This study aimed to assess the seasonal fluctuation of heavy metal contamination in the sediments and surface water of the Narmada River. In this context, samples were gathered from six stations along the river in 2021–2022 and their concentrations were determined by utilizing Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The results in sediments, the average concentrations of As, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were 0.05, 1.03, 2.47, 1.64, 750.17, 17.75, 0.54, 0.13, and 1.12 mg/kg and in water, the average concentrations of Co, Fe, Ni, and Zn were 0.03 μg/l, 0.01 mg/l, 0.08 μg/l, and 0.39 μg/l. Seasonal fluctuation in sediments revealed that concentration of metals As, Cu, Fe, Ni, and Zn peaked during the rainy climate, while Co and Cr peaked during the post-monsoon and Mn and Pb peaked during the summer climate. Seasonal fluctuation in water, Co, Ni, and Zn exhibits their highest concentrations during the post-monsoon. The finding of pollution indices revealed that the contamination level was low to moderate. Cluster analysis revealed anthropogenic and agricultural runoff water as a contributor to contamination. The findings of this research enhance comprehension of heavy metal contamination in sediment and water of the Narmada River.

  • The concentration of heavy metals in the sediments and surface water of the Narmada River was determined by ICP-MS.

  • Seasonal variation of heavy metal contamination in sediments and surface water was investigated.

  • Heavy metal contamination in sediments was assessed using CF, PLI, GF, and EF indices.

  • There were no adverse effects observed in the study area due to heavy metal contamination.

In recent years, the escalating presence of heavy metal contamination in aquatic ecosystems has raised significant concerns due to its toxicity, pervasiveness, and accumulation. This issue has garnered substantial attention and awareness, underscoring the growing need for immediate action. The main source of heavy metal contamination in river sediments and surface water is either anthropogenic or natural sources. Anthropogenic sources of heavy metal are untreated domestic wastewater, agricultural fertilizer and pesticides, and industrial discharges. Meanwhile, natural sources of heavy metal result from rock-weathering and soil. River pollution arises from various sources, including the discharge of sediments and suspended solids, such as soil from cultivated fields, construction and logging areas, urban environments, and eroded riverbanks during intense rainfall. The shifting of river channels, urbanization-induced encroachment of river banks, and other natural factors can alter the topographical features of a basin, thereby potentially impacting the quality of both river sediments and water (Singhal et al. 2024).

In their natural state, rivers and other aquatic systems experience eutrophication, a natural aging process that progressively introduces sediments and organic material into these water bodies (Karbassi et al. 2008; Varol & Şen 2012; Bhuyan et al. 2019). The introduction of these sediments into water bodies impairs fish respiration, diminishes plant productivity and water depth, and leads to the suffocation of aquatic organisms and their habitats (Xu et al. 2021; Ma et al. 2023; Wang et al. 2023). Additionally, contamination in the form of organic substances infiltrates waterways through various means, such as sewage, foliage, mowed grass, and runoff originating from livestock feedlots and pastures.

To comprehensively assess the contaminant load of a river, it is imperative to simultaneously investigate sediments and surface water. The aqueous phase and river sediments get a distribution of metal that is released into a river system throughout its conveyance by point or non-point sources (Zhuang et al. 2018).

Because of the combined effects of adsorption, hydrolysis, co-precipitation, and the presence of fine particles, only a limited fraction of unbound metal ions stay in water and large quantities of them are deposited in the sediment (Sakan et al. 2009). When harmful and persistent chemical pollutants with slow decomposition rates are discharged into the river water, sediments act as a top pollutant key store for such contaminants. Flow regulation influences natural flow patterns in river basins, impacting the flood pulse phenomenon. This pulse, rich in water, sediments, and nutrients, nourishes agricultural land, inland fisheries, as well as instream and wetland ecosystems, serving as a vital element for life and crucial ecosystems within the Lower River basin (Gao et al. 2022). Based on the limnological conditions, the sediment can function as both a supplier and a receiver of metals. River sediments serve as habitats for diverse aquatic animals and plants, playing a crucial ecological role in the aquatic environment while also serving as reservoirs for pollutants. This can lead to the accumulation of metal residues, potentially posing health risks if these contaminants enter the human food chain (Zhuang & Lu 2020; Wang et al. 2023). In aquatic systems, sediments serve the dual role of potential secondary sources and transporters of pollutants. The retention of metals in river sediments has the capacity to be a perpetual future pollutant. Sediments play an important role in the chemical characteristics of rivers. Rivers are the major means of transport of water and sediments from continents to oceans (Chen et al. 2016). To evaluate the appropriateness of the river for particular uses, it is crucial to examine the chemical properties and concentrations of metals in the sediment. Analysing the chemical composition of sediments in a river system aids in gauging anthropogenic pollution and understanding its potential environmental ramifications (Guan et al. 2018; Ma et al. 2023). Agriculture is one of the main sources of livelihood in India with lands located on the banks of rivers. During the rainy season, agricultural water with soil came into the river, and the concentration of heavy metals (As, Cu, Fe, Ni, and Zn) in river sediments increased (Brito et al. 2020; Zhuang & Lu 2020). The river system exhibits a distinct feature regarding the fluctuation of flow, sediment loading, and morphological processes across seasons. Additionally, significant floods and tectonic events within the river system have contributed to creating a complex morpho-dynamic environment (Sarker et al. 2023). In natural ecosystems, metals are typically present in low concentrations, usually ranging from nanogram to microgram per litre. However, there is a growing concern about high concentration levels of heavy metals in recent times, posing a threat of environmental pollution due to their toxicity and accumulation in aquatic habitats.

Studies have highlighted the adverse effects of heavy metal accumulation in plants and animals, including humans, elucidating the impact through the food chain. Unlike many pollutants, heavy metals are non-biodegradable and undergo a global ecological cycle, with natural waters serving as the primary pathways ( Zhuang et al. 2018; Zhuang & Lu 2020; Wang et al. 2023). Heavy metals have been categorized based on their source of origin into three primary groups: anthropogenic metals (As, Co, Cr, Cu, Ni, Pb, and Zn), crustal metals (Fe and Mn), and marine-related metals (Na, Ca, and Mg) (Wijesiri et al. 2019).

Seasonal variation is a primary factor in evaluating the concentration of heavy metals in river sediments and surface water. Seasons are categorized based on the level of rainfall intensity: (a) monsoon season (heavy rainfall), (b) pre-monsoon season (light to moderate rainfall), (c) post-monsoon season (light rainfall), and (d) winter season (little to no rainfall) (Awasthi et al. 2024).

Sediment and surface water contamination assessment studies have been utilized globally during the past few decades (Olivares-Rieumont et al. 2005; Sekabira et al. 2010; Salah et al. 2012; Sin et al. n.d.; Varol & Şen 2012; Islam et al. 2015; Xu et al. 2017; Xie et al. 2020; Xu et al. 2021); however, few studies have been reported on heavy metal contamination with seasonal variation in the sediments and surface water of rivers (Lim et al. 2013; Qiao et al. 2013; Singh & Pandey 2014; Zohreh Mirsalari 2014; Bhuyan & Bakar 2017; Hussein et al. 2020). Hence, it is imperative to conduct comprehensive research on sediment and surface water quality to assess the potential threat posed by heavy metal contamination and the associated carcinogenic risks (Chen et al. 2016; Patel et al. 2018; Da Silva et al. 2019; Ahamad et al. 2020; Xie et al. 2020; Xu et al. 2021).

