the chemical composition of the troposphere, the lower layer of the atmosphere. This phenomenon leads to the emergence of climate change and variability (Sen 2022). Over the past three decades, global warming and climate change have become among the most pressing environmental issues. Greenhouse gases play a pivotal role in the onset of these challenges (Ozturk & Acaravci 2010). Carbon dioxide, a prominent greenhouse gas, accounts for approximately 75% of the greenhouse effect globally and around 80% in the United States (US), according to the latest data from the WDI online database (World Development Indicators | DataBank 2022).

Climate change, associated with the escalating emissions of greenhouse gases, is anticipated to result in a rise in global average temperature and an intensified hydrological cycle, leading to more frequent and severe droughts and floods (Houghton et al. 2001). Drought conditions entail reduced precipitation, water scarcity, elevated average temperatures, sea level elevation, and an increase in both the frequency and intensity of extreme weather events (Troccoli 2010).

Figure 1, constructed using data from the Emissions Database for Global Atmospheric Research (EDGAR) fossil CO2 booklet 2022, illustrates the total fossil CO2 emissions of the countries emitting the highest amounts of CO2. The figure indicates a significant global increase in CO2 emissions, rising approximately 2.5 times over the past 50 years. Notably, the US stands out as the country with the highest CO2 emissions during the initial 35 years of this 50-year period (EDGAR 2022).
Figure 1

Fossil CO2 totals of top emitting countries (1970–2021). Source: Emissions Database for Global Atmospheric Research (EDGAR), CO2 emissions of all world countries, 2022 Report.

Figure 1

Fossil CO2 totals of top emitting countries (1970–2021). Source: Emissions Database for Global Atmospheric Research (EDGAR), CO2 emissions of all world countries, 2022 Report.

Close modal

In the Fifth National Climate Assessment (NCA5), it was stated that the 1.1 centigrade global warming observed in the industrial age is caused by greenhouse gas emissions resulting from human activities. It was stated that three-quarters of this global warming and emissions have occurred since the 1970s. It was reported that the US is most affected by this global warming and that disasters may occur due to warming caused by emissions in the future (NCA5 2023).

There are some studies in literature that examined the relationship between CO2 emissions and climate change. Matthews et al. (2009) stated that CO2 emissions will lead to climate change. Based on this, using carbon-climate response calculations, which they described as the ratio of temperature change to cumulative CO2 emissions, they estimated that the carbon-climate response would be in the range of 1.0–2.1 °C per trillion tons of carbon emitted. Davis et al. (2010) calculated the CO2 emissions that will result from fossil fuel use between 2010 and 2060, based on the current energy infrastructure. They stated that, according to their calculations, there will be 496 gigatons of CO2 emissions, which will cause an average warming of 1.3 °C. Hao et al. (2016) used 1995–2011 data from 29 provinces of China to examine the potential effects of climate change on China's CO2 emissions. According to their findings, they concluded that climate change has a significant but small impact on China's carbon emissions.

In addition to the studies examining the relationship between CO2 emissions and climate change in the literature, there are also studies examining the relationship between climate change and drought. Some studies examining the effects of climate change on drought in different parts of the world follow.

The study conducted by Wilhite and Hayes examined the effects and severity of drought in the US and they concluded that the effect and severity of drought have increased in recent years (Wilhite & Hayes 1998). These drought events are estimated to be two to three times more damaging to the US economy than the 1989 San Fransisco earthquake (Riebsame 2019; Mishra & Singh 2010). At least 50% of the US has been affected by some level of drought event since mid-summer 2020. Especially since the fall of 2022, the drought has increased its severity, and more than 85% of the land area of the US has been affected by drought (Rodziewicz et al. 2023).

Droughts have become more frequent in many countries in Europe as well as in the US (Demuth & Stahl 2001). According to Spinoni et al. (2015), Northern and Eastern Europe showed the highest frequency and severity of droughts from the early 1950s to the mid-1970s. Considering the whole of Europe, the 1950s were considered to be the years when the effects of meteorological droughts were felt the most. Southern and Western Europe (especially the Mediterranean region) showed the highest frequency and severity of droughts from the early 1990s. Overall, a continuous upward trend in drought events was observed across Europe from the early 1980s to the early 2010s (Spinoni et al. 2015).

In recent years, studies for Asian countries have shown that crop production has decreased in many parts of Asia due to rising temperatures and decreasing rainfall days (Bates et al. 2008; Kienzler et al. 2012). The increasing trend in the frequency of drought due to the effect of global warming causes countries in East Asia such as China, Japan, Korea, the Peninsula, and Mongolia to be highly affected by drought every year (Zhai et al. 2010; Zhang & Zhou 2015). When historical records were examined, it was seen that two major drought events occurred in the Northern China region in 1972 and 1997, and this drought caused the Yellow River to dry out (Zhang & Zhou 2015). In addition, due to the drought in Southwest China between 2009 and 2010, 21 million people had difficulties in obtaining drinking water and an economic loss of 30 billion dollars occurred (Yang et al. 2012). One of the regions most affected by the effects of drought in recent years is the Australian continent. Floods and drought events are common climate features in Australia (King et al. 2020). Whetton et al.’s (1993) study analyzed the impact of climate change caused by the greenhouse gas effect on flood and drought events in Australia and evaluated that there is an increase in high precipitation frequency and a decrease in low precipitation frequencies due to greenhouse gas effect in the simulations, and therefore, an increase in flood events will occur (Whetton et al. 1993). It is observed that in the Australian region, especially after long-term droughts, precipitation values tend to occur in the form of heavy rains instead of returning to average conditions (King et al. 2020). The Murray Darling Basin, one of Australia's largest crop production basins, was greatly affected by drought between 2017 and 2019, and Australian average rainfall was at a record low level in 2019, resulting in severe drought and significant agricultural impacts in the second half of the year (Dunne & Kuleshov 2023). It has been stated that the winter months of the year before the drought, which has been ongoing since 2017, were the fourth wettest winter since the early 1900s. It is estimated that the reason for this is the abnormally high sea surface temperature of the Indian Ocean (King et al. 2020). It is also stated that the severity of drought has increased in Africa over the last few decades as a result of changes in the climate (Gebrechorkos et al. 2022). It is observed that the frequency of occurrence of drought events has increased in recent years (Meier et al. 2007; Ayana et al. 2016; Haile et al. 2019). According to the Centre for Research on the Epidemiology of Disasters, drought caused more than 800,000 deaths and $2 billion in economic losses in Sub-Saharan Africa in the 20th and 21st centuries (Masih et al. 2014; Ekolu et al. 2022). It has been observed that droughts in the region occasionally occur in the same year as other extreme climatic events (Hillbruner & Moloney 2012; Nicholson 2014; Haile et al. 2019). Droughts and unprecedented flash floods in 2006, 2007, 2009, and 2020 can be cited as examples of these events (Nicholson 2014; Haile et al. 2019).

The above-mentioned studies examine the effects of CO2 emissions on climate change and climate change on drought. It is stated that the biggest cause of climate change is greenhouse gas emissions. A significant part of greenhouse gases comes from CO2 emissions. Therefore, examining the relationship between CO2 emissions, climate change, and drought is an important issue. However, there are a limited number of studies in the literature examining the relationship between CO2 emissions, climate change, and drought. One of these studies was conducted by Strezepek et al. In their 2010 study, Strzepek et al. applied the Standardized Precipitation Indices and the Palmer Drought Severity Index to the Intergovernmental Panel on Climate Change General Circulation Models to assess the impact of climate change on the frequency and intensity of droughts in the US over the next century. Although drought risk was not assessed under CO2 stabilization scenarios in the study, a comparison of SPI and Palmer Drought Severity Index results between emission scenarios provides evidence that lower CO2 concentrations are related to lower drought risk across the US (Strzepek et al. 2010). Likewise, in a study conducted by Hardin et al. (2017), the relationship between drought and CO2 emissions was discussed. In the study, the intense drought period between 2012 and 2014 in California and the period between 2009 and 2011, which is the pre-drought period, were compared and it was determined that there was a 33% increase in CO2 emissions due to drought.

In the study of Gregory et al. (1997), it was evaluated that with the increase in CO2 levels, precipitation decreased and evaporation increased. It was evaluated that these changes would lead to a decrease in soil moisture and drought events would become more frequent and severe. The research reveals that due to the high temperatures caused by increasing CO2 levels, there is a decrease in snow cover in winter and a decrease in soil water level in spring. The decrease in soil moisture indicates that the large decrease in precipitation exacerbates drought, although evaporation remains limited in summer. Furthermore, this study emphasizes that the incidence of long dry spells increases significantly with increasing CO2, which can have serious impacts on agriculture and water resources. These findings suggest that CO2 emissions have lasting effects on the hydrological cycle in the long term and that droughts will become more widespread and intense with global climate change.

Räisänen used 20 model experiments participating in the second phase of the Coupled Model Intercomparison Project (CMIP2) in his 2005 study to examine the effect of CO2 on high extreme and low extreme precipitation. In particular, he found that CO2 is well correlated with changes in long-term average precipitation. It was observed that low extreme precipitation increased where mean precipitation was low, while high extreme precipitation increased where mean precipitation was high. The difference between this high and low extreme precipitation is determined to increase with CO2.

In their 2024 study, Su et al. focus on understanding global drought changes under a carbon neutral scenario using CO2 removal and increase models. They used the Standardized Precipitation Evapotranspiration Index (SPEI) to assess drought severity. In their study, they found that CO2 increases in particular lead to an increase in potential evapotranspiration in excess of precipitation (PET), resulting in more intense droughts. In particular, low- and mid-latitude regions, including South Africa, Australia, and the Amazon, showed more significant drying due to CO2 increase. In addition, one of the important points in the study is that even if CO2 levels return to pre-industrial levels, the global water cycle continues to deteriorate, and many regions continue to experience persistent droughts. In addition, the study attributed about 65% of drought changes to increased PET, especially due to increasing temperatures, while the contribution of precipitation was assessed to be only around 35%. Therefore, although it seems likely that reducing CO2 emissions will stabilize some aspects of the climate, it is still stated that temperature and evapotranspiration will cause drought to persist for longer.

Cook et al. (2020) analyzed future drought patterns using CMIP6 models to determine how increasing CO2 emissions affect global drought risk. As a result of the studies, it is emphasized that as CO2 levels increase, temperature increases lead to higher evapotranspiration rates, precipitation patterns change, precipitation decreases in some regions and dry periods are prolonged, which causes more frequent and severe droughts, especially in mid-latitude and subtropical regions. In the study, western North America, Central America, Europe, and the Mediterranean, the Amazon, southern Africa, China, Southeast Asia, and Australia were shown among the regions that will be most affected by drought.

Vahedifard et al. (2024) examined the feedback loop between drought, soil drying, and CO2 emissions. The findings of the study show that as CO2 levels rise, drought conditions become more severe, causing the soil to crack and dry out. This leads to the release of more soil surface area and increased CO2 emissions from the soil surface, further intensifying global warming. This feedback loop reduces the soil's capability to retain moisture, accelerating evapotranspiration and weakening the soil's capability to sequester carbon, which in turn exacerbates drought conditions. As a result, CO2-induced drought not only worsens climate change, but also directly contributes to higher atmospheric CO2 levels.

Sen (2022) stated that there will be changes in flood frequency and severity with climate change, while rainfall intensity will decrease, and drought frequency and severity will be expected to increase in many regions. Another result obtained in his study is that it is possible for floods and droughts to increase sequentially in some water catchment areas.

When the literature is examined, it is seen that similar results are reached in the studies on drought and CO2 emissions, and it shows that the increase in CO2 emissions causes changes in climate parameters such as precipitation and temperature and may be related to drought events.

The hypothesis of this study is that ‘CO2 emissions, by driving climate change, influence the frequency and intensity of droughts through their impact on regional precipitation and temperature patterns’. To investigate whether this hypothesis is valid for the US, this study analyzed statistically the relationship between CO2 emissions and drought using data from 51 states in the US for the period 1997–2020. As seen in Figure 1, the US is one of the countries that emit the most CO2 emissions in the world. Therefore, this study is especially focused on the US and will make significant contributions to the literature in terms of investigating whether CO2 emissions cause drought for the 51 states of the US.

In the study, based on the SPEI drought index and CO2 emissions data of the 51 states of the US for the period 1997–2020, the relationship between the variables is examined. The function of the model established in the study is as follows:
(1)
The model used in this study is given as follows:
(2)

Here, CO2 refers to million metric tons of energy-related carbon dioxide, DR refers to SPEI drought indices, and m refers to months. For example, DR1 refers to SPEI January drought index, DR2 refers to SPEI February drought index, DR3 refers to SPEI March drought index, etc. Drought data are calculated for the 12-month period with the SPEI. CO2 emissions data are obtained from the U.S. Energy Information Administration (EIA 2022), and the 12-month period droughts data are obtained from the SPEI Global Drought Monitor. CO2 emissions data are taken in the logarithmic form.

Correlation matrix and descriptive statistics are given in Table 1. Examining the mean and median values of the variables, it is found that lnCO2 takes the highest values, while DR12 takes the lowest values. While the CO2 emission values range between 1 and 7, it takes an average value of 4. In this period, while the drought values vary between −3 and +3, the average drought value is 0.3.

Table 1

Descriptive statistics and correlation matrix for lnCO2 and droughts

lnCO2DR1DR2DR3DR4DR5DR6DR7DR8DR9DR10DR11DR12
Mean 4.24 0.24 0.25 0.25 0.26 0.25 0.25 0.24 0.24 0.23 0.23 0.23 0.22 
Median 4.38 0.25 0.31 0.30 0.31 0.27 0.31 0.29 0.29 0.30 0.27 0.29 0.22 
Max. 6.53 3.06 2.97 2.88 2.69 2.82 3.05 3.06 2.88 2.95 2.76 2.93 2.99 
Min. 0.88 − 2.54 − 2.52 − 2.68 − 2.30 − 2.36 − 2.24 − 2.25 − 2.37 − 2.26 − 2.54 − 2.58 − 2.60 
Std. Dev. 1.04 1.04 1.04 1.05 1.03 1.01 1.03 1.04 1.04 1.01 1.00 1.02 1.02 
Obs. 1,224 1,224 1,224 1,224 1,224 1,224 1,224 1,224 1,224 1,224 1,224 1,224 1,224 
lnCO2             
DR1 − 0.01            
DR2 − 0.01 0.96           
DR3 − 0.01 0.91 0.96          
DR4 − 0.01 0.84 0.90 0.95         
DR5 − 0.00 0.74 0.80 0.86 0.93        
DR6 − 0,00 0.60 0.67 0.72 0.80 0.90       
DR7 0.00 0.51 0.57 0.62 0.71 0.83 0.95      
DR8 0.00 0.45 0.51 0.56 0.65 0.77 0.90 0.95     
DR9 0.00 0.35 0.42 0.46 0.54 0.66 0.78 0.85 0.92    
DR10 0.00 0.28 0.35 0.39 0.48 0.60 0.72 0.79 0.87 0.93   
DR11 − 0.00 0.20 0.27 0.31 0.41 0.53 0.65 0.72 0.79 0.88 0.95  
DR12 0.01 0.13 0.20 0.23 0.33 0.46 0.58 0.66 0.72 0.81 0.90 0.97 
lnCO2DR1DR2DR3DR4DR5DR6DR7DR8DR9DR10DR11DR12
Mean 4.24 0.24 0.25 0.25 0.26 0.25 0.25 0.24 0.24 0.23 0.23 0.23 0.22 
Median 4.38 0.25 0.31 0.30 0.31 0.27 0.31 0.29 0.29 0.30 0.27 0.29 0.22 
Max. 6.53 3.06 2.97 2.88 2.69 2.82 3.05 3.06 2.88 2.95 2.76 2.93 2.99 
Min. 0.88 − 2.54 − 2.52 − 2.68 − 2.30 − 2.36 − 2.24 − 2.25 − 2.37 − 2.26 − 2.54 − 2.58 − 2.60 
Std. Dev. 1.04 1.04 1.04 1.05 1.03 1.01 1.03 1.04 1.04 1.01 1.00 1.02 1.02 
Obs. 1,224 1,224 1,224 1,224 1,224 1,224 1,224 1,224 1,224 1,224 1,224 1,224 1,224 
lnCO2             
DR1 − 0.01            
DR2 − 0.01 0.96           
DR3 − 0.01 0.91 0.96          
DR4 − 0.01 0.84 0.90 0.95         
DR5 − 0.00 0.74 0.80 0.86 0.93        
DR6 − 0,00 0.60 0.67 0.72 0.80 0.90       
DR7 0.00 0.51 0.57 0.62 0.71 0.83 0.95      
DR8 0.00 0.45 0.51 0.56 0.65 0.77 0.90 0.95     
DR9 0.00 0.35 0.42 0.46 0.54 0.66 0.78 0.85 0.92    
DR10 0.00 0.28 0.35 0.39 0.48 0.60 0.72 0.79 0.87 0.93   
DR11 − 0.00 0.20 0.27 0.31 0.41 0.53 0.65 0.72 0.79 0.88 0.95  
DR12 0.01 0.13 0.20 0.23 0.33 0.46 0.58 0.66 0.72 0.81 0.90 0.97 

The correlation matrix shows that CO2 emissions are positively correlated with droughts 7, 8, 9, 10, and 12, and negatively correlated with droughts 1, 2, 3, 4, 5, 6, and 11.