The Narmada River is vital to Central India but faces threats from harsh climate and human activity, endangering flora, fauna, and water quality and river sediments. The Narmada basin, a crucial water resource region, supports millions of livelihoods and diverse ecosystems (Tiwari et al. 2024). Climate changes directly affect river sediments and water quality, increasing the risk to the ecosystem. Rising temperatures and extreme weather worsen pollution levels (Rehana & Dhanya 2018). Temperature fluctuations and their resulting impacts from climate change pose significant threats to human survival, ecological communities, and socioeconomic progress worldwide. In recent decades, there has been a pronounced global temperature rise, disrupting the delicate balance of nature and precipitating extreme shifts in weather patterns (Shawky et al. 2023). Predictions indicate rising water temperatures and extreme weather events exacerbating pollution. With estimates suggesting a potential 1.4 °C increase by 2040, tropical countries could see significant impacts on surface water and sediment quality (Hernández et al. 2022).

Cluster analysis (CA) has gained widespread recognition as a valuable tool for identifying, classifying, and understanding the relationships among sampling stations.

Therefore, the objectives of this study are:

  • To determine the concentration of heavy metals in the sediments and surface water by utilizing ICP-MS in four different seasons.

  • To assess the heavy metal in sediments by utilizing CF, PLI, GF, and EF indices.

  • To find out the source of contamination in the study stretch of the Narmada River.

  • To assess the environmental risks of these heavy metals and compare the other rivers.

Study area

The Narmada River ranks as the fifth-longest river in the Indian subcontinent and it is called the lifeline of Madhya Pradesh. Over time, numerous small towns and large cities have flourished along their banks. Unfortunately, due to various human activities, such as the discharge of domestic and dairy industrial waste and natural drainage, the river's water quality has deteriorated significantly. Therefore, it is essential to analyse the quality of sediment and surface water of the Narmada River.

For this purpose, six sampling stations were strategically chosen, taking into account the digital elevation model (DEM) and topography of Jabalpur district along the Narmada River (Figure 1).
Figure 1

Study area map including DEM, topography, and sampling station location along the Narmada River.

Figure 1

Study area map including DEM, topography, and sampling station location along the Narmada River.

Close modal

The first sampling station, Jamtaraghat (S-1), is near the Pariyat tributary and several dairy industries. The second, third, and fourth stations – Gwarighat (S-2), Tilwaraghat (S-3), and Bhedaghat (S-4) – are located near urban areas. The fifth and sixth stations, Ghugharaghat (S-5) and Parmatghat (S-6), are situated close to agricultural and rural regions. The distances between the first four stations are each 5 km, with the distance from the fourth to the fifth being 10 km, and from the fifth to the sixth being 15 km. Thus, a total stretch of 40 km has been selected for this study.

Sample collection and instrumental analysis

Samples of sediments and surface water were gathered from sampling sites over four distinct phases: firstly, May 2021 (pre-monsoon or summer climate); secondly, July 2021 (monsoon or rainy climate); thirdly, September 2021 (post-monsoon); and fourthly, January 2022 (Winter) during the year 2021–2022. The samples of water were collected in an acid-washed one-lit polyethylene bottle. Samples of sediments were collected from four composite samples, each weighing approximately 200 g. After sampling, samples of sediments were immediately enclosed within uncontaminated polyethylene bags and transported to the laboratory where both samples were stored at a temperature of 4 °C. In preparation for the analysis of sediment samples, the samples underwent an air-drying process. Subsequently, plant fragments and stones were eliminated by sieving the dried sample through a 2 mm mesh. The analytical procedure was followed to EPA protocol 3050B, involving acid digestion for sediments, sludges, and soils (Environmental Protection Agency n.d.). This method utilizes a combination of hydrogen peroxide and nitric acid for complete metal digestion. The next step involved utilizing ICP-MS to ascertain the concentration of metals within the sediments and surface water samples.

Previous analyses of heavy metals in the Narmada river's sediments were conducted in 2008 (Jain et al. 2008) and 2010 (Sharma & Subramanian 2010), while the quality of heavy metals in surface water was assessed in 2021 (Mishra & Kumar 2021). To maintain the continuity of these analyses, it is urgently required to examine both the sediment and surface water quality of the Narmada River.

Analysis of sediment contamination

In the explication of geochemical data, the selection of background value is crucial. Many authors have utilized the average shale value as a reference background value (Müller et al. 1997; Sekabira et al. 2010; Islam et al. 2015). However, due to the absence of data regarding background values for the Narmada River sediment and the enclosed area under investigation, this study adopts a meticulous approach and computes background values by averaging the metal concentrations in uncontaminated sediments within the study region (Sakan et al. 2009; Varol 2011; Varol & Şen 2012).

Contamination factor (ICF)

ICF is expressed as follows:
(1)
where CM is the concentration of metal and BM is the background value of the metal. ICF values are interpreted as follows: ICF < 1 indicates low contamination; 1 < ICF < 3 suggests moderate contamination; and 3 < ICF < 6 implies considerable contamination (Varol 2011; Islam et al. 2015; Wang et al. 2023).

Pollution load index (IPLI)

IPLI is expressed as the nth root of the multiplications of the contamination factor of metals.
(2)

The IPLI value represents the level of metal sediment pollution. When IPLI > 1 indicates pollution exists; otherwise, if IPLI < 1, there is no metal pollution (Islam et al. 2015; Bhuyan et al. 2019; Wang et al. 2023).

Geo-accumulation index (Igai)

Igai is characterized by the following formula:
(3)
where CM is the concentration of metal and BM is the concentration of geochemical background value. The degree of metal contamination in sediment was assessed by the geo-accumulation index (IGEO). This index was introduced by Müller (Müller et al. 1997; Varol 2011; Ma et al. 2023). Constant 1.5 is used to account for possible variations in the background value. The Igai consists of seven classes, where Class 0 (Igai ≤ 0), uncontaminated; Class 1 (0 < Igai < 1), uncontaminated to moderately contaminated; Class 2 (1 < Igai < 2), moderately contaminated; Class 3 (2 < Igai < 3), moderately to heavily contaminated; Class 4 (3 < Igai < 4), heavily contaminated; Class 5 (4 < Igai < 5), heavily to extremely contaminated; Class 6 (Igai ≥ 5), extremely contaminated.

Enrichment factor (IEF)

The calculation of IEF is expressed through the following equation:
(4)

Fe serves as the reference element for geochemical normalization, the interpretation of IEF values is as follows: IEF < 1 implies no enrichment; <3 indicates minor enrichment; 3–5 suggests moderate enrichment; 5–10 implies moderately severe enrichment; 10–25 signifies severe enrichment (Sakan et al. 2009; Varol 2011; Wang et al. 2023).

Flowchart of the methodology

The research methodology's flowchart outlines the study's comprehensive process. It includes sample collection, time of sample collection, an instrument used to determine the concentration of heavy metal, analysis of sediments sample by pollution indices, comparison of other rivers, and applying the risk assessment. The graphical representation of the flowchart is represented in Figure 2.
Figure 2

Flowchart of the methodology.

Figure 2

Flowchart of the methodology.

Close modal

Seasonal fluctuation of heavy metal contamination in sediments

The findings on the seasonal fluctuation of heavy metal concentrations in sediment across different stations are presented in Table 1. As concentrations ranged between 0.02 and 0.07 mg/kg, stations second, third, fourth, and sixth exhibited the highest concentration during the monsoon season, and station fifth had the lowest concentration during the pre-monsoon season. Co concentrations spanned from 0.55 to 1.39 mg/kg, peaking at station third in the post-monsoon and being lowest at station six during the monsoon. Cr concentrations ranged between 1.33 and 3.33 mg/kg, with station third registering the highest concentration during the post-monsoon season and station six recording the lowest concentration during the monsoon season. Cu concentrations spanned from 0.84 to 2.97 mg/kg, with the third station having the highest during the monsoon and station six displaying the lowest during the pre-monsoon. Fe concentrations varied between 309.68 and 1,133.82 mg/kg, with station first exhibiting the highest concentration in the monsoon season and station six having the lowest concentration in the pre-monsoon season. Mn concentrations ranged between 12.03 and 23.97 mg/kg, with station third registering the highest concentration during the pre-monsoon season and station six recording the lowest concentration during the monsoon season. Ni concentrations spanned from 0.32 to 0.95 mg/kg, with station third displaying the highest concentration during the monsoon and station fifth recording the lowest during the pre-monsoon. Pb concentration spanned from 0.08 to 0.20 mg/kg, with the third station exhibiting the greatest concentration during the pre-monsoon season, while station fifth had the lowest concentration during the monsoon season. Zn concentrations varied between 0.69 and 2.09 mg/kg, with station third exhibiting the highest concentration during the monsoon and stations first and fifth recording the lowest concentration during the pre-monsoon season.