Standardized Precipitation Evapotranspiration Index

The SPEI was developed by Vicente-Serrano et al. (2010). The SPEI is a simple multiscale drought index combining precipitation and temperature data. The multiscale nature of SPEI allows the identification of different types of droughts and their effects on different systems. The SPEI was specifically proposed to investigate the impact of global warming on the severity of drought, based on precipitation and potential evapotranspiration (PET). When calculating SPEI, the monthly (or weekly) difference between precipitation and PET is used. The formulation of the difference is given as Equation (3):
(3)
where is the monthly deficit, is the total precipitation value for month i, and is the monthly potential evapotranspiration. Calculated values are summed over different time scales as Equation (4):
(4)
where n represents the month, and k represents the time scale. The probability density function form of the log-logistic distribution is expressed as Equation (5):
(5)
where represents the scale, represents the shape, and represents origin parameters for . According to the log-logistic distribution, the probability distribution function for the D series is expressed as Equation (6):
(6)
Following the classical approach suggested by Abramowitz & Stegun (1965), with the SPEI can be obtained as the standardized values of as Equation (7):
(7)
where and are the constants of the SPEI equation, and 2.515517, 0.802853, 0.010328, 1.432788, 0.189269, and 0.001308.

And W is obtained for from and for from , the sign of the resultant SPEI is reversed for (Vicente-Serrano et al. 2010; Tirivarombo et al. 2018; Abbasi et al. 2019; Danandeh Mehr & Vaheddoost 2020).

Obtained SPEI values can be interpreted as drought increases, it falls below −0.5 and as wetting increases, it rises above +0.5.

The SPEI is able to explain the possible effects of temperature variability and temperature extremes beyond the context of global warming. Hence, it is preferable to use SPEI for the detection, analysis and monitoring of droughts in any climatic region of the world, given the small additional data requirements of SPEI compared with SPI. According to its intensity and duration, the SPEI can measure the severity of drought and identify the beginning and end of drought periods. Similar to the SPI, the SPEI can be calculated over a wide range of climates, allowing for comparisons of drought severity over time and space. In addition, the SPEI drought index has a clear and understandable calculation procedure. However, an important advantage of the SPEI over the most widely used drought indices that take into account the impact of PET on drought severity is that its multiscale characteristics allow the description of different drought types and their effects in the global warming context (Vicente-Serrano et al. 2010).

Cross-section dependency tests

When applying panel data analysis, firstly, the cross-section dependency and the homogeneity of the slope should be analyzed. Cross-sectional dependence implies that anything that affects one state may also affect other states. The homogeneity of the slope, on the other hand, is whether the slope coefficients are homogeneous in the state sample since the states have different characteristics within themselves. Due to these two possibilities, it is crucial to investigate the presence of cross-sectional dependence and investigate whether the slope is homogeneous or heterogeneous.

In this study, Lagrange multiplier (LM), bias-adjusted LM (LMadj), and CDLM tests were applied to analyze cross-sectional dependence. The LM test, proposed by Breusch and Pagan in 1980, tests the impact on first-order conditions so that the probability of imposing the hypothesis is maximum. It is based on prediction, with the hypothesis introduced as parametric constraints. It provides researchers with a simple technique to evaluate the adequacy of their certain specifications (Breusch & Pagan 1980).

LM statistics are applicable when and N is fixed and are defined as Equation (8):
(8)
where T is time, N is the number of observations, i is cross-section units, and is the sample estimate of the pairwise correlation of the residuals. The value can be calculated as Equation (9):
(9)
where represents the ordinary least squares estimate of . The LM statistic is asymptotically chi-square distributed with degrees of freedom (Emirmahmutoglu & Kose 2011). It has been widely discussed in the literature that the LM test is affected by severe size distortions for large panels with N > T (Li & Yao 2021).
In 2004, Pesaran proposed a scaled version of the LM test which is stated by the CDLM test and has a distribution of as and . Different from the standard LM test, the CDLM test is valid for a large number of cross-section units (N) observed over a time period T. The CDLM test is non-zero centric for finite T and may exhibit large-scale degradations as n is increased (Baltagi et al. 2012). The CDLM test is defined as Equation (10):
(10)
This test indicates that under the null hypothesis of no cross-sectional dependence for and T is sufficiently large. A slightly modified version of the above equation is proposed for unbalanced panels as Equation (11):
(11)
where is the number of common time series observations between units i and j (De Hoyos & Sarafidis 2006).

The CDLM test has a significant disadvantage. It may lack power in some cases where the population average pairwise correlations are zero, but the underlying individual population pairwise correlations are not zero. This may occur, for example, where the cross-dependence under the alternative hypothesis can be characterized as a factor model with a mean factor load of zero (Pesaran 2004).

Pesaran et al. (2008) proposed bias-adjusted LM (LMadj) tests that use the exact mean and variance of the LM statistic if the panel data models have exogenous regressors and normal errors. The centering of the LM statistic is valid for constant Τ and N, as the adjustments were derived by using the results in Ullah (2004). The bias-adjusted test was shown to be stable even when Pesaran's CD test was not stable, and the cross-sectional average of factor loadings was close to zero. The LMadj test is defined as Equation (12):
(12)
where k is the number of regressors, is the exact mean of , and is the variance of . As then , the test has a distribution of (Pesaran et al. 2008).

Homogeneity tests

To test the slope of the homogeneity, Pesaran & Yamagata (2008) proposed that dispersion-type tests based on the tests suggested by Swamy (1970) can be applied to panel data models where the cross-section size may be larger than the time series size. There are two versions of homogeneity tests suggested by Pesaran and Yamagata. The first version, indicated by , uses the Swamy statistic, while the other version, indicated by , is based on a revised version of the Swamy statistic in which the standard errors of regressions for individual cross-sectional units are calculated using the pooled fixed effects (FE) estimator instead of the ordinary least squares estimator. When the errors are normally distributed, the tests are applicable as irrespective of the relative expansion rates of N and T. The first version of the standardized dispersion statistics is formulated as Equation (13):
(13)
where is Swamy's statistic applied to slope coefficients that can be calculated as Equation (14):
(14)
where represents the weighted FE (WFE) pooled estimator of slope coefficients, and represents an identity matrix of order T. and can be calculated as Equation (15):
(15)
while N is constant and , Swamy statistic, , has a chi-square distribution with degrees of freedom asymptotically.
The second version of the standardized dispersion statistics is formulated as Equation (16):
(16)
where is the modified version of Swamy's statistic applied to slope coefficients that can be calculated as Equation (17):
(17)
where represents the WFE estimator calculated by using that can be shown as Equation (18):
(18)
Under normal distribution errors, the small sample characteristics of the dispersion tests can be reformed according to the following mean and variance bias-adjusted versions of and as Equations (19) and (20):
(19)
(20)

Unit root test

When the series are non-stationary, the findings obtained can sometimes be misleading. Therefore, it is necessary to test whether the series are stationary or not. To analyze the stationarity in models with cross-section dependence, second-generation unit root tests can be applied. One of these tests is the CIPS (cross-sectional increased panel unit root statistics) test, which is a cross-sectional augmented version of the IPS test, suggested by Pesaran (2007). The CIPS test statistic is the overall unit root test statistic for the entire panel and is calculated by averaging the CADF (cross-sectionally augmented Dickey–Fuller) unit root tests. The CIPS test can be calculated as Equation (21):
(21)
where represents the CADF statistic for the ith cross-section unit given by the t ratio of the coefficient in the CADF regression. The CADF statistic can be calculated as Equation (22):
(22)
The calculations of these symbols are given as Equations (23)–(25):
(23)
(24)
(25)
where represents the identity matrix.

Panel cointegration test

Cointegration analysis is necessary to test whether two variables move together in the long run. If there is no long-term relationship between two variables, short-term analyses would not give accurate results. Therefore, the cointegration test is a necessary analysis to verify the long-term relationship of our data. Westerlund (2007) proposed new cointegration tests based on error correction for panel data. Two of the four tests are developed to check the alternative hypothesis that the panel as a whole is cointegrated, whereas the other two tests are developed to check the alternative hypothesis that there is at least one cointegrated cross-sectional unit. The asymptotic results show that the tests have restrictive normal distributions and are coherent.

Westerlund developed Equation (26) to create the new statistics:
(26)
where represents the deterministic components, represents the parameters’ associated vector, and represents the error correction parameter which is estimated by applying the least squares method.
The group mean test statistics, two of the four test statistics based on the least squares estimate of in this equation and its t-ratio, are calculated as Equation (27):
(27)
where represents the semiparametric kernel estimator of , and represents the conventional standard error of .
The panel test statistics can be calculated as Equation (28):
(28)

AMG and PMG tests

The augmented mean group (AMG) test allows us to consider that the relationship between CO2 emissions and drought in different states may be heterogeneous and that each region may have different dynamics. The pooled mean group (PMG) test, on the other hand, allows for short- and long-term assessments for the states as a whole.

The AMG estimator method, which is an estimation method used in cases of parameter heterogeneity and cross-section dependence, was suggested by Eberhardt & Bond (2009) and Eberhardt & Teal (2010). To estimate the unobserved co-dynamic effect, the AMG estimator uses a two-step method and allows for cross-section dependency by including the co-dynamic effect parameter. The empirical model which is given in Equation (29) is used to calculate the AMG estimator:
(29)
where represents a vector of observable covariates, and represent unobserved common factors, and represents country-specific factor loadings.
The AMG estimator is obtained by including a common dynamic effect in the country regression. The two steps of AMG estimation are given as Equations (30) and (31):
(30)
(31)

The first step indicates a standard first difference OLS regression with T − 1 period dummy variables in first differences , from where the estimation coefficients are collected and relabeled as . This process is subtracted from the pooled regression in first differences, as non-stationary and unobservable variables can severely distort the estimates in pooled level regressions. In the second step, is included in each of the N group-specific regressions, including linear trend terms, to capture omitted idiosyncratic processes that evolve linearly over time (Eberhardt & Teal 2010).

Pesaran et al. proposed the PMG estimator in 1999, which includes both the pooling implicit in the homogeneity constraints on the long-run coefficients and averaging between groups to derive the means of the estimated error correction coefficients and other short-run parameters. They developed the PMG model using the Auto Regressive Distributed Lag (ARDL) model cointegration model and used this model to estimate short-term and long-term parameters through heterogeneous cross-sections. The PMG model can be formulated as Equation (32):
(32)
where represents coefficient vectors, represents the coefficients of lagged variables, represents the error correction term, represents the long-term coefficients, and represents the adjustment coefficients (Bilgili et al. 2017).

Dumitrescu-Hurlin panel causality test

After determining the correlation between CO2 emissions and drought, the Dumitrescu-Hurlin panel causality test was applied to determine the direction of the relationship between these two variables. This test is a critical step to determine whether CO2 emissions cause drought or vice versa by examining the directional relationships between the two variables.

Dumitrescu and Hurlin suggested a very simple Granger non-causality test for heterogeneous panel data models with the Dumitrescu-Hurlin panel causality test they developed in 2012. The Dumitrescu-Hurlin test statistic depends on the individual Wald statistics of Granger non-causality. They consider the linear model given as Equation (33):
(33)
where K represents optimum lag interval and is assumed to be identical for all cross-section units of the panel and that the panel is balanced. The individual effects are assumed to be fixed in the time dimension. Initial conditions of individual process and , , are given and observable. The null hypothesis is defined as Equation (34):
(34)
This statement means that there is no causality for all units in the panel. According to the Dumitrescu-Hurlin test, there may be causality for some units and not for others. Then, the alternative hypothesis is defined as follows:
(35)
where is unknown but it is known to satisfy the condition. If , there is no causality for any of the cross-section units in the panel, conversely when , there is causality for all cross-section units in the sample. And this means that we obtained a homogeneous result in terms of causality. But if , this means that we obtained a heterogeneous result in terms of causality. From this perspective, they suggest to use the mean of individual Wald statistics associated with the test of the non-causality hypothesis for units. The mean statistic related to the null hypothesis of homogeneous non-causality () is calculated as in Equation (36) (Lopez & Weber 2017; Aydin 2019):
(36)
where represents the individual Wald statistics for the ith cross-section unit. The matrix with ( can be represented as , while e represents a unit vector and the parameter vector of the model. Here, the test for the Hnc hypothesis can now be implied as ; where R is a matrix with The Wald statistic corresponding to the individual test is defined for each as Equation (37):
(37)
where represents the estimation of the parameter and is derived under the alternative hypothesis and represents the estimation of the residuals' variance. The Wald statistics can also be written as Equation (38):
(38)
Each individual Wald statistic converges to a distribution with K degrees of freedom for , under the null hypothesis of non-causality given as Equation (39):
(39)

Null hypothesis of no causality is not accepted when the Wald statistic is greater than the critical values (Bilgili et al. 2017).

Impulse response functions

A shock to one variable not only affects that variable but also spreads to all other endogenous variables. The impulse-response function analyzes the impact of a one-time shock to one of the variables on the present and future values of endogenous variables. If there is no simultaneous correlation between the variables, the interpretation of the impulse-response is simple. However, variables are often interrelated and can be viewed as having a common component that cannot be attributed to a particular variable. In this case, what needs to be done is to make the variables uncorrelated (Lütkepohl 1990; Killian 1998; Pesaran & Shin 1998).

In this section of the study, the results obtained from the analyses applied in the study and the discussions about the results are given. In the study, first, cross-section dependency and homogeneity tests were performed. The results obtained from these tests are given in Table 2.