Table 1

Seasonal fluctuation of heavy metal concentration in the sediments at all study stations

S. No.SeasonsHeavy metals concentration (mg/kg)
AsCoCrCuFeMnNiPbZn
S-1 Pre-monsoon 0.03 1.15 2.72 1.10 739.95 20.82 0.46 0.17 0.69 
Monsoon 0.06 0.97 2.69 2.26 1,133.82 14.27 0.80 0.08 1.46 
Post-monsoon 0.05 1.26 2.93 1.49 989.55 16.69 0.57 0.11 0.88 
Winter 0.04 1.18 2.74 1.17 762.16 19.36 0.48 0.15 0.80 
Average value 0.04 1.14 2.77 1.51 906.37 17.78 0.58 0.13 0.96 
S-2 Pre-monsoon 0.03 1.17 2.79 1.41 718.25 21.98 0.51 0.19 0.73 
Monsoon 0.07 0.98 2.29 2.35 1,076.16 15.14 0.89 0.10 1.69 
Post-monsoon 0.05 1.33 3.18 1.58 972.08 18.51 0.62 0.14 1.05 
Winter 0.04 1.27 2.86 1.51 732.81 20.97 0.57 0.15 0.90 
Average value 0.05 1.19 2.78 1.71 874.82 19.15 0.65 0.15 1.09 
S-3 Pre-monsoon 0.04 1.18 2.82 1.92 703.97 23.97 0.54 0.20 1.09 
Monsoon 0.07 0.98 2.36 2.97 1,099.29 16.17 0.95 0.12 2.09 
Post-monsoon 0.06 1.39 3.33 2.18 956.75 19.65 0.69 0.16 1.38 
Winter 0.05 1.28 3.07 1.97 716.99 21.59 0.57 0.18 1.13 
Average value 0.06 1.21 2.90 2.26 869.25 20.35 0.69 0.16 1.42 
S-4 Pre-monsoon 0.03 1.13 2.71 1.47 581.86 22.91 0.39 0.17 1.00 
Monsoon 0.07 0.95 2.29 2.53 982.65 15.85 0.61 0.10 1.92 
Post-monsoon 0.05 1.30 3.13 1.84 754.53 17.94 0.50 0.13 1.29 
Winter 0.04 1.25 2.99 1.51 590.37 18.94 0.41 0.14 1.09 
Average value 0.05 1.16 2.78 1.84 727.35 18.91 0.48 0.13 1.33 
S-5 Pre-monsoon 0.02 0.78 1.87 0.97 415.80 18.33 0.32 0.13 0.69 
Monsoon 0.06 0.60 1.43 1.97 911.66 13.12 0.59 0.08 1.56 
Post-monsoon 0.04 0.85 2.15 1.26 666.93 15.72 0.39 0.10 0.83 
Winter 0.03 0.81 1.95 0.99 432.90 17.25 0.35 0.12 0.72 
Average value 0.04 0.76 1.82 1.30 606.82 16.11 0.41 0.11 0.95 
S-6 Pre-monsoon 0.03 0.73 1.75 0.84 309.68 16.26 0.33 0.15 0.71 
Monsoon 0.07 0.55 1.33 1.88 799.85 12.03 0.60 0.10 1.56 
Post-monsoon 0.04 0.90 2.04 1.21 628.87 13.28 0.40 0.13 0.92 
Winter 0.03 0.84 1.82 0.87 327.22 15.33 0.35 0.15 0.71 
Average value 0.04 0.75 1.75 1.20 516.41 14.22 0.42 0.13 0.98 
S. No.SeasonsHeavy metals concentration (mg/kg)
AsCoCrCuFeMnNiPbZn
S-1 Pre-monsoon 0.03 1.15 2.72 1.10 739.95 20.82 0.46 0.17 0.69 
Monsoon 0.06 0.97 2.69 2.26 1,133.82 14.27 0.80 0.08 1.46 
Post-monsoon 0.05 1.26 2.93 1.49 989.55 16.69 0.57 0.11 0.88 
Winter 0.04 1.18 2.74 1.17 762.16 19.36 0.48 0.15 0.80 
Average value 0.04 1.14 2.77 1.51 906.37 17.78 0.58 0.13 0.96 
S-2 Pre-monsoon 0.03 1.17 2.79 1.41 718.25 21.98 0.51 0.19 0.73 
Monsoon 0.07 0.98 2.29 2.35 1,076.16 15.14 0.89 0.10 1.69 
Post-monsoon 0.05 1.33 3.18 1.58 972.08 18.51 0.62 0.14 1.05 
Winter 0.04 1.27 2.86 1.51 732.81 20.97 0.57 0.15 0.90 
Average value 0.05 1.19 2.78 1.71 874.82 19.15 0.65 0.15 1.09 
S-3 Pre-monsoon 0.04 1.18 2.82 1.92 703.97 23.97 0.54 0.20 1.09 
Monsoon 0.07 0.98 2.36 2.97 1,099.29 16.17 0.95 0.12 2.09 
Post-monsoon 0.06 1.39 3.33 2.18 956.75 19.65 0.69 0.16 1.38 
Winter 0.05 1.28 3.07 1.97 716.99 21.59 0.57 0.18 1.13 
Average value 0.06 1.21 2.90 2.26 869.25 20.35 0.69 0.16 1.42 
S-4 Pre-monsoon 0.03 1.13 2.71 1.47 581.86 22.91 0.39 0.17 1.00 
Monsoon 0.07 0.95 2.29 2.53 982.65 15.85 0.61 0.10 1.92 
Post-monsoon 0.05 1.30 3.13 1.84 754.53 17.94 0.50 0.13 1.29 
Winter 0.04 1.25 2.99 1.51 590.37 18.94 0.41 0.14 1.09 
Average value 0.05 1.16 2.78 1.84 727.35 18.91 0.48 0.13 1.33 
S-5 Pre-monsoon 0.02 0.78 1.87 0.97 415.80 18.33 0.32 0.13 0.69 
Monsoon 0.06 0.60 1.43 1.97 911.66 13.12 0.59 0.08 1.56 
Post-monsoon 0.04 0.85 2.15 1.26 666.93 15.72 0.39 0.10 0.83 
Winter 0.03 0.81 1.95 0.99 432.90 17.25 0.35 0.12 0.72 
Average value 0.04 0.76 1.82 1.30 606.82 16.11 0.41 0.11 0.95 
S-6 Pre-monsoon 0.03 0.73 1.75 0.84 309.68 16.26 0.33 0.15 0.71 
Monsoon 0.07 0.55 1.33 1.88 799.85 12.03 0.60 0.10 1.56 
Post-monsoon 0.04 0.90 2.04 1.21 628.87 13.28 0.40 0.13 0.92 
Winter 0.03 0.84 1.82 0.87 327.22 15.33 0.35 0.15 0.71 
Average value 0.04 0.75 1.75 1.20 516.41 14.22 0.42 0.13 0.98 

Seasonal fluctuation of heavy metal contamination in surface water

The findings concerning the seasonal fluctuation of metal concentrations in surface water across different stations is shown in Table 2. Co concentrations ranged from 0.02 to 0.04 μg/l, with the highest levels observed at station third during the post-monsoon period and the lowest at stations first, second, fourth, fifth, and sixth. Fe concentrations varied between 0.01 to 0.03 mg/l, with station first exhibiting the highest concentration in the monsoon season and stations second, third, fourth, fifth, and sixth having the lowest concentration. Ni concentrations spanned from 0.05 to 0.11 μg/l, with station fourth displaying the highest concentration during the post-monsoon and station sixth recording the lowest during the pre-monsoon. Zn concentrations varied between 0.27 and 0.49 μg/l with station third exhibiting the highest concentration during the post-monsoon and station sixth recording the lowest during pre-monsoon.

Table 2

Seasonal fluctuation of heavy metal concentration in the surface water at all study stations

S. No.SeasonsHeavy metal concentration in surface water
AsCo (μg/l)CrCuFe (mg/l)MnNi (μg/l)PbZn (μg/l)
S-1 Pre-monsoon – 0.02 – – 0.02 – 0.08 – 0.39 
Monsoon – 0.02 – – 0.03 – 0.08 – 0.41 
Post-monsoon – 0.03 – – 0.02 – 0.10 – 0.44 
Winter – 0.02 – – 0.02 – 0.09 – 0.41 
Average value – 0.02 – – 0.02 – 0.09 – 0.41 
S-2 Pre-monsoon – 0.02 – – 0.01 – 0.08 – 0.41 
Monsoon – 0.02 – – 0.02 – 0.08 – 0.43 
Post-monsoon – 0.03 – – 0.02 – 0.10 – 0.48 
Winter – 0.03 – – 0.02 – 0.09 – 0.45 
Average value – 0.03 – – 0.02 – 0.09 – 0.44 
S-3 Pre-monsoon – 0.03 – – 0.01 – 0.08 – 0.44 
Monsoon – 0.03 – – 0.02 – 0.09 – 0.46 
Post-monsoon – 0.04 – – 0.01 – 0.10 – 0.49 
Winter – 0.03 – – 0.01 – 0.09 – 0.46 
Average value – 0.03 – – 0.01 – 0.09 – 0.46 
S-4 Pre-monsoon – 0.02 – – – – 0.08 – 0.38 
Monsoon  0.03 – – 0.01 – 0.09 – 0.40 
Post-monsoon – 0.03 – – 0.01 – 0.11 – 0.43 
Winter – 0.03 – – 0.01 – 0.09 – 0.42 
Average value – 0.03 – – 0.01 – 0.09 – 0.41 
S-5 Pre-monsoon – 0.02 – – – – 0.06 – 0.28 
Monsoon – 0.02 – – 0.01 – 0.07 – 0.31 
Post-monsoon – 0.03 – – 0.01 – 0.08 – 0.33 
Winter – 0.02 – – – – 0.07 – 0.32 
Average value – 0.02 – – 0.01 – 0.07 – 0.31 
S-6 Pre-monsoon – 0.02 – – – – 0.05 – 0.27 
Monsoon – 0.02 – – 0.01 – 0.06 – 0.29 
Post-monsoon – 0.03 – – 0.01 – 0.08 – 0.32 
Winter – 0.02 – – – – 0.07 – 0.31 
Average value – 0.02 – – 0.01 – 0.07 – 0.30 
S. No.SeasonsHeavy metal concentration in surface water
AsCo (μg/l)CrCuFe (mg/l)MnNi (μg/l)PbZn (μg/l)
S-1 Pre-monsoon – 0.02 – – 0.02 – 0.08 – 0.39 
Monsoon – 0.02 – – 0.03 – 0.08 – 0.41 
Post-monsoon – 0.03 – – 0.02 – 0.10 – 0.44 
Winter – 0.02 – – 0.02 – 0.09 – 0.41 
Average value – 0.02 – – 0.02 – 0.09 – 0.41 
S-2 Pre-monsoon – 0.02 – – 0.01 – 0.08 – 0.41 
Monsoon – 0.02 – – 0.02 – 0.08 – 0.43 
Post-monsoon – 0.03 – – 0.02 – 0.10 – 0.48 
Winter – 0.03 – – 0.02 – 0.09 – 0.45 
Average value – 0.03 – – 0.02 – 0.09 – 0.44 
S-3 Pre-monsoon – 0.03 – – 0.01 – 0.08 – 0.44 
Monsoon – 0.03 – – 0.02 – 0.09 – 0.46 
Post-monsoon – 0.04 – – 0.01 – 0.10 – 0.49 
Winter – 0.03 – – 0.01 – 0.09 – 0.46 
Average value – 0.03 – – 0.01 – 0.09 – 0.46 
S-4 Pre-monsoon – 0.02 – – – – 0.08 – 0.38 
Monsoon  0.03 – – 0.01 – 0.09 – 0.40 
Post-monsoon – 0.03 – – 0.01 – 0.11 – 0.43 
Winter – 0.03 – – 0.01 – 0.09 – 0.42 
Average value – 0.03 – – 0.01 – 0.09 – 0.41 
S-5 Pre-monsoon – 0.02 – – – – 0.06 – 0.28 
Monsoon – 0.02 – – 0.01 – 0.07 – 0.31 
Post-monsoon – 0.03 – – 0.01 – 0.08 – 0.33 
Winter – 0.02 – – – – 0.07 – 0.32 
Average value – 0.02 – – 0.01 – 0.07 – 0.31 
S-6 Pre-monsoon – 0.02 – – – – 0.05 – 0.27 
Monsoon – 0.02 – – 0.01 – 0.06 – 0.29 
Post-monsoon – 0.03 – – 0.01 – 0.08 – 0.32 
Winter – 0.02 – – – – 0.07 – 0.31 
Average value – 0.02 – – 0.01 – 0.07 – 0.30 

–, Below detection limit.

The concentration of As, Cr, Cu, and Pb was falling below the detection limit, and the concentration of Fe was also falling below the detection limit (indicated by symbol –) during the pre-monsoon season at stations fourth, fifth, and sixth and during the winter season at stations fifth and sixth.

Results of sediment pollution indices

The value of the contamination factor (ICF) across the various metals in different sampling stations is displayed in Figure 3. For As, the ICF ranged from 1.09 to 1.62, reaching its peak at station third and its lowest point at station fifth. For Co, ICF exhibited a variability from 1.00 to 1.523, with the highest concentration at station fourth and the lowest at station sixth. For Cr, ICF fluctuated between 1.03 and 1.71, with station third registering the highest concentration and station sixth the lowest. Cu demonstrated ICF range of 1.16 to 2.17, with the highest concentration observed at station third and the lowest at station sixth. For Fe, ICF values spanned from 0.86 to 1.50, with the highest concentration at station first and the lowest at station sixth. Mn exhibited ICF values between 1.27 and 1.81, with station third recording the highest and station sixth the lowest. For Ni, ICF values ranged from 1.05 to 1.75, peaking at station third and reaching their lowest point at station fifth. Pb showed ICF range of 0.97 to 1.48, with the highest concentration at station third and the lowest at station fifth. The value of ICF for Zn varied between 1.05 and 1.57 with station third exhibiting the highest concentration and station fifth having the lowest concentration.
Figure 3

Contamination factor of all studies stations in sediments of the Narmada River.

Figure 3

Contamination factor of all studies stations in sediments of the Narmada River.

Close modal
The pollution load index (IPLI) values at the first, second, third, fourth, fifth, and sixth stations are 1.39, 1.51, 1.67, 1.45, 1.10, and 1.09, respectively. The IPLI ranges from 1.09 to 1.67, with the highest value at the third station and the lowest at the sixth station. The graphical representation of IPLI is displayed in Figure 4.
Figure 4

Pollution load index of all studies stations in sediments of the Narmada River.

Figure 4

Pollution load index of all studies stations in sediments of the Narmada River.