Table 2

Cross-sectional dependence and homogeneity tests

TestStatisticP value
Cross-sectional dependence tests   
 LM 2,931 0.00 
 LMadj 43.77 0.00 
 CDLM 22.63 0.00 
Homogeneity tests   
 Δ 0.75 0.45 
 Δadj 1.11 0.27 
TestStatisticP value
Cross-sectional dependence tests   
 LM 2,931 0.00 
 LMadj 43.77 0.00 
 CDLM 22.63 0.00 
Homogeneity tests   
 Δ 0.75 0.45 
 Δadj 1.11 0.27 

In Table 2, when the results of cross-sectional dependence tests are examined, all P values are less than 0.05. Then, it can be said that there is a cross-sectional dependency between the series. When the results of homogeneity tests are examined, all P values are greater than 0.05. So, it can be said that the null hypothesis that the slope is homogeneous is accepted and there is no state-specific heterogeneity.

Since it is determined that there is cross-section dependency according to the cross-sectional dependence test results, second-generation unit root tests should be used when investigating the stationarity of the series. In Table 3, the results obtained from the CIPS unit root test, which is the second-generation unit root test, are given.

Table 3

CIPS unit root test for panel of 51 US States (1997–2020)

Panel CIPS testInterceptIntercept and trend
lnCO2 − 2,282a − 2,756a 
drought1 − 4,281a − 4,413a 
drought2 − 4,214a − 4,305a 
drought3 − 4,302a − 4,483a 
drought4 − 4,285a − 4,413a 
drought5 − 4,242a − 4,390a 
drought6 − 4,272a − 4,444a 
drought7 − 4,484a − 4,697a 
drought8 − 4,648a − 4,821a 
drought9 − 4,678a − 4,839a 
drought10 − 4,425a − 4,565a 
drought11 − 4,094a − 4,280a 
drought12 − 4,327a − 4,405a 
Critical values 10% 5% 1% 10% 5% 1% 
−2.02 −2.08 −2.19 −2.52 −2.58 −2.69 
Panel CIPS testInterceptIntercept and trend
lnCO2 − 2,282a − 2,756a 
drought1 − 4,281a − 4,413a 
drought2 − 4,214a − 4,305a 
drought3 − 4,302a − 4,483a 
drought4 − 4,285a − 4,413a 
drought5 − 4,242a − 4,390a 
drought6 − 4,272a − 4,444a 
drought7 − 4,484a − 4,697a 
drought8 − 4,648a − 4,821a 
drought9 − 4,678a − 4,839a 
drought10 − 4,425a − 4,565a 
drought11 − 4,094a − 4,280a 
drought12 − 4,327a − 4,405a 
Critical values 10% 5% 1% 10% 5% 1% 
−2.02 −2.08 −2.19 −2.52 −2.58 −2.69 

aIllustrates 1% statistical significance.

Examining the results derived from the CIPS test, it can be concluded that all variables are stationary at level. Since all series are stationary at level, it may be analyzed if there is a cointegration relationship between the variables. Since the Westerlund cointegration test provides more reliable and consistent results in the presence of cross-sectional dependence between the series, the Westerlund cointegration test is applied as a cointegration test.

When Table 4 is examined, it is seen that H0 was rejected according to the test results for the cointegration between lnCO2 and DR1, DR2, DR3, DR4, DR5, DR6, DR7, and DR8, but H0 was accepted for the cointegration between lnCO2 and DR9, DR10, DR11, and DR12. That is, there is a cointegration relationship between lnCO2 and DR9, DR10, DR11, and DR12 variables in at least one cross-sectional unit. And according to the and test results, H0 was rejected. That is, for the entire panel, there is a cointegration relationship between the lnCO2 and drought variables.

Table 4

Westerlund Error Correction Model (ECM) panel cointegration tests

Relationship tested
lnCO2 and drought1 −2.66a −11.87 −18.95a −11.53a 
lnCO2 and drought2 −2.67a −11.99 −19.21a −11.71a 
lnCO2 and drought3 −2.63a −11.67 −18.86a −11.44a 
lnCO2 and drought4 −2.59b −11.39 −18.36a −11.07a 
lnCO2 and drought5 −2.63a −11.43 −18.44a −11.04a 
lnCO2 and drought6 −2.56b −11.03 −17.31a −10.53b 
lnCO2 and drought7 −2.52c −10.86 −17.28a −10.31c 
lnCO2 and drought8 −2.54b −10.72 −17.46a −10.19c 
lnCO2 and drought9 −2.42 −10.44 −16.82b −9.92 
lnCO2 and drought10 −2.38 −10.40 −16.53b −9.91 
lnCO2 and drought11 −2.41 −10.73 −16.74b −10.17c 
lnCO2 and drought12 −2.44 −10.78 −16.87b −10.19c 
Relationship tested
lnCO2 and drought1 −2.66a −11.87 −18.95a −11.53a 
lnCO2 and drought2 −2.67a −11.99 −19.21a −11.71a 
lnCO2 and drought3 −2.63a −11.67 −18.86a −11.44a 
lnCO2 and drought4 −2.59b −11.39 −18.36a −11.07a 
lnCO2 and drought5 −2.63a −11.43 −18.44a −11.04a 
lnCO2 and drought6 −2.56b −11.03 −17.31a −10.53b 
lnCO2 and drought7 −2.52c −10.86 −17.28a −10.31c 
lnCO2 and drought8 −2.54b −10.72 −17.46a −10.19c 
lnCO2 and drought9 −2.42 −10.44 −16.82b −9.92 
lnCO2 and drought10 −2.38 −10.40 −16.53b −9.91 
lnCO2 and drought11 −2.41 −10.73 −16.74b −10.17c 
lnCO2 and drought12 −2.44 −10.78 −16.87b −10.19c 

Notes: The optimal lag and lead lengths are both set to 1 and the optimal Barlett Kernel window width is set to 3.

aIndicates 1% statistical significance.

bIndicates 5% statistical significance.

cIndicates 10% statistical significance.

Since it was understood that there was a cointegration relationship between the variables, the long-term parameters of the variables were estimated using the AMG estimation method.

In Table 5, the results obtained as a result of the analysis of the effects of CO2 emissions on 12-month period SPEI drought index variable for each month are given. When Table 5 is examined, it is seen that CO2 influences drought in 17 of 51 states in different months. The states with the longest impact of CO2 emissions on drought are Pennsylvania and Tennessee, for 8 months. CO2 emissions increase the January SPEI drought index in seven states: Arizona, Connecticut, District of Columbia, Hawaii, New York, Pennsylvania, and Virginia. CO2 emissions increase the February SPEI drought index in eight states: Arizona, Connecticut, District of Columbia, Hawaii, New Jersey, New York, Pennsylvania, and Virginia. CO2 emissions increase the March SPEI drought index in seven states: Arizona, Connecticut, District of Columbia, Florida, New York, Pennsylvania, and Virginia. CO2 emissions increase the April SPEI drought index in six states: Connecticut, District of Columbia, Florida, New York, Pennsylvania, and Virginia. While CO2 emissions reduce the May SPEI drought index in Tennessee, they increase it in five states: Connecticut, District of Columbia, New York, Pennsylvania, and Virginia. While CO2 emissions reduce the June SPEI drought index in Tennessee, they increase it in two states: Ohio and Pennsylvania. While CO2 emissions increase the July SPEI drought index in Pennsylvania, they reduce it in three states: Oregon, South Carolina, and Tennessee. While CO2 emissions increase the August SPEI drought index in Pennsylvania, they reduce it in three states: Arkansas, South Carolina, and Tennessee. CO2 emissions reduce the September SPEI drought index in five states: Alabama, Arkansas, Georgia, South Carolina, and Tennessee. CO2 emissions reduce the October SPEI drought index in six states: Alabama, Georgia, Louisiana, North and South Carolina, and Tennessee. CO2 emissions reduce the November SPEI drought index in five states: Alabama, Georgia, North and South Carolina, and Tennessee. CO2 emissions reduce the December SPEI drought index in six states: Alabama, Georgia, Louisiana, North and South Carolina, and Tennessee.

Table 5

Cointegration coefficients from the AMG estimator (Independent variable: lnCO2)

StateDR1DR2DR3DR4DR5DR6DR7DR8DR9DR10DR11DR12
Alabama 1,666 1,807 1,211 0,711 − 1,469 − 3,368 − 4,642 − 4,971 − 6,125b − 7,364a − 7,574a − 7,971a 
Alaska − 1,909 − 1,227 − 1,024 − 0,604 − 0,306 0,224 − 0,056 − 0,021 0,310 − 0,387 − 0,723 − 1,365 
Arizona 5,323a 4,887b 3,579c 2,539 2,555 1,724 1,181 0,615 1,059 1,198 2,362 2,366 
Arkansas − 2,974 − 2,453 − 3,073 − 2,982 − 3,925 − 3,190 − 4,229 − 5,536c − 6,282b − 5,264 − 3,840 − 5,204 
California 1,332 4,452 3,063 0,126 0,173 − 0,585 − 1,883 − 1,965 − 1,551 − 1,687 − 0,403 2,170 
Colorado − 0,332 − 0,086 0,339 − 0,325 0,726 0,587 − 0,577 − 0,816 − 0,772 − 1,133 − 1,014 − 1,410 
Connecticut 6,486b 6,963b 7,106b 7,621a 5,145b 3,917 3,094 2,848 2,197 2,331 2,225 2,351 
Delaware 2,601 3,380 3,277 2,503 3,582 2,551 1,954 − 0,305 − 1,723 − 2,576 − 2,911 − 2,772 
Dist. of Col. 6,128b 6,588b 7,486a 7,193a 5,939b 4,476 4,250 3,284 1,257 2,514 1,339 1,203 
Florida 5,563 5,749 7,103c 6,851c 4,517 2,784 1,878 2,715 − 0,583 − 0,316 − 2,329 − 3,408 
Georgia 2,652 1,816 1,615 0,584 − 1,037 − 2,002 − 2,822 − 3,305 − 4,110c − 4,735b − 5,066b − 5,268b 
Hawaii 3,616b 4,047b 1,798 0,765 0,042 − 0,307 − 1,051 − 1,192 − 0,425 − 0,878 − 0,544 − 0,572 
Idaho 1,942 1,633 − 0,312 − 1,419 − 2,004 − 3,021 − 2,945 − 3,291 − 1,530 − 0,879 − 1,875 − 2,259 
Illinois − 1,789 − 0,992 − 2,256 − 3,032 − 2,970 − 2,196 − 3,566 − 3,651 − 1,861 − 2,406 − 2,340 − 2,583 
Indiana 1,120 2,248 1,752 1,441 1,727 2,500 1,084 0,776 1,832 0,060 0,604 0,807 
Iowa 1,091 1,378 0,336 − 0,083 0,111 1,714 1,100 1,980 2,651 2,674 2,788 2,557 
Kansas − 1,371 − 1,386 − 1,810 − 3,283 − 2,844 − 1,985 − 2,798 − 2,503 − 1,984 − 2,550 − 2,602 − 3,128 
Kentucky − 1,191 − 0,361 − 0,088 − 0,185 − 0,856 − 1,103 − 2,059 − 2,612 − 2,640 − 3,363 − 3,186 − 3,111 
Louisiana − 5,137 − 4,930 − 6,861 − 7,969 − 5,778 − 6,588 − 7,311 − 8,601 − 9,154 − 11,908c − 8,607 − 11,004c 
Maine 0,219 0,630 − 0,028 0,710 1,165 0,972 1,171 1,420 1,345 0,794 0,756 1,015 
Maryland 1,835 2,870 2,523 1,829 1,865 1,395 0,566 − 0,642 − 0,994 − 0,971 − 1,820 − 1,565 
Massachusetts 0,644 2,368 2,783 2,836 2,137 0,055 − 1,240 − 0,486 0,738 2,135 1,469 1,896 
Michigan 0,448 1,371 − 3,020 − 2,980 − 3,303 − 0,503 − 1,987 − 3,254 1,810 − 1,227 − 1,568 − 0,047 
Minnesota − 0,724 − 0,218 − 0,633 − 0,049 − 1,597 − 1,792 − 3,414 − 4,110 − 1,545 − 0,945 0,402 0,392 
Mississippi 0,512 0,763 0,649 − 0,495 − 0,912 − 0,517 − 1,046 0,349 0,317 0,121 0,213 − 0,756 
Missouri − 0,830 − 0,524 − 1,453 − 1,902 − 2,454 − 2,473 − 3,994 − 4,247 − 3,520 − 4,072 − 4,052 − 3,873 
Montana − 0,957 − 0,364 − 0,862 − 1,319 − 0,004 − 2,080 − 2,182 − 2,193 − 0,436 − 1,550 − 0,748 − 0,536 
Nebraska − 3,162 − 3,305 − 3,446 − 4,411 − 2,830 − 2,773 − 4,173 − 2,315 − 1,676 − 2,270 − 1,951 − 1,634 
Nevada − 1,626 − 0,514 − 0,342 − 1,182 1,010 − 0,527 − 1,700 − 2,240 − 1,235 − 1,242 − 1,449 − 0,750 
New Hamp. 2,516 2,712 2,125 2,421 2,377 2,097 1,989 2,469 2,358 2,571 2,288 2,418 
New Jersey 4,090 5,008c 4,575 3,707 4,047 2,558 1,210 0,370 − 0,356 − 0,867 − 1,966 − 0,882 
New Mexico 4,048 3,461 2,552 1,480 0,596 0,085 − 0,597 − 1,058 0,436 − 0,565 0,176 − 0,168 
New York 5,949b 7,610a 8,551b 9,020a 7,486a 4,587 3,270 1,918 0,684 1,614 0,504 1,500 
N. Carolina 4,783 5,034 4,271 3,506 0,352 − 1,673 − 3,681 − 3,796 − 5,197 − 5,848b − 7,159a − 8,071a 
N. Dakota 4,931 4,104 3,525 1,544 1,763 2,303 1,670 0,823 2,424 2,846 5,110 4,107 
Ohio 1,501 3,415 3,420 3,239 4,124 5,648c 4,032 3,805 4,479 2,825 3,446 3,338 
Oklahoma − 0,090 − 0,142 − 1,102 − 2,065 − 2,001 − 2,502 − 4,238 − 3,672 − 3,247 − 4,137 − 3,822 − 4,440 
Oregon − 4,042 − 2,641 − 4,497 − 4,727 − 4,496 − 6,646 − 7,612c − 6,377 − 5,114 − 5,648 − 6,379 − 5,706 
Pennsylvania 6,770b 8,395a 8,380a 7,801a 7,511a 9,028a 7,642b 5,896c 4,562 4,918 4,138 4,313 
Rhode Island 1,738 1,504 2,910 2,501 1,428 0,485 − 0,517 0,681 0,843 1,945 1,529 0,677 
S. Carolina 1,980 1,230 1,065 − 0,118 − 1,506 − 3,083 − 4,783b − 4,916b − 5,064a − 5,693a − 5,815a − 6,305a 
S. Dakota 3,266 2,201 2,458 2,603 1,534 2,262 6,069 5,653 6,814 6,759 7,206 7,300 
Tennessee − 2,577 − 2,768 − 3,128 − 3,491 − 4,601b − 4,952b − 6,307a − 7,057a − 8,131a − 8,470a − 7,926a − 8,435a 
Texas 4,760 3,231 3,040 3,372 3,604 4,932 4,514 5,309 2,183 2,738 3,692 2,508 
Utah 2,912 3,374 2,965 2,312 4,461 3,238 2,024 1,478 1,461 1,568 2,104 1,554 
Vermont 0,825 1,131 − 0,267 0,410 0,897 − 0,472 − 1,484 − 0,700 − 0,763 − 1,074 − 1,085 − 1,657 
Virginia 4,738c 5,678b 5,271b 5,182c 4,883c 3,633 2,299 2,121 0,759 0,191 − 0,966 − 1,745 
Washington 0,770 1,047 − 0,722 − 0,887 − 1,831 − 2,873 − 2,557 − 2,043 − 0,259 − 1,072 − 2,859 − 4,011 
West Virginia − 0,489 2,107 1,669 1,403 1,013 1,412 0,421 − 0,629 − 1,137 − 1,644 − 0,732 − 0,584 
Wisconsin 2,636 3,137 0,830 1,859 − 0,601 0,642 − 1,113 − 1,827 2,349 0,021 0,296 0,131 
Wyoming − 0,575 − 0,770 − 1,015 − 2,947 1,308 0,578 − 0,781 − 0,458 0,185 − 0,297 0,489 − 0,614 
StateDR1DR2DR3DR4DR5DR6DR7DR8DR9DR10DR11DR12
Alabama 1,666 1,807 1,211 0,711 − 1,469 − 3,368 − 4,642 − 4,971 − 6,125b − 7,364a − 7,574a − 7,971a 
Alaska − 1,909 − 1,227 − 1,024 − 0,604 − 0,306 0,224 − 0,056 − 0,021 0,310 − 0,387 − 0,723 − 1,365 
Arizona 5,323a 4,887b 3,579c 2,539 2,555 1,724 1,181 0,615 1,059 1,198 2,362 2,366 
Arkansas − 2,974 − 2,453 − 3,073 − 2,982 − 3,925 − 3,190 − 4,229 − 5,536c − 6,282b − 5,264 − 3,840 − 5,204 
California 1,332 4,452 3,063 0,126 0,173 − 0,585 − 1,883 − 1,965 − 1,551 − 1,687 − 0,403 2,170 
Colorado − 0,332 − 0,086 0,339 − 0,325 0,726 0,587 − 0,577 − 0,816 − 0,772 − 1,133 − 1,014 − 1,410 
Connecticut 6,486b 6,963b 7,106b 7,621a 5,145b 3,917 3,094 2,848 2,197 2,331 2,225 2,351 
Delaware 2,601 3,380 3,277 2,503 3,582 2,551 1,954 − 0,305 − 1,723 − 2,576 − 2,911 − 2,772 
Dist. of Col. 6,128b 6,588b 7,486a 7,193a 5,939b 4,476 4,250 3,284 1,257 2,514 1,339 1,203 
Florida 5,563 5,749 7,103c 6,851c 4,517 2,784 1,878 2,715 − 0,583 − 0,316 − 2,329 − 3,408 
Georgia 2,652 1,816 1,615 0,584 − 1,037 − 2,002 − 2,822 − 3,305 − 4,110c − 4,735b − 5,066b − 5,268b 
Hawaii 3,616b 4,047b 1,798 0,765 0,042 − 0,307 − 1,051 − 1,192 − 0,425 − 0,878 − 0,544 − 0,572 
Idaho 1,942 1,633 − 0,312 − 1,419 − 2,004 − 3,021 − 2,945 − 3,291 − 1,530 − 0,879 − 1,875 − 2,259 
Illinois − 1,789 − 0,992 − 2,256 − 3,032 − 2,970 − 2,196 − 3,566 − 3,651 − 1,861 − 2,406 − 2,340 − 2,583 
Indiana 1,120 2,248 1,752 1,441 1,727 2,500 1,084 0,776 1,832 0,060 0,604 0,807 
Iowa 1,091 1,378 0,336 − 0,083 0,111 1,714 1,100 1,980 2,651 2,674 2,788 2,557 
Kansas − 1,371 − 1,386 − 1,810 − 3,283 − 2,844 − 1,985 − 2,798 − 2,503 − 1,984 − 2,550 − 2,602 − 3,128 
Kentucky − 1,191 − 0,361 − 0,088 − 0,185 − 0,856 − 1,103 − 2,059 − 2,612 − 2,640 − 3,363 − 3,186 − 3,111 
Louisiana − 5,137 − 4,930 − 6,861 − 7,969 − 5,778 − 6,588 − 7,311 − 8,601 − 9,154 − 11,908c − 8,607 − 11,004c 
Maine 0,219 0,630 − 0,028 0,710 1,165 0,972 1,171 1,420 1,345 0,794 0,756 1,015 
Maryland 1,835 2,870 2,523 1,829 1,865 1,395 0,566 − 0,642 − 0,994 − 0,971 − 1,820 − 1,565 
Massachusetts 0,644 2,368 2,783 2,836 2,137 0,055 − 1,240 − 0,486 0,738 2,135 1,469 1,896 
Michigan 0,448 1,371 − 3,020 − 2,980 − 3,303 − 0,503 − 1,987 − 3,254 1,810 − 1,227 − 1,568 − 0,047 
Minnesota − 0,724 − 0,218 − 0,633 − 0,049 − 1,597 − 1,792 − 3,414 − 4,110 − 1,545 − 0,945 0,402 0,392 
Mississippi 0,512 0,763 0,649 − 0,495 − 0,912 − 0,517 − 1,046 0,349 0,317 0,121 0,213 − 0,756 
Missouri − 0,830 − 0,524 − 1,453 − 1,902 − 2,454 − 2,473 − 3,994 − 4,247 − 3,520 − 4,072 − 4,052 − 3,873 
Montana − 0,957 − 0,364 − 0,862 − 1,319 − 0,004 − 2,080 − 2,182 − 2,193 − 0,436 − 1,550 − 0,748 − 0,536 
Nebraska − 3,162 − 3,305 − 3,446 − 4,411 − 2,830 − 2,773 − 4,173 − 2,315 − 1,676 − 2,270 − 1,951 − 1,634 
Nevada − 1,626 − 0,514 − 0,342 − 1,182 1,010 − 0,527 − 1,700 − 2,240 − 1,235 − 1,242 − 1,449 − 0,750 
New Hamp. 2,516 2,712 2,125 2,421 2,377 2,097 1,989 2,469 2,358 2,571 2,288 2,418 
New Jersey 4,090 5,008c 4,575 3,707 4,047 2,558 1,210 0,370 − 0,356 − 0,867 − 1,966 − 0,882 
New Mexico 4,048 3,461 2,552 1,480 0,596 0,085 − 0,597 − 1,058 0,436 − 0,565 0,176 − 0,168 
New York 5,949b 7,610a 8,551b 9,020a 7,486a 4,587 3,270 1,918 0,684 1,614 0,504 1,500 
N. Carolina 4,783 5,034 4,271 3,506 0,352 − 1,673 − 3,681 − 3,796 − 5,197 − 5,848b − 7,159a − 8,071a 
N. Dakota 4,931 4,104 3,525 1,544 1,763 2,303 1,670 0,823 2,424 2,846 5,110 4,107 
Ohio 1,501 3,415 3,420 3,239 4,124 5,648c 4,032 3,805 4,479 2,825 3,446 3,338 
Oklahoma − 0,090 − 0,142 − 1,102 − 2,065 − 2,001 − 2,502 − 4,238 − 3,672 − 3,247 − 4,137 − 3,822 − 4,440 
Oregon − 4,042 − 2,641 − 4,497 − 4,727 − 4,496 − 6,646 − 7,612c − 6,377 − 5,114 − 5,648 − 6,379 − 5,706 
Pennsylvania 6,770b 8,395a 8,380a 7,801a 7,511a 9,028a 7,642b 5,896c 4,562 4,918 4,138 4,313 
Rhode Island 1,738 1,504 2,910 2,501 1,428 0,485 − 0,517 0,681 0,843 1,945 1,529 0,677 
S. Carolina 1,980 1,230 1,065 − 0,118 − 1,506 − 3,083 − 4,783b − 4,916b − 5,064a − 5,693a − 5,815a − 6,305a 
S. Dakota 3,266 2,201 2,458 2,603 1,534 2,262 6,069 5,653 6,814 6,759 7,206 7,300 
Tennessee − 2,577 − 2,768 − 3,128 − 3,491 − 4,601b − 4,952b − 6,307a − 7,057a − 8,131a − 8,470a − 7,926a − 8,435a 
Texas 4,760 3,231 3,040 3,372 3,604 4,932 4,514 5,309 2,183 2,738 3,692 2,508 
Utah 2,912 3,374 2,965 2,312 4,461 3,238 2,024 1,478 1,461 1,568 2,104 1,554 
Vermont 0,825 1,131 − 0,267 0,410 0,897 − 0,472 − 1,484 − 0,700 − 0,763 − 1,074 − 1,085 − 1,657 
Virginia 4,738c 5,678b 5,271b 5,182c 4,883c 3,633 2,299 2,121 0,759 0,191 − 0,966 − 1,745 
Washington 0,770 1,047 − 0,722 − 0,887 − 1,831 − 2,873 − 2,557 − 2,043 − 0,259 − 1,072 − 2,859 − 4,011 
West Virginia − 0,489 2,107 1,669 1,403 1,013 1,412 0,421 − 0,629 − 1,137 − 1,644 − 0,732 − 0,584 
Wisconsin 2,636 3,137 0,830 1,859 − 0,601 0,642 − 1,113 − 1,827 2,349 0,021 0,296 0,131 
Wyoming − 0,575 − 0,770 − 1,015 − 2,947 1,308 0,578 − 0,781 − 0,458 0,185 − 0,297 0,489 − 0,614 

aIndicates 1% statistical significance.bIndicates 5% statistical significance.cIndicates 10% statistical significance.

Accordingly, while CO2 emissions generally increase the SPEI drought index in the first 6 months of the year, they reduce it in the last 6 months of the year. Negative values of the SPEI indicate dry periods, and positive values indicate wetting periods. Therefore, a decrease in SPEI values indicates a transition from a wetting period to a dry period, and an increase indicates a transition from a dry period to a more wetting period. Therefore, this situation can be explained as CO2 emissions generally lead to drought in the last 6 months of the year. This study seeks to empirically test the hypothesis that CO2 emissions, by driving climate change, can increase the frequency and intensity of droughts through their impact on regional precipitation and temperature patterns. The results of this study support the hypothesis that CO2 emissions, through their impact on climate change, contribute to changes in drought patterns in the US.

Figure 2 shows the CO2 emission map of the US. When the CO2 emissions map is examined, it is seen that the CO2 emission values of the US states, especially in the eastern region, are at very high levels. When the results obtained in this study are examined, it is seen that CO2 emissions increase the number of dry periods, especially in the states located in the southeastern region of the US and increase the number of periods with excessive precipitation in the states located in the northeastern region, and the findings obtained are directly related to the areas shown on the CO2 emission intensity map. It has been stated in previous studies in the literature that CO2 emissions cause an increase in air temperature values in the region where they are emitted, and this causes a change in precipitation regimes, causing either a completely dry situation or climatic conditions with heavy rains. Therefore, it is considered that the findings obtained in this study closely match the situations stated in previous studies in the literature.

After estimating the parameters on state bases with the AMG analysis, error correction-based PMG analyses are performed to see short- and long-term panel estimations.

According to Table 6, since the error correction term values are negative and statistically significant, it can be said that there are cointegration relationships between the variables. According to the long-term analysis results, CO2 emissions have long-term effects on droughts in all months. According to the short-term analysis results, CO2 emissions affect the SPEI drought index in February, April, May, June, July, September, November, and December, while they do not affect the SPEI drought index in other months. It can be seen that CO2 emissions affect drought both in the short- and long-run, increase the SPEI drought index (in other words increase the wetting) in the short-run, and decrease the SPEI drought index (namely, increase the drought) in the long-run. Studies in the literature (such as Strzepek et al. 2010; Hardin et al. 2017) have also found that in periods when CO2 emissions increase, drought also increases and there is a direct relationship between them. Therefore, the findings obtained from this analysis are in line with the previous studies in the literature.

Table 6

PMG analyses based on the error correction (short-run and long-run estimations)

Dep. var.ΔDR1ΔDR2ΔDR3ΔDR4ΔDR5ΔDR6
Long run lnCO2
−1.46a (0.00) 
lnCO2
−1.67a (0.00) 
lnCO2
−1.67a (0.00) 
lnCO2
−1.89a (0.00) 
lnCO2
−1.57a (0.00) 
lnCO2
−1.29a (0.00) 
Short run ΔlnCO2
−0.22 (0.76) 
ΔlnCO2
1.23c (0.095) 
ΔlnCO2
0.91 (0.22) 
ΔlnCO2
1.32c (0.09) 
ΔlnCO2
1.43b (0.03) 
ΔlnCO2
1.35a (0.0095) 
Constant 6.23a(0.00) 6.94a (0.00) 6.98a (0.00) 7.50a (0.00) 6.45a (0.00) 5.59a (0.00) 
Error correction −0.96a (0.00) −0.93a (0.00) −0.95a (0.00) −0.90a (0.00) −0.93a (0.00) −0.97a (0.00) 
Dep. var. ΔDR7 ΔDR8 ΔDR9 ΔDR10 ΔDR11 ΔDR12 
Long run lnCO2
−1.23a (0.00) 
lnCO2
−1.17a (0.00) 
lnCO2
−1.09a (0.00) 
lnCO2
−0.95a (0.00) 
lnCO2
−1.20a (0.00) 
lnCO2
−1.04a (0.00) 
Short run ΔlnCO2
0.96c (0.07) 
ΔlnCO2
0.82 (0.13) 
ΔlnCO2
0.99c (0.08) 
ΔlnCO2
0.33 (0.61) 
ΔlnCO2
1.44b (0.03) 
ΔlnCO2
1.66b (0.02) 
Constant 5.48a (0.00) 5.20a (0.00) 4.83a (0.00) 4.17a (0.00) 5.07a (0.00) 4.48a (0.00) 
Error correction −1.01a (0.00) −1.01a (0.00) −1,01a (0.00) −0.98a (0.00) −0.95a (0.00) −0.97a (0.00) 
Dep. var.ΔDR1ΔDR2ΔDR3ΔDR4ΔDR5ΔDR6
Long run lnCO2
−1.46a (0.00) 
lnCO2
−1.67a (0.00) 
lnCO2
−1.67a (0.00) 
lnCO2
−1.89a (0.00) 
lnCO2
−1.57a (0.00) 
lnCO2
−1.29a (0.00) 
Short run ΔlnCO2
−0.22 (0.76) 
ΔlnCO2
1.23c (0.095) 
ΔlnCO2
0.91 (0.22) 
ΔlnCO2
1.32c (0.09) 
ΔlnCO2
1.43b (0.03) 
ΔlnCO2
1.35a (0.0095) 
Constant 6.23a(0.00) 6.94a (0.00) 6.98a (0.00) 7.50a (0.00) 6.45a (0.00) 5.59a (0.00) 
Error correction −0.96a (0.00) −0.93a (0.00) −0.95a (0.00) −0.90a (0.00) −0.93a (0.00) −0.97a (0.00) 
Dep. var. ΔDR7 ΔDR8 ΔDR9 ΔDR10 ΔDR11 ΔDR12 
Long run lnCO2
−1.23a (0.00) 
lnCO2
−1.17a (0.00) 
lnCO2
−1.09a (0.00) 
lnCO2
−0.95a (0.00) 
lnCO2
−1.20a (0.00) 
lnCO2
−1.04a (0.00) 
Short run ΔlnCO2
0.96c (0.07) 
ΔlnCO2
0.82 (0.13) 
ΔlnCO2
0.99c (0.08) 
ΔlnCO2
0.33 (0.61) 
ΔlnCO2
1.44b (0.03) 
ΔlnCO2
1.66b (0.02) 
Constant 5.48a (0.00) 5.20a (0.00) 4.83a (0.00) 4.17a (0.00) 5.07a (0.00) 4.48a (0.00) 
Error correction −1.01a (0.00) −1.01a (0.00) −1,01a (0.00) −0.98a (0.00) −0.95a (0.00) −0.97a (0.00) 

Note: Probability values are shown in parentheses.

aIndicates 1% statistical significance.

bIndicates 5% statistical significance.

cIndicates 10% statistical significance.