Close modal
The value of the geo-accumulation index (Igai) across the various metals in different sampling stations is displayed in Figure 5. The Igai values for As ranged from −0.46 to 0.11, with the highest concentration at the third station and the lowest at the fifth station. For Co, the Igai values varied from −0.59 to 0.09, with the highest concentration at the third station and the lowest at the sixth station. Similarly, the Igai values for Cr ranged from −0.54 to 0.19, with the third station showing the highest concentration and the sixth station the lowest. The Igai values for Cu ranged from −0.38 to 0.53, with the third station exhibiting the highest concentration and the sixth station the lowest. For Fe, the Igai values varied from −0.81 to 0.01, with the first station having the highest concentration and the sixth station the lowest. Mn exhibited Igai values ranging from −0.25 to 0.27, with the third station having the highest concentration and the sixth station showing the lowest. The Igai values for Ni ranged from −0.51 to 0.22, with the highest levels observed at the third station and the lowest at the fifth station. For Pb, the Igai values varied from −0.63 to −0.02, with the third station exhibiting the highest concentration and the fifth station the lowest. Finally, the Igai values for Zn ranged from −0.52 to 0.07, with the third station showing the highest concentration and the fifth station the lowest.
Figure 5

Geo-accumulation index (Igai) of all studies stations in the sediments of the Narmada River.

Figure 5

Geo-accumulation index (Igai) of all studies stations in the sediments of the Narmada River.

Close modal
The value of the enrichment factor (IEF) across the various metals in different sampling stations is displayed in Figure 6. The IEF for As ranged from 0.86 to 1.41, with the highest levels observed at station six and the lowest at station first. For Co, the IEF values varied between 1.00 and 1.27, with the highest concentration at station fourth and the lowest at station fifth. Similarly, the IEF values for Cr ranged from 1.07 to 1.36, with the fourth station showing the highest concentration and the fifth station the lowest. The IEF values for Cu ranged from 0.96 to 1.51, with the third station exhibiting the highest concentration and the first station having the lowest concentration. For Mn, the IEF values varied between 1.05 and 1.48, with the sixth station showing the highest concentration and the first station the lowest. The IEF values for Ni ranged from 0.97 to 1.24, with the highest levels observed at station six and the lowest at station one. For Pb, the IEF values varied between 0.78 and 1.40, with the sixth station exhibiting the highest concentration and the first station having the lowest concentration. Finally, the IEF values for Zn ranged from 0.70 to 1.26, with the sixth station showing the highest concentration and the first station the lowest.
Figure 6

Enrichment factor (IEF) of all studies stations in sediments of the Narmada River.

Figure 6

Enrichment factor (IEF) of all studies stations in sediments of the Narmada River.

Close modal

Assessments of seasonal fluctuation of heavy metal contaminations in sediments and surface water

The value of average concentration was calculated by averaging the values for all four seasons. Based on the average concentration results, the order of metal concentration was as follows: Fe > Mn > Cr > Cu > Zn > Co > Ni > Pb > As. The concentration of Fe was exhibited higher at the station first because of the involvement of natural crustal activities. In contrast, at station third, the concentrations of As, Co, Cr, Cu, Mn, Ni, Pb, and Zn had increased significantly due to human-induced activities. Concerning the seasonal variations in sediment composition, heavy metal distribution in sediments exhibited distinct patterns. For metals As, Cu, Fe, Ni, and Zn, their concentrations follow the sequence monsoon > post-monsoon > winter > pre-monsoon. In contrast, Co and Cr displayed a distribution pattern of post-monsoon > winter > pre-monsoon > monsoon, while Mn and Pb exhibited a distribution pattern of pre-monsoon > winter > post-monsoon > monsoon. During the monsoon season, the interaction between agricultural runoff water and river water led to an increase in the concentrations of As, Cu, Fe, Ni, and Zn in sediments, due to their presence in fertilizers and pesticides and crustal metal activities. During the post-monsoon season, higher human activities contributed to elevated concentrations of Co and Cr. The pre-monsoon period witnessed increased concentrations of Mn and Pb due to higher evaporation rates during summer. Four metals (As, Co, Cr, and Ni) out of nine metals have the potential risk of carcinogenicity but the concentration of these four metals is below the prescribed limit. So they did not pose a carcinogenic risk.

The average concentration results reveal that station first exhibited higher concentrations of Fe. Station third exhibited an elevated concentration of Co and Zn, while station four recorded the highest concentration of Ni. Based on the metal concentration findings, the hierarchy of concentration was as follows: Zn > Ni > Co > Fe. Concerning the seasonal fluctuations in surface water quality, the distribution of heavy metals exhibited distinct patterns. Co, Ni, and Zn displayed the following order of prevalence: post-monsoon > winter > monsoon > pre-monsoon. Conversely, Fe exhibited a distribution pattern of monsoon > post-monsoon > winter > pre-monsoon.

Significance of the study

The significance of this study is crucial for both environmental protection and climate change. The river system displays a unique characteristic concerning heavy metal contamination, influenced by seasonal variations and human activities. Understanding seasonal variations aids in developing effective pollution management strategies and emphasizes the need to address contamination within broader climate change initiatives. Applied climatology explores how climate interacts with various phenomena, its impact on humans, and the potential for climate manipulation to meet human needs (Sarker 2022).

Assessment of sediment pollution indices

The ICF exhibited an average value of 1.38, with a range between 1.50 and 2.17. The lowest ICF value was observed at station sixth for metal Fe and the highest ICF value was recorded at station third for metal Cu. The findings of the ICF indicate that there was low contamination to moderate contamination. The average IPLI value was 1.37, indicating a spectrum ranging from no metal pollution to the presence of pollution. The average Igai value was −0.15, ranging from −0.81 to 0.53. The lowest Igai value for Fe was recorded at the sixth station, whereas the highest was detected at the third station for Cu. Urban activities had minimal impact on contamination levels at both the sixth and fifth stations, resulting in the lowest Igai values observed there. These results indicate a spectrum ranging from uncontaminated to moderately contaminated metal levels. The average value of IEF was 1.12, ranging from 0.70 to 1.51. The lowest IEF value was detected at station first for metal Zn, and the highest was recorded at station third for metal Cu. The IEF results indicate a range from no enrichment to minor enrichment.

Comparison of heavy metal in the sediments and surface water of the Narmada River with other selected rivers

A comparison of the heavy metal concentration in sediments and surface water to other selected rivers is shown in Table 3. The concentration of heavy metals in the Narmada River sediment to other selected rivers was low and below the permissible limits as per the World Average Shale value. The maximum concentration of Co, Fe, Ni, and Zn in surface water was low to comparisons to other selected rivers and below permissible limits as recommended by WHO. The concentration of As, Cr, Cu, Mn, and Pb in surface water was below the detection limit. In a previous study of heavy metals in the sediments of the Narmada River (Jain et al. 2008; Sharma & Subramanian 2010), the levels of Cr, Cu, Fe, Mn, Ni, Pb, and Zn were higher compared to the present study and this difference is attributed to the previous study covering a larger stretch of the river, which included more urban areas. In the present study, Jabalpur is the fourth city from the origin of the Narmada River, with Anoopur, Dindori, and Mandala being the first, second, and third cities, respectively. There was not a significant disparity in the concentration of heavy metals in surface water between the present and previous studies (Mishra & Kumar 2021).