In the next step, the Dumitrescu-Hurlin panel causality test, which is used to test causality in heterogeneous panel data models, was conducted to investigate the mutual causality relationship between the variables.

In Table 7, when the causality relationships between the variables are analyzed, it is found that SPEI drought index values in all months are the causes of CO2 emissions. When the causality relationships from CO2 emissions to SPEI drought index values are examined, it is found that CO2 emissions in all months except January and April are the causes of SPEI drought index values.

Table 7

Dumitrescu & Hurlin (2012) panel causality test

DR1 → lnCO2 DR2 → lnCO2 DR3 → lnCO2 DR4 → lnCO2 DR5 → lnCO2 DR6 → lnCO2 
1.46b (0.02) 1.75a (0.00) 1.63a (0.00) 1.79a (0.00) 2.22a (0.00) 2.08a (0.00) 
lnCO2 → DR1 lnCO2 → DR2 lnCO2 → DR3 lnCO2 → DR4 lnCO2 → DR5 lnCO2 → DR6 
1.25 (0.20) 1.40b (0.04) 1.38c (0.06) 1.31 (0.12) 1.41b (0.04) 1.50b (0.01) 
DR7 → lnCO2 DR8 → lnCO2 DR9 → lnCO2 DR10 → lnCO2 DR11 → lnCO2 DR12 → lnCO2 
1.79a (0.00) 1.60a (0.00) 1.90a (0.00) 1.49b (0.01) 1.84a (0.00) 1.82a (0.00) 
lnCO2 → DR7 lnCO2 → DR8 lnCO2 → DR9 lnCO2 → DR10 lnCO2 → DR11 lnCO2 → DR12 
1.61a (0.00) 1.64a (0.00) 1.66a (0.00) 1.51a (0.0096) 1.53a (0.008) 1.36c (0.07) 
DR1 → lnCO2 DR2 → lnCO2 DR3 → lnCO2 DR4 → lnCO2 DR5 → lnCO2 DR6 → lnCO2 
1.46b (0.02) 1.75a (0.00) 1.63a (0.00) 1.79a (0.00) 2.22a (0.00) 2.08a (0.00) 
lnCO2 → DR1 lnCO2 → DR2 lnCO2 → DR3 lnCO2 → DR4 lnCO2 → DR5 lnCO2 → DR6 
1.25 (0.20) 1.40b (0.04) 1.38c (0.06) 1.31 (0.12) 1.41b (0.04) 1.50b (0.01) 
DR7 → lnCO2 DR8 → lnCO2 DR9 → lnCO2 DR10 → lnCO2 DR11 → lnCO2 DR12 → lnCO2 
1.79a (0.00) 1.60a (0.00) 1.90a (0.00) 1.49b (0.01) 1.84a (0.00) 1.82a (0.00) 
lnCO2 → DR7 lnCO2 → DR8 lnCO2 → DR9 lnCO2 → DR10 lnCO2 → DR11 lnCO2 → DR12 
1.61a (0.00) 1.64a (0.00) 1.66a (0.00) 1.51a (0.0096) 1.53a (0.008) 1.36c (0.07) 

Note: Wald Statistic: probability values are given in parentheses.

aIndicates 1% statistical significance.

bIndicates 5% statistical significance.

cIndicates 10% statistical significance.

To examine the causality results by states, the individual results of the Dumitrescu-Hurlin panel Granger causality tests are given in Table 8.

Table 8

Dumitrescu & Hurlin panel causality test (state-specific causality)

Null hypothesis: No causality
StatelnCO2 → DR1lnCO2 → DR2lnCO2 → DR3lnCO2 → DR4lnCO2 → DR5lnCO2 → DR6
Alabama 3,993c(0,059) 4,838b(0,040) 4,090c(0,057) 4,440b(0,048) 4,527b(0,046) 5,204b(0,034) 
Alaska 7,828b(0,011) 7,607b(0,012) 6,634b(0,018) 5,943b(0,024) 5,094b(0,035) 6,345b(0,020) 
Arizona 0,031 (0,862) 0,005 (0,944) 0,102 (0,753) 0,078 (0,783) 0,027 (0,871) 0,024 (0,878) 
Arkansas 0,004 (0,950) 0,043 (0,839) 0,214 (0,649) 0,352 (0,559) 1,644 (0,214) 2,182 (0,155) 
California 0,288 (0,598) 0,142 (0,710) 0,031 (0,861) 0,001 (0,972) 0,001 (0,972) 0,011 (0,916) 
Colorado 3,765c(0,067) 4,042c(0,058) 4,297c(0,051) 2,975c(0,100) 2,378 (0,139) 1,928 (0,180) 
Connecticut 0,777 (0,389) 0,738 (0,400) 0,830 (0,373) 0,391 (0,539) 0,790 (0,385) 1,696 (0,208) 
Delaware 1,068 (0,314) 1,241 (0,278) 1,270 (0,273) 1,446 (0,243) 0,965 (0,338) 0,427 (0,521) 
Dist. of Col. 0,059 (0,810) 0,039 (0,846) 0,108 (0,745) 0,277 (0,604) 0,103 (0,752) 0,015 (0,904) 
Florida 1,989 (0,174) 2,297 (0,145) 2,236 (0,150) 1,991 (0,174) 1,851 (0,189) 1,731 (0,203) 
Georgia 1,726 (0,204) 2,658 (0,119) 2,873 (0,106) 3,436c(0,079) 4,490b(0,047) 4,997b(0,037) 
Hawaii 0,014 (0,908) 0,396 (0,536) 0,674 (0,421) 0,533 (0,474) 0,509 (0,484) 0,499 (0,488) 
Idaho 0,380 (0,545) 0,074 (0,789) 0,235 (0,633) 0,223 (0,642) 0,078 (0,782) 0,809 (0,379) 
Illinois 2,940 (0,102) 3,321c(0,083) 2,481 (0,131) 3,402c(0,080) 3,679c(0,069) 3,606c(0,072) 
Indiana 2,103 (0,162) 2,215 (0,152) 1,771 (0,198) 1,156 (0,295) 1,212 (0,284) 0,855 (0,366) 
Iowa 0,926 (0,347) 1,006 (0,328) 1,152 (0,296) 0,675 (0,421) 0,462 (0,505) 0,013 (0,911) 
Kansas 0,187 (0,670) 0,172 (0,683) 0,195 (0,664) 0,113 (0,740) 0,019 (0,891) 0,019 (0,892) 
Kentucky 5,922b(0,024) 6,003b(0,024) 6,074b(0,023) 3,310c(0,084) 4,022c(0,059) 2,431 (0,135) 
Louisiana 1,521 (0,232) 1,609 (0,219) 0,657 (0,427) 0,980 (0,334) 2,274 (0,147) 2,409 (0,136) 
Maine 0,216 (0,647) 0,048 (0,829) 0,050 (0,825) 0,005 (0,946) 0,011 (0,918) 0,037 (0,850) 
Maryland 0,204 (0,657) 0,344 (0,564) 0,496 (0,489) 0,695 (0,414) 0,609 (0,444) 0,476 (0,498) 
Massachusetts 0,017 (0,897) 0,033 (0,858) 0,011 (0,918) 0,016 (0,900) 0,041 (0,842) 0,237 (0,632) 
Michigan 2,631 (0,120) 2,833 (0,108) 1,919 (0,181) 2,090 (0,164) 2,682 (0,117) 2,924 (0,103) 
Minnesota 0,029 (0,867) 0,022 (0,885) 0,022 (0,883) 0,134 (0,719) 0,266 (0,612) 1,310 (0,266) 
Mississippi 0,746 (0,398) 0,745 (0,398) 0,717 (0,407) 0,587 (0,452) 0,049 (0,827) 0,058 (0,812) 
Missouri 0,872 (0,361) 0,926 (0,347) 1,351 (0,259) 1,729 (0,203) 1,944 (0,178) 2,235 (0,150) 
Montana 0,345 (0,563) 0,595 (0,450) 0,619 (0,441) 0,543 (0,470) 0,536 (0,473) 0,976 (0,335) 
Nebraska 0,904 (0,353) 0,934 (0,345) 0,775 (0,389) 0,925 (0,348) 0,182 (0,674) 0,040 (0,843) 
Nevada 0,089 (0,769) 0,000 (0,997) 0,008 (0,929) 0,093 (0,764) 0,003 (0,953) 0,017 (0,896) 
New Hamp. 0,602 (0,447) 0,703 (0,412) 0,627 (0,438) 0,719 (0,407) 1,218 (0,283) 1,859 (0,188) 
New Jersey 0,079 (0,782) 0,026 (0,874) 0,005 (0,947) 0,034 (0,856) 0,000 (0,994) 0,038 (0,848) 
New Mexico 0,278 (0,604) 0,284 (0,600) 0,150 (0,702) 0,097 (0,759) 0,103 (0,752) 0,078 (0,784) 
New York 0,012 (0,913) 0,001 (0,970) 0,008 (0,929) 0,139 (0,713) 0,077 (0,785) 0,008 (0,929) 
N. Carolina 2,906 (0,104) 3,749c(0,067) 3,907c(0,062) 4,288c(0,052) 5,163b(0,034) 4,874b(0,039) 
N. Dakota 0,460 (0,505) 0,481 (0,496) 0,660 (0,426) 0,794 (0,384) 0,460 (0,506) 0,000 (0,983) 
Ohio 0,692 (0,415) 0,556 (0,465) 0,707 (0,410) 0,661 (0,426) 0,841 (0,370) 0,741 (0,400) 
Oklahoma 2,445 (0,134) 2,652 (0,119) 2,447 (0,133) 1,289 (0,270) 0,476 (0,498) 0,749 (0,397) 
Oregon 0,416 (0,526) 0,870 (0,362) 0,324 (0,575) 0,335 (0,569) 1,050 (0,318) 0,295 (0,593) 
Pennsylvania 0,029 (0,867) 0,013 (0,911) 0,010 (0,923) 0,013 (0,909) 0,002 (0,966) 0,096 (0,760) 
Rhode Island 0,176 (0,679) 0,198 (0,661) 0,131 (0,722) 0,000 (0,986) 0,043 (0,838) 0,322 (0,577) 
S. Carolina 3,466c(0,077) 4,274c(0,052) 4,235c(0,053) 4,762b(0,041) 6,042b(0,023) 5,517b(0,029) 
S. Dakota 2,420 (0,135) 2,865 (0,106) 3,103c(0,093) 2,372 (0,139) 2,308 (0,144) 2,158 (0,157) 
Tennessee 4,092c(0,057) 4,534b(0,046) 5,699b(0,027) 5,694b(0,027) 7,065b(0,015) 7,226b(0,014) 
Texas 1,170 (0,292) 1,327 (0,263) 2,078 (0,165) 2,552 (0,126) 3,333c(0,083) 3,545c(0,074) 
Utah 0,489 (0,493) 0,177 (0,678) 0,081 (0,779) 0,325 (0,575) 0,296 (0,592) 0,415 (0,527) 
Vermont 0,082 (0,777) 0,033 (0,857) 0,015 (0,902) 0,005 (0,947) 0,177 (0,678) 0,027 (0,872) 
Virginia 0,112 (0,742) 0,322 (0,577) 0,271 (0,608) 0,385 (0,542) 0,351 (0,560) 0,592 (0,451) 
Washington 0,188 (0,669) 0,354 (0,558) 0,244 (0,627) 0,112 (0,741) 0,044 (0,836) 0,001 (0,971) 
West Virginia 0,292 (0,595) 0,407 (0,531) 0,777 (0,389) 1,147 (0,297) 0,808 (0,379) 0,585 (0,453) 
Wisconsin 0,334 (0,570) 0,404 (0,532) 0,218 (0,645) 1,240 (0,279) 1,281 (0,271) 3,841c(0,064) 
Wyoming 1,531 (0,230) 2,330 (0,143) 2,552 (0,126) 1,086 (0,310) 0,228 (0,638) 0,214 (0,649) 
lnCO2 → DR7lnCO2 → DR8lnCO2 → DR9lnCO2 → DR10lnCO2 → DR11lnCO2 → DR12
Alabama 4,879b(0,039) 5,125b(0,035) 4,301c(0,051) 4,127c(0,056) 3,842c(0,064) 2,816 (0,109) 
Alaska 8,972a(0,007) 5,022b(0,037) 6,078b(0,023) 6,047b(0,023) 7,085b(0,015) 6,970b(0,016) 
Arizona 0,139 (0,714) 0,379 (0,545) 0,191 (0,666) 0,386 (0,541) 0,478 (0,497) 0,276 (0,605) 
Arkansas 2,146 (0,158) 2,883 (0,105) 3,756c(0,067) 4,518b(0,046) 5,968b(0,024) 5,010b(0,037) 
California 0,016 (0,901) 0,020 (0,888) 0,019 (0,892) 0,007 (0,936) 0,017 (0,897) 0,137 (0,715) 
Colorado 1,207 (0,285) 0,985 (0,333) 1,335 (0,262) 0,906 (0,353) 0,892 (0,356) 0,764 (0,393) 
Connecticut 1,267 (0,274) 0,747 (0,398) 0,256 (0,618) 0,437 (0,516) 0,172 (0,683) 0,050 (0,826) 
Delaware 0,535 (0,473) 0,900 (0,354) 1,037 (0,321) 0,738 (0,401) 0,766 (0,392) 0,392 (0,538) 
Dist. of Col. 0,056 (0,816) 0,510 (0,483) 0,561 (0,463) 0,489 (0,493) 0,730 (0,403) 0,736 (0,401) 
Florida 1,395 (0,251) 1,352 (0,259) 2,300 (0,145) 1,232 (0,280) 0,821 (0,376) 0,012 (0,913) 
Georgia 5,405b(0,031) 6,591b(0,018) 6,190b(0,022) 6,181b(0,022) 5,788b(0,026) 5,096b(0,035) 
Hawaii 0,899 (0,354) 0,506 (0,485) 0,417 (0,526) 0,277 (0,605) 0,273 (0,607) 1,310 (0,266) 
Idaho 1,031 (0,322) 1,044 (0,319) 0,259 (0,616) 0,323 (0,576) 0,521 (0,479) 0,202 (0,658) 
Illinois 3,384c(0,081) 2,702 (0,116) 1,716 (0,205) 0,957 (0,340) 0,840 (0,370) 0,570 (0,459) 
Indiana 0,679 (0,420) 0,533 (0,474) 1,126 (0,301) 1,350 (0,259) 1,581 (0,223) 0,796 (0,383) 
Iowa 0,001 (0,975) 0,021 (0,886) 0,082 (0,778) 0,067 (0,798) 0,064 (0,803) 0,043 (0,837) 
Kansas 0,100 (0,756) 0,047 (0,831) 0,055 (0,818) 0,092 (0,765) 0,054 (0,819) 0,100 (0,755) 
Kentucky 2,208 (0,153) 2,241 (0,150) 4,090c(0,057) 5,100b(0,035) 6,003b(0,024) 5,748b(0,026) 
Louisiana 2,895 (0,104) 2,103 (0,162) 0,354 (0,559) 0,393 (0,538) 1,270 (0,273) 1,334 (0,262) 
Maine 0,000 (0,997) 0,000 (0,996) 0,139 (0,713) 0,076 (0,785) 0,152 (0,701) 0,134 (0,718) 
Maryland 0,799 (0,382) 1,652 (0,213) 2,268 (0,148) 2,415 (0,136) 2,693 (0,116) 2,595 (0,123) 
Massachusetts 0,453 (0,508) 0,724 (0,405) 0,948 (0,342) 0,992 (0,331) 1,032 (0,322) 0,893 (0,356) 
Michigan 3,049c(0,096) 3,161c(0,091) 2,472 (0,132) 2,171 (0,156) 1,830 (0,191) 1,639 (0,215) 
Minnesota 1,718 (0,205) 1,581 (0,223) 1,989 (0,174) 1,763 (0,199) 1,473 (0,239) 1,162 (0,294) 
Mississippi 0,003 (0,955) 0,002 (0,967) 0,217 (0,647) 0,380 (0,544) 0,503 (0,487) 0,815 (0,377) 
Missouri 2,163 (0,157) 1,432 (0,246) 1,401 (0,250) 1,331 (0,262) 0,976 (0,335) 0,622 (0,440) 
Montana 0,288 (0,598) 0,092 (0,765) 0,630 (0,437) 0,335 (0,569) 0,507 (0,485) 0,640 (0,433) 
Nebraska 0,108 (0,745) 0,167 (0,687) 0,161 (0,692) 0,105 (0,749) 0,088 (0,769) 0,062 (0,806) 
Nevada 0,038 (0,847) 0,006 (0,941) 0,015 (0,904) 0,106 (0,749) 0,138 (0,715) 0,351 (0,560) 
New Hamp. 1,736 (0,202) 1,504 (0,234) 1,480 (0,238) 1,380 (0,254) 0,862 (0,364) 0,568 (0,460) 
New Jersey 0,001 (0,982) 0,022 (0,883) 0,019 (0,891) 0,010 (0,921) 0,075 (0,787) 0,036 (0,851) 
New Mexico 0,504 (0,486) 0,811 (0,379) 1,378 (0,254) 1,382 (0,253) 1,127 (0,301) 1,158 (0,295) 
New York 0,000 (0,995) 0,003 (0,958) 0,048 (0,829) 0,013 (0,911) 0,068 (0,797) 0,067 (0,799) 
N. Carolina 6,261b(0,021) 7,565b(0,012) 7,099b(0,015) 6,552b(0,019) 4,515b(0,046) 3,899c(0,062) 
N. Dakota 0,089 (0,769) 0,002 (0,967) 0,000 (0,984) 0,000 (0,995) 0,007 (0,933) 0,011 (0,917) 
Ohio 0,713 (0,409) 1,102 (0,306) 1,043 (0,319) 0,914 (0,350) 1,274 (0,272) 0,866 (0,363) 
Oklahoma 0,490 (0,492) 0,516 (0,481) 0,491 (0,492) 0,268 (0,610) 0,077 (0,784) 0,151 (0,702) 
Oregon 0,165 (0,689) 0,490 (0,492) 1,532 (0,230) 1,191 (0,288) 1,759 (0,200) 2,991c(0,099) 
Pennsylvania 0,086 (0,773) 0,026 (0,873) 0,001 (0,979) 0,001 (0,971) 0,063 (0,805) 0,086 (0,772) 
Rhode Island 0,236 (0,632) 0,199 (0,661) 0,359 (0,556) 0,119 (0,733) 0,018 (0,896) 0,030 (0,863) 
S. Carolina 6,962b(0,016) 6,989b(0,016) 6,984b(0,016) 6,205b(0,022) 5,734b(0,027) 4,331b(0,050) 
S. Dakota 2,343 (0,142) 2,105 (0,162) 1,817 (0,193) 1,745 (0,201) 1,630 (0,216) 1,442 (0,244) 
Tennessee 4,568b(0,045) 4,739b(0,042) 3,777c(0,067) 3,424c(0,079) 4,104c(0,056) 3,711c(0,068) 
Texas 3,259c(0,086) 3,656c(0,070) 2,619 (0,121) 2,340 (0,142) 2,041 (0,169) 1,445 (0,243) 
Utah 0,647 (0,431) 0,727 (0,404) 0,398 (0,535) 0,041 (0,841) 0,064 (0,804) 0,132 (0,721) 
Vermont 0,037 (0,849) 0,111 (0,743) 0,110 (0,743) 0,000 (0,991) 0,004 (0,953) 0,056 (0,816) 
Virginia 1,003 (0,328) 1,351 (0,259) 2,033 (0,169) 2,079 (0,165) 1,136 (0,299) 0,961 (0,339) 
Washington 0,010 (0,922) 0,059 (0,811) 0,303 (0,588) 0,603 (0,447) 0,177 (0,679) 0,156 (0,697) 
West Virginia 0,265 (0,612) 0,471 (0,500) 0,531 (0,475) 0,447 (0,512) 0,894 (0,356) 0,710 (0,409) 
Wisconsin 6,547b(0,019) 7,472b(0,013) 6,835b(0,017) 4,424b(0,048) 4,827b(0,040) 4,255c(0,052) 
Wyoming 0,133 (0,719) 1,116 (0,303) 1,193 (0,288) 0,732 (0,402) 0,841 (0,370) 0,852 (0,367) 
Null hypothesis: No causality
StatelnCO2 → DR1lnCO2 → DR2lnCO2 → DR3lnCO2 → DR4lnCO2 → DR5lnCO2 → DR6
Alabama 3,993c(0,059) 4,838b(0,040) 4,090c(0,057) 4,440b(0,048) 4,527b(0,046) 5,204b(0,034) 
Alaska 7,828b(0,011) 7,607b(0,012) 6,634b(0,018) 5,943b(0,024) 5,094b(0,035) 6,345b(0,020) 
Arizona 0,031 (0,862) 0,005 (0,944) 0,102 (0,753) 0,078 (0,783) 0,027 (0,871) 0,024 (0,878) 
Arkansas 0,004 (0,950) 0,043 (0,839) 0,214 (0,649) 0,352 (0,559) 1,644 (0,214) 2,182 (0,155) 
California 0,288 (0,598) 0,142 (0,710) 0,031 (0,861) 0,001 (0,972) 0,001 (0,972) 0,011 (0,916) 
Colorado 3,765c(0,067) 4,042c(0,058) 4,297c(0,051) 2,975c(0,100) 2,378 (0,139) 1,928 (0,180) 
Connecticut 0,777 (0,389) 0,738 (0,400) 0,830 (0,373) 0,391 (0,539) 0,790 (0,385) 1,696 (0,208) 
Delaware 1,068 (0,314) 1,241 (0,278) 1,270 (0,273) 1,446 (0,243) 0,965 (0,338) 0,427 (0,521) 
Dist. of Col. 0,059 (0,810) 0,039 (0,846) 0,108 (0,745) 0,277 (0,604) 0,103 (0,752) 0,015 (0,904) 
Florida 1,989 (0,174) 2,297 (0,145) 2,236 (0,150) 1,991 (0,174) 1,851 (0,189) 1,731 (0,203) 
Georgia 1,726 (0,204) 2,658 (0,119) 2,873 (0,106) 3,436c(0,079) 4,490b(0,047) 4,997b(0,037) 
Hawaii 0,014 (0,908) 0,396 (0,536) 0,674 (0,421) 0,533 (0,474) 0,509 (0,484) 0,499 (0,488) 
Idaho 0,380 (0,545) 0,074 (0,789) 0,235 (0,633) 0,223 (0,642) 0,078 (0,782) 0,809 (0,379) 
Illinois 2,940 (0,102) 3,321c(0,083) 2,481 (0,131) 3,402c(0,080) 3,679c(0,069) 3,606c(0,072) 
Indiana 2,103 (0,162) 2,215 (0,152) 1,771 (0,198) 1,156 (0,295) 1,212 (0,284) 0,855 (0,366) 
Iowa 0,926 (0,347) 1,006 (0,328) 1,152 (0,296) 0,675 (0,421) 0,462 (0,505) 0,013 (0,911) 
Kansas 0,187 (0,670) 0,172 (0,683) 0,195 (0,664) 0,113 (0,740) 0,019 (0,891) 0,019 (0,892) 
Kentucky 5,922b(0,024) 6,003b(0,024) 6,074b(0,023) 3,310c(0,084) 4,022c(0,059) 2,431 (0,135) 
Louisiana 1,521 (0,232) 1,609 (0,219) 0,657 (0,427) 0,980 (0,334) 2,274 (0,147) 2,409 (0,136) 
Maine 0,216 (0,647) 0,048 (0,829) 0,050 (0,825) 0,005 (0,946) 0,011 (0,918) 0,037 (0,850) 
Maryland 0,204 (0,657) 0,344 (0,564) 0,496 (0,489) 0,695 (0,414) 0,609 (0,444) 0,476 (0,498) 
Massachusetts 0,017 (0,897) 0,033 (0,858) 0,011 (0,918) 0,016 (0,900) 0,041 (0,842) 0,237 (0,632) 
Michigan 2,631 (0,120) 2,833 (0,108) 1,919 (0,181) 2,090 (0,164) 2,682 (0,117) 2,924 (0,103) 
Minnesota 0,029 (0,867) 0,022 (0,885) 0,022 (0,883) 0,134 (0,719) 0,266 (0,612) 1,310 (0,266) 
Mississippi 0,746 (0,398) 0,745 (0,398) 0,717 (0,407) 0,587 (0,452) 0,049 (0,827) 0,058 (0,812) 
Missouri 0,872 (0,361) 0,926 (0,347) 1,351 (0,259) 1,729 (0,203) 1,944 (0,178) 2,235 (0,150) 
Montana 0,345 (0,563) 0,595 (0,450) 0,619 (0,441) 0,543 (0,470) 0,536 (0,473) 0,976 (0,335) 
Nebraska 0,904 (0,353) 0,934 (0,345) 0,775 (0,389) 0,925 (0,348) 0,182 (0,674) 0,040 (0,843) 
Nevada 0,089 (0,769) 0,000 (0,997) 0,008 (0,929) 0,093 (0,764) 0,003 (0,953) 0,017 (0,896) 
New Hamp. 0,602 (0,447) 0,703 (0,412) 0,627 (0,438) 0,719 (0,407) 1,218 (0,283) 1,859 (0,188) 
New Jersey 0,079 (0,782) 0,026 (0,874) 0,005 (0,947) 0,034 (0,856) 0,000 (0,994) 0,038 (0,848) 
New Mexico 0,278 (0,604) 0,284 (0,600) 0,150 (0,702) 0,097 (0,759) 0,103 (0,752) 0,078 (0,784) 
New York 0,012 (0,913) 0,001 (0,970) 0,008 (0,929) 0,139 (0,713) 0,077 (0,785) 0,008 (0,929) 
N. Carolina 2,906 (0,104) 3,749c(0,067) 3,907c(0,062) 4,288c(0,052) 5,163b(0,034) 4,874b(0,039) 
N. Dakota 0,460 (0,505) 0,481 (0,496) 0,660 (0,426) 0,794 (0,384) 0,460 (0,506) 0,000 (0,983) 
Ohio 0,692 (0,415) 0,556 (0,465) 0,707 (0,410) 0,661 (0,426) 0,841 (0,370) 0,741 (0,400) 
Oklahoma 2,445 (0,134) 2,652 (0,119) 2,447 (0,133) 1,289 (0,270) 0,476 (0,498) 0,749 (0,397) 
Oregon 0,416 (0,526) 0,870 (0,362) 0,324 (0,575) 0,335 (0,569) 1,050 (0,318) 0,295 (0,593) 
Pennsylvania 0,029 (0,867) 0,013 (0,911) 0,010 (0,923) 0,013 (0,909) 0,002 (0,966) 0,096 (0,760) 
Rhode Island 0,176 (0,679) 0,198 (0,661) 0,131 (0,722) 0,000 (0,986) 0,043 (0,838) 0,322 (0,577) 
S. Carolina 3,466c(0,077) 4,274c(0,052) 4,235c(0,053) 4,762b(0,041) 6,042b(0,023) 5,517b(0,029) 
S. Dakota 2,420 (0,135) 2,865 (0,106) 3,103c(0,093) 2,372 (0,139) 2,308 (0,144) 2,158 (0,157) 
Tennessee 4,092c(0,057) 4,534b(0,046) 5,699b(0,027) 5,694b(0,027) 7,065b(0,015) 7,226b(0,014) 
Texas 1,170 (0,292) 1,327 (0,263) 2,078 (0,165) 2,552 (0,126) 3,333c(0,083) 3,545c(0,074) 
Utah 0,489 (0,493) 0,177 (0,678) 0,081 (0,779) 0,325 (0,575) 0,296 (0,592) 0,415 (0,527) 
Vermont 0,082 (0,777) 0,033 (0,857) 0,015 (0,902) 0,005 (0,947) 0,177 (0,678) 0,027 (0,872) 
Virginia 0,112 (0,742) 0,322 (0,577) 0,271 (0,608) 0,385 (0,542) 0,351 (0,560) 0,592 (0,451) 
Washington 0,188 (0,669) 0,354 (0,558) 0,244 (0,627) 0,112 (0,741) 0,044 (0,836) 0,001 (0,971) 
West Virginia 0,292 (0,595) 0,407 (0,531) 0,777 (0,389) 1,147 (0,297) 0,808 (0,379) 0,585 (0,453) 
Wisconsin 0,334 (0,570) 0,404 (0,532) 0,218 (0,645) 1,240 (0,279) 1,281 (0,271) 3,841c(0,064) 
Wyoming 1,531 (0,230) 2,330 (0,143) 2,552 (0,126) 1,086 (0,310) 0,228 (0,638) 0,214 (0,649) 
lnCO2 → DR7lnCO2 → DR8lnCO2 → DR9lnCO2 → DR10lnCO2 → DR11lnCO2 → DR12
Alabama 4,879b(0,039) 5,125b(0,035) 4,301c(0,051) 4,127c(0,056) 3,842c(0,064) 2,816 (0,109) 
Alaska 8,972a(0,007) 5,022b(0,037) 6,078b(0,023) 6,047b(0,023) 7,085b(0,015) 6,970b(0,016) 
Arizona 0,139 (0,714) 0,379 (0,545) 0,191 (0,666) 0,386 (0,541) 0,478 (0,497) 0,276 (0,605) 
Arkansas 2,146 (0,158) 2,883 (0,105) 3,756c(0,067) 4,518b(0,046) 5,968b(0,024) 5,010b(0,037) 
California 0,016 (0,901) 0,020 (0,888) 0,019 (0,892) 0,007 (0,936) 0,017 (0,897) 0,137 (0,715) 
Colorado 1,207 (0,285) 0,985 (0,333) 1,335 (0,262) 0,906 (0,353) 0,892 (0,356) 0,764 (0,393) 
Connecticut 1,267 (0,274) 0,747 (0,398) 0,256 (0,618) 0,437 (0,516) 0,172 (0,683) 0,050 (0,826) 
Delaware 0,535 (0,473) 0,900 (0,354) 1,037 (0,321) 0,738 (0,401) 0,766 (0,392) 0,392 (0,538) 
Dist. of Col. 0,056 (0,816) 0,510 (0,483) 0,561 (0,463) 0,489 (0,493) 0,730 (0,403) 0,736 (0,401) 
Florida 1,395 (0,251) 1,352 (0,259) 2,300 (0,145) 1,232 (0,280) 0,821 (0,376) 0,012 (0,913) 
Georgia 5,405b(0,031) 6,591b(0,018) 6,190b(0,022) 6,181b(0,022) 5,788b(0,026) 5,096b(0,035) 
Hawaii 0,899 (0,354) 0,506 (0,485) 0,417 (0,526) 0,277 (0,605) 0,273 (0,607) 1,310 (0,266) 
Idaho 1,031 (0,322) 1,044 (0,319) 0,259 (0,616) 0,323 (0,576) 0,521 (0,479) 0,202 (0,658) 
Illinois 3,384c(0,081) 2,702 (0,116) 1,716 (0,205) 0,957 (0,340) 0,840 (0,370) 0,570 (0,459) 
Indiana 0,679 (0,420) 0,533 (0,474) 1,126 (0,301) 1,350 (0,259) 1,581 (0,223) 0,796 (0,383) 
Iowa 0,001 (0,975) 0,021 (0,886) 0,082 (0,778) 0,067 (0,798) 0,064 (0,803) 0,043 (0,837) 
Kansas 0,100 (0,756) 0,047 (0,831) 0,055 (0,818) 0,092 (0,765) 0,054 (0,819) 0,100 (0,755) 
Kentucky 2,208 (0,153) 2,241 (0,150) 4,090c(0,057) 5,100b(0,035) 6,003b(0,024) 5,748b(0,026) 
Louisiana 2,895 (0,104) 2,103 (0,162) 0,354 (0,559) 0,393 (0,538) 1,270 (0,273) 1,334 (0,262) 
Maine 0,000 (0,997) 0,000 (0,996) 0,139 (0,713) 0,076 (0,785) 0,152 (0,701) 0,134 (0,718) 
Maryland 0,799 (0,382) 1,652 (0,213) 2,268 (0,148) 2,415 (0,136) 2,693 (0,116) 2,595 (0,123) 
Massachusetts 0,453 (0,508) 0,724 (0,405) 0,948 (0,342) 0,992 (0,331) 1,032 (0,322) 0,893 (0,356) 
Michigan 3,049c(0,096) 3,161c(0,091) 2,472 (0,132) 2,171 (0,156) 1,830 (0,191) 1,639 (0,215) 
Minnesota 1,718 (0,205) 1,581 (0,223) 1,989 (0,174) 1,763 (0,199) 1,473 (0,239) 1,162 (0,294) 
Mississippi 0,003 (0,955) 0,002 (0,967) 0,217 (0,647) 0,380 (0,544) 0,503 (0,487) 0,815 (0,377) 
Missouri 2,163 (0,157) 1,432 (0,246) 1,401 (0,250) 1,331 (0,262) 0,976 (0,335) 0,622 (0,440) 
Montana 0,288 (0,598) 0,092 (0,765) 0,630 (0,437) 0,335 (0,569) 0,507 (0,485) 0,640 (0,433) 
Nebraska 0,108 (0,745) 0,167 (0,687) 0,161 (0,692) 0,105 (0,749) 0,088 (0,769) 0,062 (0,806) 
Nevada 0,038 (0,847) 0,006 (0,941) 0,015 (0,904) 0,106 (0,749) 0,138 (0,715) 0,351 (0,560) 
New Hamp. 1,736 (0,202) 1,504 (0,234) 1,480 (0,238) 1,380 (0,254) 0,862 (0,364) 0,568 (0,460) 
New Jersey 0,001 (0,982) 0,022 (0,883) 0,019 (0,891) 0,010 (0,921) 0,075 (0,787) 0,036 (0,851) 
New Mexico 0,504 (0,486) 0,811 (0,379) 1,378 (0,254) 1,382 (0,253) 1,127 (0,301) 1,158 (0,295) 
New York 0,000 (0,995) 0,003 (0,958) 0,048 (0,829) 0,013 (0,911) 0,068 (0,797) 0,067 (0,799) 
N. Carolina 6,261b(0,021) 7,565b(0,012) 7,099b(0,015) 6,552b(0,019) 4,515b(0,046) 3,899c(0,062) 
N. Dakota 0,089 (0,769) 0,002 (0,967) 0,000 (0,984) 0,000 (0,995) 0,007 (0,933) 0,011 (0,917) 
Ohio 0,713 (0,409) 1,102 (0,306) 1,043 (0,319) 0,914 (0,350) 1,274 (0,272) 0,866 (0,363) 
Oklahoma 0,490 (0,492) 0,516 (0,481) 0,491 (0,492) 0,268 (0,610) 0,077 (0,784) 0,151 (0,702) 
Oregon 0,165 (0,689) 0,490 (0,492) 1,532 (0,230) 1,191 (0,288) 1,759 (0,200) 2,991c(0,099) 
Pennsylvania 0,086 (0,773) 0,026 (0,873) 0,001 (0,979) 0,001 (0,971) 0,063 (0,805) 0,086 (0,772) 
Rhode Island 0,236 (0,632) 0,199 (0,661) 0,359 (0,556) 0,119 (0,733) 0,018 (0,896) 0,030 (0,863) 
S. Carolina 6,962b(0,016) 6,989b(0,016) 6,984b(0,016) 6,205b(0,022) 5,734b(0,027) 4,331b(0,050) 
S. Dakota 2,343 (0,142) 2,105 (0,162) 1,817 (0,193) 1,745 (0,201) 1,630 (0,216) 1,442 (0,244) 
Tennessee 4,568b(0,045) 4,739b(0,042) 3,777c(0,067) 3,424c(0,079) 4,104c(0,056) 3,711c(0,068) 
Texas 3,259c(0,086) 3,656c(0,070) 2,619 (0,121) 2,340 (0,142) 2,041 (0,169) 1,445 (0,243) 
Utah 0,647 (0,431) 0,727 (0,404) 0,398 (0,535) 0,041 (0,841) 0,064 (0,804) 0,132 (0,721) 
Vermont 0,037 (0,849) 0,111 (0,743) 0,110 (0,743) 0,000 (0,991) 0,004 (0,953) 0,056 (0,816) 
Virginia 1,003 (0,328) 1,351 (0,259) 2,033 (0,169) 2,079 (0,165) 1,136 (0,299) 0,961 (0,339) 
Washington 0,010 (0,922) 0,059 (0,811) 0,303 (0,588) 0,603 (0,447) 0,177 (0,679) 0,156 (0,697) 
West Virginia 0,265 (0,612) 0,471 (0,500) 0,531 (0,475) 0,447 (0,512) 0,894 (0,356) 0,710 (0,409) 
Wisconsin 6,547b(0,019) 7,472b(0,013) 6,835b(0,017) 4,424b(0,048) 4,827b(0,040) 4,255c(0,052) 
Wyoming 0,133 (0,719) 1,116 (0,303) 1,193 (0,288) 0,732 (0,402) 0,841 (0,370) 0,852 (0,367) 