Table 3

Heavy metal content in sediments and surface water comparison with selected other rivers

Name of riverHeavy metal concentration in sediments of the Narmada River (mg/kg).
References
AsCoCrCuFeMnNiPbZn
Narmada River 0.07 1.39 3.33 2.97 1,133.82 23.97 0.95 0.20 2.09 This study 
Narmada River 0.03 0.76 1.69 1.04 602.66 11.24 0.39 0.11 0.90 Background value 
All rivers 13 19 90 45 47,200 850 68 20 95 Average Shale value 
Huafei River 100.0 – 160.9 866.90 – – 101.35 745.2 4,206.9 Jin et al. (2022)  
Nile River – 29.85 53.68 49.52 50,814 764.8 62.74 58.45 166.56 Al-Afify & Abdel-Satar (2022)  
Weihe River 39.93 – 142.93 69.34 – 1,212.8 62.38 36.39 143.64 Ahamad et al. (2020)  
Old Brahmaputra – 4.10 6.6 6.20 – 126.2 12.8 7.6 52.7 Bhuyan et al. (2019)  
Yinma River 0.21 – 46.60 23.80 – – 25.06 32.38 151.15 Guan et al. (2018)  
Swarnamukhi River – 7.22 84 108.3 23,296 388 27.06 40.93 Patel et al. (2018)  
Zarrin-Gol River 21.91 8.79 37.67 – 13,751.04 286.28 12.39 – 32.68 Malvandi (2017)  
Liaohe River 9.88 – 35.06 17.82 – – 17.73 10.57 50.24 Ke et al. (2017)  
Halda River – 4.92 8.84 5.90 – 139.5 15.97 8.80 79.58 Bhuyan & Bakar (2017)  
River Ganga – – 69.9 29.8 31,988.6 372 26.7 26.7 67.8 Pandey & Singh (2017)  
Brisbane River 3.9 14.9 15 29 15,784 386 15.3 25.6 106.6 Duodu et al. (2017)  
Le'an River – – 62.80 391.90 – – 31.32 100.94 1,280.11 Chen et al. (2016)  
Meghna River – – 31.74 – 1,281.42 442.60 76.1 9.47 79.02 Hassan et al. (2015)  
Arvand River – 26.81 – 22.5 – – 64.5 8.11 – Zohreh Mirsalari (2014)  
Jialu River 14.57 – 733.38 107.61 – – 80.26 51.17 210 Fu et al. (2014)  
Langat River 30.04 – 29.04 14.84 – – 8.25 55.71 74.70 Lim et al. (2013)  
Euphrates, River – 38.73 120.11 30.52 3,441.05 312.11 103.98 32.69 130.25 Salah et al. (2012)  
Kabini River – – 441.14 161.03 1,855.7 246.48 280.32 30.03 191 Taghinia Hejabi et al. (2011)  
Tigris River 18 389.8 151.7 5,075.6 – 1,657 288.0 566.6 2,396.6 Varol (2011)  
Narmada River 1.6 25.9 199.3 188.8 89,577 1,214 200.3 13.9 196.2 Sharma & Subramanian (2010)  
Narmada River – – 250 130 40,000 1,350 275 80 250 Jain et al. (2008)  
Heavy metal concentration in surface water (mg/l) 
Narmada – 0.04 × 10−3 – – 0.03 – 0.11 × 10−3 – 0.49 × 10−3 This study 
All rivers 0.01 2 × 10−3 0.05 0.3 0.4 0.07 0.01 Cotruvo (2017)  
Nile – 0.03 0.03 0.07 1.64 0.22 0.03 0.07 0.13 Al-Afify & Abdel-Satar (2022)  
Old Brahmaputra – 0.2 0.01 0.12 – 1.44 0.44 0.11 0.01 Bhuyan et al. (2019)  
Swarnamukhi – 0.06 – 0.03 –– 0.26 0.02 – – Patel et al. (2018)  
Halda – 0.05 0.06 0.10 – 0.16 – 0.07 0.35 Bhuyan & Bakar (2017)  
Meghna – – 0.03 – – 0.01 – – 0.04 Hassan et al. (2015)  
Kabini – – 39.96 – 97.83 35.7 – – 132.5 Taghinia Hejabi et al. (2011)  
Narmada River – – – 0.08 0.05 0.01 – 0.08 0.02 Mishra & Kumar (2021)  
Gediz – – 0.02 0.24 0.10 0.96 – – 0.28 Akcay et al. (2003)  
Name of riverHeavy metal concentration in sediments of the Narmada River (mg/kg).
References
AsCoCrCuFeMnNiPbZn
Narmada River 0.07 1.39 3.33 2.97 1,133.82 23.97 0.95 0.20 2.09 This study 
Narmada River 0.03 0.76 1.69 1.04 602.66 11.24 0.39 0.11 0.90 Background value 
All rivers 13 19 90 45 47,200 850 68 20 95 Average Shale value 
Huafei River 100.0 – 160.9 866.90 – – 101.35 745.2 4,206.9 Jin et al. (2022)  
Nile River – 29.85 53.68 49.52 50,814 764.8 62.74 58.45 166.56 Al-Afify & Abdel-Satar (2022)  
Weihe River 39.93 – 142.93 69.34 – 1,212.8 62.38 36.39 143.64 Ahamad et al. (2020)  
Old Brahmaputra – 4.10 6.6 6.20 – 126.2 12.8 7.6 52.7 Bhuyan et al. (2019)  
Yinma River 0.21 – 46.60 23.80 – – 25.06 32.38 151.15 Guan et al. (2018)  
Swarnamukhi River – 7.22 84 108.3 23,296 388 27.06 40.93 Patel et al. (2018)  
Zarrin-Gol River 21.91 8.79 37.67 – 13,751.04 286.28 12.39 – 32.68 Malvandi (2017)  
Liaohe River 9.88 – 35.06 17.82 – – 17.73 10.57 50.24 Ke et al. (2017)  
Halda River – 4.92 8.84 5.90 – 139.5 15.97 8.80 79.58 Bhuyan & Bakar (2017)  
River Ganga – – 69.9 29.8 31,988.6 372 26.7 26.7 67.8 Pandey & Singh (2017)  
Brisbane River 3.9 14.9 15 29 15,784 386 15.3 25.6 106.6 Duodu et al. (2017)  
Le'an River – – 62.80 391.90 – – 31.32 100.94 1,280.11 Chen et al. (2016)  
Meghna River – – 31.74 – 1,281.42 442.60 76.1 9.47 79.02 Hassan et al. (2015)  
Arvand River – 26.81 – 22.5 – – 64.5 8.11 – Zohreh Mirsalari (2014)  
Jialu River 14.57 – 733.38 107.61 – – 80.26 51.17 210 Fu et al. (2014)  
Langat River 30.04 – 29.04 14.84 – – 8.25 55.71 74.70 Lim et al. (2013)  
Euphrates, River – 38.73 120.11 30.52 3,441.05 312.11 103.98 32.69 130.25 Salah et al. (2012)  
Kabini River – – 441.14 161.03 1,855.7 246.48 280.32 30.03 191 Taghinia Hejabi et al. (2011)  
Tigris River 18 389.8 151.7 5,075.6 – 1,657 288.0 566.6 2,396.6 Varol (2011)  
Narmada River 1.6 25.9 199.3 188.8 89,577 1,214 200.3 13.9 196.2 Sharma & Subramanian (2010)  
Narmada River – – 250 130 40,000 1,350 275 80 250 Jain et al. (2008)  
Heavy metal concentration in surface water (mg/l) 
Narmada – 0.04 × 10−3 – – 0.03 – 0.11 × 10−3 – 0.49 × 10−3 This study 
All rivers 0.01 2 × 10−3 0.05 0.3 0.4 0.07 0.01 Cotruvo (2017)  
Nile – 0.03 0.03 0.07 1.64 0.22 0.03 0.07 0.13 Al-Afify & Abdel-Satar (2022)  
Old Brahmaputra – 0.2 0.01 0.12 – 1.44 0.44 0.11 0.01 Bhuyan et al. (2019)  
Swarnamukhi – 0.06 – 0.03 –– 0.26 0.02 – – Patel et al. (2018)  
Halda – 0.05 0.06 0.10 – 0.16 – 0.07 0.35 Bhuyan & Bakar (2017)  
Meghna – – 0.03 – – 0.01 – – 0.04 Hassan et al. (2015)  
Kabini – – 39.96 – 97.83 35.7 – – 132.5 Taghinia Hejabi et al. (2011)  
Narmada River – – – 0.08 0.05 0.01 – 0.08 0.02 Mishra & Kumar (2021)  
Gediz – – 0.02 0.24 0.10 0.96 – – 0.28 Akcay et al. (2003)  

Cluster analysis (CA)

CA was employed to identify similar characteristic sources of contamination among the various stations through the use of a dendrogram (Olivares-Rieumont et al. 2005; Varol & Şen 2012; Liao et al. 2017; Bhuyan et al. 2019) shown in Figure 7. From the outcome of the dendrogram, two clusters have been found; Cluster 1 encompasses S-1, S-2, and S-3; these stations are attributed to tributary and anthropogenic activities. Cluster 2 comprises S-4, S-5, and S-6; these stations are attributed to urban and agricultural activities.
Figure 7

Dendrogram illustrating the clustering pattern of the analysed stations.

Figure 7

Dendrogram illustrating the clustering pattern of the analysed stations.

Close modal

The main aim of this investigation was to assess the concentrations of heavy metals (As, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) within the sedimentary deposits and surface water of the Narmada River. The observed trends in metal distribution throughout the different seasons exhibited distinguishable patterns. Regarding seasonal variations in sediments, the distribution of the heavy metals followed the order of monsoon > post-monsoon > winter > pre-monsoon for As, Cu, Fe, Ni, and Zn. Conversely, Co and Cr showed a distribution pattern of post-monsoon > winter > pre-monsoon > monsoon, and Mn and Pb showed a distribution pattern of pre-monsoon > winter > post-monsoon > monsoon. Regarding seasonal variations in surface water, the distribution of the heavy metals followed the order of post-monsoon > winter > monsoon > pre-monsoon for Co, Ni, and Zn. Fe showed a distribution pattern of monsoon > post-monsoon > winter > pre-monsoon.

The concentration of all these heavy metals in sediments and water were within the permissible limit, after assessment of heavy metals (As, Co, Cr, and Ni) revealed that there was no carcinogenic risk and there is no adverse effect on climate changes. The results of sediment pollution indices indicated that the sediment quality varied from unpolluted to minimally polluted. The sources of contamination were identified as being associated with human activities, natural crustal processes, and agricultural activities-derived metal inputs. This research represents the comprehensive study of heavy metal contamination in sediments and surface water of the Narmada River.

The advantages of this study are:

  • Assessing contamination levels and identifying peak contamination periods.

  • Gaining insights into the influence of natural and human factors on contamination levels.

  • Promoting community awareness and education.

  • Highlighting potential health risks associated with contamination levels.

The limitations of this study are:

  • The possibility that this stretch may not fully represent the variability of the entire river system.

  • Assessment challenges arise due to the limited historical data available for the Narmada River.

  • Omission of flora and fauna from the study.

  • Absence of contamination modelling in the analysis.

The author is grateful for the support given by the Principal, Jabalpur Engineering College, Jabalpur, M.P., for the support given for conducting the study.

Conceptualization, acquisition of data, preparation of graphs and tables by the first author (D.C.R.), analysis and interpretation of data by the second author (R.C.), drafting and analysis by the third author (A.V.), and final approval of manuscript by all authors.

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Data cannot be made publicly available; readers should contact the corresponding author for details.

The authors declare there is no conflict.