aIndicates 1% statistical significance.bIndicates 5% statistical significance.cIndicates 10% statistical significance.

If Dumitrescu-Hurlin panel causality results are examined by states, it is seen that there is causality from CO2 emissions to the SPEI January drought index in 6 states, from CO2 emissions to SPEI February and March drought indexes in 8 different states, from CO2 emissions to SPEI April, May, June, August, September, October, November, and December drought indexes in 9 different states, and from CO2 emissions to SPEI July drought index in 10 states. To be stated for all months, there are causalities from CO2 emissions to SPEI drought indexes in Alabama, Alaska, Arkansas, Colorado, Georgia, Illinois, Kentucky, Michigan, Oregon, South and North Carolina, South Dakota, Tennessee, Texas, and Wisconsin.

It is seen that the results obtained from the AMG and PMG analyses and the causality analyses are generally consistent with each other. In the AMG and PMG analyses, it was determined that CO2 emissions, as a driver of climate change, contribute to the occurrence and severity of droughts by altering regional climate patterns. As a result of causality analyses, it was found that there are mutual causality relationships between CO2 emissions and drought.

Impulse-response analysis is used to analyze the effect of a random shock occurring in one variable on other variables. At this stage of the study, an impulse-response analysis was applied to analyze the effect of unexpected increases in CO2 emissions on droughts and the results are presented graphically in Figure 3.
Figure 3

Results of impulse-response analysis between CO2 emissions and droughts.

Figure 3

Results of impulse-response analysis between CO2 emissions and droughts.

Close modal

According to the results obtained from the impulse-response analysis, DR1, DR2, DR11, and DR12 respond negatively until the 5th period in the face of an unexpected increase in CO2 emissions and follow a slightly fluctuating course after the 5th period. DR3, DR4, DR5, DR6, DR7, DR8, DR9, and DR10 react negatively to an unexpected increase in CO2 emissions until the 3rd period and follow a fluctuating course after the 3rd period. The results obtained from the impulse-response analysis showed that CO2 emissions decreased the SPEI drought indices, that is, increased drought, in line with our expectations.

The drought problem, which is increasingly on the agenda due to climate change, is being examined by many researchers as it is a vital issue. The drought problem is one of the most important problems of humanity. If its further progress cannot be prevented, it will cause people to face hunger, thirst, and various health problems after a while. Therefore, the causes and consequences of drought should be investigated, and various studies should be carried out to prevent it. In this study, firstly, a literature review was conducted and studies on the relationship between CO2 emissions, climate change, and drought were analyzed. It was observed that there are a limited number of studies examining the relationship between drought and CO2. Then the mutual relations between CO2 emissions and droughts were discussed by using the 1997–2020 SPEI drought index and CO2 emissions data of 51 states of the US.

In the study, cross-section dependence, slope homogeneity, Westerlund cointegration, AMG and PMG analyses, Dumitrescu-Hurlin panel and state-based causality analyses, and impulse-response analysis were conducted as empirical applications. According to the findings obtained from analyses, it was determined that there are mutual interactions between CO2 emissions and the SPEI drought index.

The results of the AMG analyses show that CO2 emissions were found to be effective on the SPEI drought index in 17 of 51 states, and the states where CO2 emissions had the longest effect on the SPEI drought index were Pennsylvania and Tennessee. When the coefficients are examined, it is understood that from these two states, CO2 emissions increase wetting in Pennsylvania and increase drought in Tennessee. This situation is an expected result for Tennessee, which experienced the worst drought in history from 2007 to early 2009 (Goodrich et al. 2011). It is determined that CO2 emissions led to drought in Alabama, Arkansas, Georgia, Louisiana, North and South Carolina, Oregon, and Tennessee in various months, especially in the last 6 months of the year. According to the results obtained from PMG analyses, it was determined that for the whole panel, CO2 emissions generally increase wetting in the short run, while CO2 emissions increase drought in the long run. According to the results of causality analysis, it was determined that CO2 emissions cause drought. And according to the results obtained from the impulse-response analysis, CO2 emissions decrease the SPEI drought indices, that is, increase drought. When the results obtained from all these analyses are evaluated together, it is concluded that our hypothesis that CO2 emissions, by driving climate change, can increase the frequency and intensity of droughts through their impact on regional precipitation and temperature patterns is valid for the states of the US. In order to prevent drought, which is an important problem for humanity, it is necessary to reduce CO2 emissions. Therefore, it would be appropriate to take measures to reduce CO2 emissions in the US.

Previous studies have extensively documented the impact of climate change, driven largely by greenhouse gas emissions, on precipitation variability and drought patterns. CO2 emissions are recognized for exacerbating global warming, which leads to changes in regional hydrological cycles, impacting both drought and wet periods. In this study, considering that CO2 emissions have an increasing effect on air temperatures in the US, it has been determined that dry periods may occur in some regions due to a decrease in precipitation regimes, and that periods with high amounts of precipitation may occur in some regions. It has been determined that especially in the northeastern states of the US, the rainfall expectation is high, and the number of wet periods is quite high, whereas in the states located in the southeastern region, the number of dry periods with low rainfall values is expected to be quite high. The findings obtained coincide with the findings of previous studies in the literature.

In order to prevent drought, which is an important problem for humanity, it is necessary to reduce CO2 emissions. Therefore, it would be appropriate to take measures to reduce CO2 emissions in the US. Natural disasters due to climate change occur in the US, which is the most polluting country in the world, along with China, due to industrial production. In addition, due to the damage caused by global warming to natural life, the natural order is disrupted, and new types of deadly diseases appear. Therefore, the effects of climate change will impact not only future generations but also people living today. The US did not participate in the Kyoto Protocol, which is one of the steps taken to limit global warming and greenhouse gas emissions, with the thought that the welfare level in the country would decrease. This study investigates how CO2 emissions, as a major driver of global warming, contribute to altered precipitation regimes and increased drought risk in specific regions of the US, thus analyzing the indirect effects of emissions on hydrological cycles. As a consequence, it would be appropriate for the US to take the necessary measures against climate change and to take measures to limit CO2 emissions so that the welfare level of the country does not decrease.

This study aims to explore the relationship between CO2 emissions and drought occurrence in the US, focusing on how CO2-driven climate change may contribute to drought conditions over time. For this purpose, various statistical analyses were applied both for the entire US (on a panel basis) and for the states of the US. As a result of the analyses, the relationships between CO2 emissions and drought were determined on a state and panel basis. It is thought that this study will make significant contributions to the literature, as both panel-based and state-level relationships are presented and the relationships between SPEI drought indices and CO2 emissions are analyzed statistically. Similar studies can be done for other countries. Different analyses can be made using different drought indices. Analyses can be differentiated by using different analysis methods or different variables.

The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

The entire work was prepared by a single author.

During the preparation of this study, the author did not use any service tools.

The final version of the manuscript was reviewed and approved by the author.

All relevant data are available from an online repository or repositories: For the SPEI data: https://spei.csic.es/map/maps.html For the CO2 data: https://www.eia.gov/environment/emissions/state/.

The authors declare there is no conflict.

Abbasi
A.
,
Khalili
K.
,
Behmanesh
J.
&
Shirzad
A.
(
2019
)
Drought monitoring and prediction using SPEI index and gene expression programming model in the west of Urmia Lake
,
Theoretical and Applied Climatology
,
138
,
553
567
.
https://doi.org/10.1007/s00704-019-02825-9
.
Abramowitz
M.
&
Stegun
I. A.
(
1965
)
Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables
.
New York
:
Dover Publications
.
Ayana
E. K.
,
Ceccato
P.
,
Fisher
J. R.
&
DeFries
R.
(
2016
)
Examining the relationship between environmental factors and conflict in pastoralist areas of East Africa
,
Science of the Total Environment
,
557
,
601
611
.
Aydin
M.
(
2019
)
Renewable and non-renewable electricity consumption–economic growth nexus: Evidence from OECD countries
,
Renewable Energy
,
136
,
599
606
.
https://doi.org/10.1016/j.renene.2019.01.008
.
Baltagi
B. H.
,
Feng
Q.
&
Kao
C.
(
2012
)
A Lagrange multiplier test for cross-sectional dependence in a fixed effects panel data model
,
Journal of Econometrics
,
170
,
164
177
.
https://doi.org/10.1016/j.jeconom.2012.04.004
.
Bates
B.
,
Kundzewicz
Z.
&
Wu
S.
(
2008
)
Climate Change and Water
.
Geneva
:
Intergovernmental Panel on Climate Change Secretariat
.
Breusch
T. S.
&
Pagan
A. R.
(
1980
)
The Lagrange multiplier test and its applications to model specifications in econometrics
,
Review of Economic Studies
,
47
,
239
253
.
https://doi.org/10.2307/2297111
.
Cook
B. I.
,
Mankin
J. S.
,
Marvel
K.
,
Williams
A. P.
,
Smerdon
J. E.
&
Anchukaitis
K. J.
(
2020
)
Twenty-first century drought projections in the CMIP6 forcing scenarios
,
Earth's Future
,
8
(
6
),
e2019EF001461
.
1–20
.
Crippa
M.
,
Guizzardi
D.
,
Banja
M.
,
Solazzo
E.
,
Muntean
M.
,
Schaaf
E.
,
Pagani
F.
,
Monforti-Ferrario
F.
,
Olivier
J.
,
Quadrelli
R.
,
Risquez Martin
A.
,
Taghavi-Moharamli
P.
,
Grassi
G.
,
Rossi
S.
,
Jacome Felix Oom
D.
,
Branco
A.
,
San-Miguel-Ayanz
J.
&
Vignati
E.
(
2022
)
CO2 emissions of all world countries – 2022 Report. EUR 31182 EN, Publications Office of the European Union, Luxembourg, 2022. JRC130363. Available at: https://edgar.jrc.ec.europa.eu/report_2022.
Danandeh Mehr
A.
&
Vaheddoost
B.
(
2020
)
Identification of the trends associated with the SPI and SPEI indices across Ankara, Turkey
,
Theoretical and Applied Climatology
,
139
,
1531
1542
.
https://doi.org/10.1007/s00704-019-03071-9
.
Davis
S. J.
,
Caldeira
K.
&
Matthews
H. D.
(
2010
)
Future CO2 emissions and climate change from existing energy infrastructure
,
Science
,
329
,
1330
1333
.
https://doi.org/10.1126/science.1188566
.
De Hoyos
R. E.
&
Sarafidis
V.
(
2006
)
Testing for cross-sectional dependence in panel-data models
,
The Stata Journal
,
6
,
482
496
.
https://doi.org/10.1177/1536867X0600600403
.
Demuth
S.
&
Stahl
K.
(
2001
)
ARIDE: Assessment of the Regional Impact of Droughts
.
Final Report (No. C056.026)
.
Freiburg, Germany
:
Institute of Hydrology, University of Freiburg
.
Dumitrescu
E. I.
&
Hurlin
C.
(
2012
)
Testing for Granger non-causality in heterogeneous panels
,
Economic Modelling
,
29
,
1450
1460
.
https://doi.org/10.1016/j.econmod.2012.02.014
.
Eberhardt
M.
&
Bond
S.
(
2009
)
Cross-section dependence in nonstationary panel models: A novel estimator [MPRA Paper]. Available at: https://mpra.ub.uni-muenchen.de/17692/.
Eberhardt
M.
&
Teal
F.
(
2010
)
Productivity Analysis in Global Manufacturing Production
.
Discussion Paper 515
.
Oxford, U
K:
Department of Economics, University of Oxford
.
Ecological and Environmental Informatics Research, Northern Arizona University
.
Available at: https://ecoinfo.nau.edu/index.php/news/2237/ (Accessed 18 November 2023)
.
Ekolu
J.
,
Dieppois
B.
,
Sidibe
M.
,
Eden
J. M.
,
Tramblay
Y.
,
Villarini
G.
,
Pena-Angulo
D.
,
Mahe
G.
,
Paturel
J. E.
,
Onyutha
C.
&
Van De Wiel
M.
(
2022
)
Long-term variability in hydrological droughts and floods in sub-Saharan Africa: New perspectives from a 65-year daily streamflow dataset
,
Journal of Hydrology
,
613
,
128359
.
Emirmahmutoglu
F.
&
Kose
N.
(
2011
)
Testing for Granger causality in heterogeneous mixed panels
,
Economic Modelling
,
28
,
870
876
.
https://doi.org/10.1016/j.econmod.2010.10.018
.
Gebrechorkos
S. H.
,
Pan
M.
,
Lin
P.
,
Anghileri
D.
,
Forsythe
N.
,
Pritchard
D. M.
,
Fowler
H. J.
,
Obuobie
E.
,
Darko
D.
&
Sheffield
J.
(
2022
)
Variability and changes in hydrological drought in the Volta Basin, West Africa
,
Journal of Hydrology: Regional Studies
,
42
,
101143
.
Gregory
J. M.
,
Mitchell
J. F. B.
&
Brady
A. J.
(
1997
)
Summer drought in northern midlatitudes in a time-dependent CO2 climate experiment
,
Journal of Climate
,
10
(
4
),
662
686
.
Goodrich
G. B.
,
Thompson
J. K.
,
Wingard
S. D.
&
Batson
K. J.
(
2011
)
The 2007 mid-south summer drought and heat wave in historical perspective
,
Southeastern Geographer
,
51
,
411
421
.
Hao
Y.
,
Chen
H.
,
Wei
Y. M.
&
Li
Y. M.
(
2016
)
The influence of climate change on CO2 (carbon dioxide) emissions: An empirical estimation based on Chinese provincial panel data
,
Journal of Cleaner Production
,
131
,
667
677
.
https://doi.org/10.1016/j.jclepro.2016.04.117
.
Haile
G. G.
,
Tang
Q.
,
Sun
S.
,
Huang
Z.
,
Zhang
X.
&
Liu
X.
(
2019
)
Droughts in East Africa: Causes, impacts and resilience
,
Earth-Science Reviews
,
193
,
146
161
.
Hardin
E.
,
AghaKouchak
A.
,
Qomi
M. J. A.
,
Madani
K.
,
Tarroja
B.
,
Zhou
Y.
,
Yang
T.
&
Samuelsen
S.
(
2017
)
California drought increases CO2 footprint of energy
,
Sustainable Cities and Society
,
28
,
450
452
.
https://doi.org/10.1016/j.scs.2016.09.004
.
Hillbruner
C.
&
Moloney
G.
(
2012
)
When early warning is not enough – Lessons learned from the 2011 Somalia Famine
,
Global Food Security
,
1
(
1
),
20
28
.
Houghton
J. T.
,
Ding
Y.
,
Griggs
D. J.
,
Noguer
M.
,
Linden
P. J.
,
van der Dai
X.
,
Maskell
K.
&
Johnson
C. A.
(
2001
)
Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change
.
Cambridge, UK
:
Cambridge University Press
.
Kienzler
K. M.
,
Lamers
J. P. A.
,
McDonald
A.
,
Mirzabaev
A.
,
Ibragimov
N.
,
Egamberdiev
O.
,
Ruzibayev
E.
&
Akramkhanov
A.
(
2012
)
Conservation agriculture in Central Asia – What do we know and where do we go from here?
Field Crops Research
,
132
,
95
105
.
Killian
L.
(
1998
)
Small sample confidence intervals for impulse response functions
,
Review of Economics and Statistics
,
80
,
218
230
.
https://doi.org/10.1162/003465398557465
.
King
A. D.
,
Pitman
A. J.
,
Henley
B. J.
,
Ukkola
A. M.
&
Brown
J. R.
(
2020
)
The role of climate variability in Australian drought
,
Nature Climate Change
,
10
(
3
),
177
179
.
Li
Z.
&
Yao
J.
(
2021
)
Extension of the Lagrange multiplier test for error cross-section independence to large panels with non normal errors. arXiv: 2103.06075. Available at: http://arxiv.org/abs/2103.06075.
Lopez
L.
&
Weber
S.
(
2017
)
Testing for Granger causality in panel data
,
The Stata Journal
,
17
,
972
984
.
https://doi.org/10.1177/1536867X1801700412
.
Lütkepohl
H.
(
1990
)
Asymptotic distributions of impulse response functions and forecast error variance decompositions of vector autoregressive models
,
The Review of Economics and Statistics
,
72
(
1
),
116
125
.
https:// doi.org/10.2307/2109746
.
Masih
I.
,
Maskey
S.
,
Mussá
F. E. F.
&
Trambauer
P.
(
2014
)
A review of droughts on the African continent: A geospatial and long-term perspective
,
Hydrology and Earth System Sciences
,
18
(
9
),
3635
3649
.
Matthews
H. D.
,
Gillett
N. P.
,
Stott
P. A.
&
Zickfeld
K.
(
2009
)
The proportionality of global warming to cumulative carbon emissions
,
Nature
,
459
(
7248
),
829
833
.
https://doi.org/10.1038/nature08047
.
Meier
P.
,
Bond
D.
&
Bond
J.
(
2007
)
Environmental influences on pastoral conflict in the Horn of Africa
,
Political Geography
,
26
(
6
),
716
735
.
Mishra
A. K.
&
Singh
V. P.
(
2010
)
A review of drought concepts
,
Journal of Hydrology
,
391
(
1–2
),
202
216
.
Ozturk
I.
&
Acaravci
A.
(
2010
)
CO2 emissions, energy consumption and economic growth in Turkey
,
Renewable and Sustainable Energy Reviews
,
14
,
3220
3225
.
https://doi.org/10.1016/j.rser.2010.07.005
.
Pesaran
M. H.
(
2004
)
General diagnostic tests for cross section dependence in panels
,
SSRN Electronic Journal
,
2004
,
1
42
.
https://doi.org/10.2139/ssrn.572504
.
Pesaran
M. H.
(
2007
)
A simple panel unit root test in the presence of cross-section dependence
,
Journal of Applied Econometrics
,
22
,
265
312
.
Pesaran
H. H.
&
Shin
Y.
(
1998
)
Generalized impulse response analysis in linear multivariate models
,
Economics Letters
,
58
(
1
),
17
29
.
https://doi.org/10.1016/S0165-1765(97)00214-0
.
Pesaran
M. H.
&
Yamagata
T.
(
2008
)
Testing slope homogeneity in large panels
,
Journal of Econometrics
,
142
,
50
93
.
Pesaran
M. H.
,
Shin
Y.
&
Smith
R. P.
(
1999
)
Pooled mean group estimation of dynamic heterogeneous panels
,
Journal of the American Statistical Association
,
94
,
621
634
.
https://doi.org/10.2307/2670182
.
Pesaran
M. H.
,
Ullah
A.
&
Yamagata
T.
(
2008
)
A bias-adjusted LM test of error cross-section independence
,
The Econometrics Journal
,
11
,
105
127
.
Riebsame
W. E.
(
2019
)
Drought and Natural Resources Management in the United States: Impacts and Implications of the 1987–89 Drought
.
New York:
Routledge
.
Rodziewicz
D.
,
Dice
J.
&
Cowley
C. A.
(
2023
) '
Impacts of drought in the US Cattle Sector
',
Agricultural and Applied Economics Association Annual Meeting
,
Washington, DC
,
July 23–25, 2023
.
Sen
Z.
(
2022
)
İklim değişikliği ve Türkiye
,
Çevre Şehir ve İklim Dergisi
,
1
(
1
),
1
19
.
SPEI Global Drought Monitor
(
2023
)
Available at: https://spei.csic.es (Accessed 16 March 2023)
.
Spinoni
J.
,
Naumann
G.
,
Vogt
J. V.
&
Barbosa
P.
(
2015
)
The biggest drought events in Europe from 1950 to 2012
,
Journal of Hydrology: Regional Studies
,
3
,
509
524
.
State Carbon Dioxide Emissions Data – U.S. Energy Information Administration (EIA)
(
2022
)
Available at: https://www.eia.gov/environment/emissions/state/ (Accessed 3 November 2022)
.
Strzepek
K.
,
Yohe
G.
,
Neumann
J.
&
Boehlert
B.
(
2010
)
Characterizing changes in drought risk for the United States from climate change
,
Environmental Research Letters
,
5
,
1
9
.
https://doi.org/10.1088/1748-9326/5/4/044012
.
Su
X.
,
Huang
G.
,
Wang
L.
&
Wang
T.
(
2024
)
Global drought changes and attribution under carbon neutrality scenario
,
Climate Dynamics
,
62
,
7851
7868
.
Swamy
P. A.
(
1970
)
Efficient inference in a random coefficient regression model
,
Econometrica: Journal of the Econometric Society
,
38
(
2
),
311
323
.
Tirivarombo
S.
,
Osupile
D.
&
Eliasson
P.
(
2018
)
Drought monitoring and analysis: Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI)
,
Physics and Chemistry of the Earth, Parts A/B/C
,
106
,
1
10
.
https://doi.org/10.1016/j.pce.2018.07.001
.
Troccoli
A.
(
2010
)
Seasonal climate forecasting
,
Meteorological Applications
,
17
,
251
268
.
https://doi.org/10.1002/met.184
.
Ullah
A.
(
2004
)
Finite Sample Econometrics
.
New York
:
Oxford University Press
.
U.S. Global Change Research Program
(
2023
)
Fifth National Climate Assessment (NCA5)
.
Vahedifard
F.
,
Goodman
C. C.
,
Paul
V.
&
AghaKouchak
A.
(
2024
)
Amplifying feedback loop between drought, soil desiccation cracking, and greenhouse gas emissions
,
Environmental Research Letters
,
19
(
3
),
031005
.
1–7
.
Vicente-Serrano
S. M.
,
Beguería
S.
&
López-Moreno
J. I.
(
2010
)
A multiscalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index
,
Journal of Climate
,
23
,
1696
1718
.
Westerlund
J.
(
2007
)
Testing for error correction in panel data
,
Oxford Bulletin of Economics and Statistics
,
69
,
709
748
.
Whetton
P. H.
,
Fowler
A. M.
,
Haylock
M. R.
&
Pittock
A. B.
(
1993
)
Implications of climate change due to the enhanced greenhouse effect on floods and droughts in Australia
,
Climatic Change
,
25
(
3–4
),
289
317
.
Wilhite
D. A.
&
Hayes
M. J.
(
1998
)
Drought planning in the United States: Status and future directions
. In: Bruins, H. J., Lithwick, H. (eds)
The Arid Frontier. The GeoJournal Library, vol 41
, pp.
33
54
.
Dordrecht: Springer. https://doi.org/10.1007/978-94-011-4888-7_2
.
World Development Indicators | DataBank
(
2022
) .
Yang
J.
,
Gong
D.
,
Wang
W.
,
Hu
M.
&
Mao
R.
(
2012
)
Extreme drought event of 2009/2010 over southwestern China
,
Meteorology and Atmospheric Physics
,
115
,
173
184
.
Zhai
J.
,
Su
B.
,
Krysanova
V.
,
Vetter
T.
,
Gao
C.
&
Jiang
T.
(
2010
)
Spatial variation and trends in PDSI and SPI indices and their relation to streamflow in 10 large regions of China
,
Journal of Climate
,
23
(
3
),
649
663
.
Zhang
L.
&
Zhou
T.
(
2015
)
Drought over East Asia: A review
,
Journal of Climate
,
28
(
8
),
3375
3399
.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).