Ahamad
M. I.
,
Song
J.
,
Sun
H.
,
Wang
X.
,
Mehmood
M. S.
,
Sajid
M.
,
Su
P.
&
Khan
A. J.
2020
Contamination level, ecological risk, and source identification of heavy metals in the hyporheic zone of the Weihe river, China
.
International Journal of Environmental Research and Public Health
17
(
3
).
https://doi.org/10.3390/ijerph17031070
.
Al-Afify
A. D. G.
&
Abdel-Satar
A. M.
2022
Heavy metal contamination of the river Nile environment, Rosetta Branch, Egypt
.
Water, Air, and Soil Pollution
233
(
8
).
https://doi.org/10.1007/s11270-022-05759-7
.
Awasthi
N.
,
Tripathi
J. N.
,
Petropoulos
G. P.
,
Kumar
P.
,
Singh
A. K.
,
Dakhore
K. K.
,
Ghosh
K.
,
Gupta
D. K.
,
Srivastava
P. K.
,
Kalogeropoulos
K.
,
Singh
S.
&
Singh
D. K.
2024
Long-term spatiotemporal investigation of various rainfall intensities over central India using EO datasets
.
Hydrology
11
(
2
).
https://doi.org/10.3390/hydrology11020027
.
Bhuyan
M. S.
&
Bakar
M. A.
2017
Seasonal variation of heavy metals in water and sediments in the Halda River, Chittagong, Bangladesh
.
Environmental Science and Pollution Research
24
(
35
),
27587
27600
.
https://doi.org/10.1007/s11356-017-0204-y
.
Bhuyan
M. S.
,
Bakar
M. A.
,
Rashed-Un-Nabi
M.
,
Senapathi
V.
,
Chung
S. Y.
&
Islam
M. S.
2019
Monitoring and assessment of heavy metal contamination in surface water and sediment of the Old Brahmaputra River, Bangladesh
.
Applied Water Science
9
(
5
).
https://doi.org/10.1007/s13201-019-1004-y
.
Brito
A. C. C.
,
Boechat
C. L.
,
de Sena
A. F. S.
,
de Sousa Luz Duarte
L.
,
do Nascimento
C. W. A.
,
da Silva
Y. J. A. B.
,
da Silva
Y. J. A. B.
&
Saraiva
P. C.
2020
Assessing the distribution and concentration of heavy metals in soils of an agricultural frontier in the Brazilian Cerrado
.
Water, Air, and Soil Pollution
231
(
8
).
https://doi.org/10.1007/s11270-020-04760-2
.
Chen
H.
,
Chen
R.
,
Teng
Y.
&
Wu
J.
2016
Contamination characteristics, ecological risk and source identification of trace metals in sediments of the Le'an River (China)
.
Ecotoxicology and Environmental Safety
125
,
85
92
.
https://doi.org/10.1016/j.ecoenv.2015.11.042
.
Cotruvo
J.
2017
WHO Guidelines for Drinking Water Quality: First Addendum to the Fourth Edition
.
Journal of the American Water Works Association
109
,
44
51
.
https://doi.org/10.5942/jawwa.2017.109.0087
.
Da Silva
Y. J. A. B.
,
Cantalice
J. R. B.
,
Singh
V. P.
,
Do Nascimento
C. W. A.
,
Wilcox
B. P.
&
Bezerra Da Silva
Y. J. A.
2019
Heavy metal concentrations and ecological risk assessment of the suspended sediments of a multi-contaminated Brazilian watershed
.
Acta Scientiarum – Agronomy
41
(
1
).
https://doi.org/10.4025/actasciagron.v41i1.42620
.
Duodu
G. O.
,
Goonetilleke
A.
&
Ayoko
G. A.
2017
Potential bioavailability assessment, source apportionment and ecological risk of heavy metals in the sediment of Brisbane River estuary, Australia
.
Marine Pollution Bulletin
117
(
1–2
),
523
531
.
https://doi.org/10.1016/j.marpolbul.2017.02.017
.
Environmental Protection Agency, U
.
n.d.
Method 3050B acid digestion of sediments, sludges, and soils 1.0 scope and application
.
Fu
J.
,
Zhao
C.
,
Luo
Y.
,
Liu
C.
,
Kyzas
G. Z.
,
Luo
Y.
,
Zhao
D.
,
An
S.
&
Zhu
H.
2014
Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors
.
Journal of Hazardous Materials
270
,
102
109
.
https://doi.org/10.1016/j.jhazmat.2014.01.044
.
Gao
Y.
,
Sarker
S.
,
Sarker
T.
&
Leta
O. T.
2022
Analyzing the critical locations in response of constructed and planned dams on the Mekong River Basin for environmental integrity
.
Environmental Research Communications
4
(
10
).
https://doi.org/10.1088/2515-7620/ac9459
.
Guan
J.
,
Wang
J.
,
Pan
H.
,
Yang
C.
,
Qu
J.
,
Lu
N.
&
Yuan
X.
2018
Heavy metals in Yinma River sediment in a major Phaeozems zone, Northeast China: Distribution, chemical fraction, contamination assessment and source apportionment
.
Scientific Reports
8
(
1
).
https://doi.org/10.1038/s41598-018-30197-z
.
Hassan
M.
,
Tanvir Rahman
M. A. T. M.
,
Saha
B.
&
Kamal
A. K. I.
2015
Status of heavy metals in water and sediment of the Meghna River, Bangladesh
.
American Journal of Environmental Sciences
11
(
6
),
427
439
.
https://doi.org/10.3844/ajessp.2015.427.439
.
Hernández
J. P. R.
,
López
O. L. O.
,
Pérez
P. T. G.
,
Ortiz
F. G. G.
&
Gil
V. S.
2022
Perception of the inhabitants of the department of Caldas, Colombia on the effects of climate change on water quality
.
Journal of Water and Climate Change
13
(
1
),
43
55
.
https://doi.org/10.2166/wcc.2021.200
.
Hussein
A. M.
,
Neama Jabbar
D.
&
Ali
A. R.
2020
Spatial distribution and evaluation of heavy metals in surface sediments of the Al-Najaf sea depression reservoir, Iraq
.
Alexandria Engineering Journal
59
(
6
),
5197
5206
.
https://doi.org/10.1016/j.aej.2020.09.049
.
Islam
M. S.
,
Ahmed
M. K.
,
Raknuzzaman
M.
,
Habibullah-Al-Mamun
M.
&
Islam
M. K.
2015
Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country
.
Ecological Indicators
48
,
282
291
.
https://doi.org/10.1016/j.ecolind.2014.08.016
.
Jain
C. K.
,
Gupta
H.
&
Chakrapani
G. J.
2008
Enrichment and fractionation of heavy metals in bed sediments of River Narmada, India
.
Environmental Monitoring and Assessment
141
(
1–3
),
35
47
.
https://doi.org/10.1007/s10661-007-9876-y
.
Jin
B.
,
Wang
J.
,
Lou
W.
,
Wang
L.
,
Xu
J.
,
Pan
Y.
,
Peng
J.
&
Liu
D.
2022
Pollution, ecological risk and source identification of heavy metals in sediments from the Huafei river in the eastern suburbs of Kaifeng, China
.
International Journal of Environmental Research and Public Health
19
(
18
).
https://doi.org/10.3390/ijerph191811259
.
Karbassi
A. R.
,
Monavari
S. M.
,
Nabi Bidhendi
G. R.
,
Nouri
J.
&
Nematpour
K.
2008
Metal pollution assessment of sediment and water in the Shur River
.
Environmental Monitoring and Assessment
147
(
1–3
),
107
116
.
https://doi.org/10.1007/s10661-007-0102-8
.
Ke
X.
,
Gui
S.
,
Huang
H.
,
Zhang
H.
,
Wang
C.
&
Guo
W.
2017
Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China
.
Chemosphere
175
,
473
481
.
https://doi.org/10.1016/j.chemosphere.2017.02.029
.
Liao
J.
,
Chen
J.
,
Ru
X.
,
Chen
J.
,
Wu
H.
&
Wei
C.
2017
Heavy metals in river surface sediments affected with multiple pollution sources, South China: Distribution, enrichment and source apportionment
.
Journal of Geochemical Exploration
176
,
9
19
.
https://doi.org/10.1016/j.gexplo.2016.08.013
.
Lim
W. Y.
,
Aris
A. Z.
&
Tengku Ismail
T. H.
2013
Spatial geochemical distribution and sources of heavy metals in the sediment of Langat River, Western Peninsular Malaysia
.
Environmental Forensics
14
(
2
),
133
145
.
https://doi.org/10.1080/15275922.2013.781078
.
Ma
T.-F.
,
Wu
J.
,
Yu
Y.-C.
,
Chen
T.-T.
,
Yao
Y.
,
Liao
W.-L.
,
Feng
L.
&
Pan
J.
2023
An assessment of the heavy metal contamination, risk, and source identification in the sediments from the Liangtan River, China
.
Sustainability
15
(
23
),
16228
.
https://doi.org/10.3390/su152316228
.
Malvandi
H.
2017
Preliminary evaluation of heavy metal contamination in the Zarrin-Gol River sediments, Iran
.
Marine Pollution Bulletin
117
(
1–2
),
547
553
.
https://doi.org/10.1016/j.marpolbul.2017.02.035
.
Mishra
S.
&
Kumar
A.
2021
Estimation of physicochemical characteristics and associated metal contamination risk in the Narmada River, India
.
Environmental Engineering Research
26
(
1
),
1
11
.
https://doi.org/10.4491/eer.2019.521
.
Müller
G.
,
Singh
M.
,
Singh
I. B.
&
Ansari
A. A.
1997
Heavy metals in freshly deposited sediments of the Gomati River (a tributary of the Ganga River): Effects of human activities
.
Environmental Geology
29
,
246
252
.
Olivares-Rieumont
S.
,
De La Rosa
D.
,
Lima
L.
,
Graham
D. W.
,
D'Alessandro
K.
,
Borroto
J.
,
Martínez
F.
&
Sánchez
J.
2005
Assessment of heavy metal levels in Almendares River sediments – Havana City, Cuba
.
Water Research
39
(
16
),
3945
3953
.
https://doi.org/10.1016/j.watres.2005.07.011
.
Pandey
J.
&
Singh
R.
2017
Heavy metals in sediments of Ganga River: Up- and downstream urban influences
.
Applied Water Science
7
(
4
),
1669
1678
.
https://doi.org/10.1007/s13201-015-0334-7
.
Patel
P.
,
Raju
N. J.
,
Reddy
B. C. S. R.
,
Suresh
U.
,
Sankar
D. B.
&
Reddy
T. V. K.
2018
Heavy metal contamination in river water and sediments of the Swarnamukhi River Basin, India: Risk assessment and environmental implications
.
Environmental Geochemistry and Health
40
(
2
),
609
623
.
https://doi.org/10.1007/s10653-017-0006-7
.
Qiao
S.
,
Shi
X.
,
Gao
J.
,
Liu
Y.
,
Yang
G.
,
Zhu
A.
&
Wang
K.
2013
The distribution and variation of elements in sediments off the Huanghe (Yellow) River mouth
.
Chinese Journal of Oceanology and Limnology
31
(
4
),
876
885
.
https://doi.org/10.1007/s00343-013-2126-y
.
Rehana
S.
&
Dhanya
C. T.
2018
Modeling of extreme risk in river water quality under climate change
.
Journal of Water and Climate Change
9
(
3
),
512
524
.
https://doi.org/10.2166/wcc.2018.024
.
Sakan
S. M.
,
Dordević
D. S.
,
Manojlović
D. D.
&
Predrag
P. S.
2009
Assessment of heavy metal pollutants accumulation in the Tisza river sediments
.
Journal of Environmental Management
90
(
11
),
3382
3390
.
https://doi.org/10.1016/j.jenvman.2009.05.013
.
Salah
E. A. M.
,
Zaidan
T. A.
&
Al-Rawi
A. S.
2012
Assessment of heavy metals pollution in the sediments of Euphrates River, Iraq
.
Journal of Water Resource and Protection
04
(
12
),
1009
1023
.
https://doi.org/10.4236/jwarp.2012.412117
.
Sarker
S.
2022
Fundamentals of climatology for engineers: Lecture note
.
Eng
3
(
4
),
573
595
.
https://doi.org/10.3390/eng3040040
.
Sarker
S.
,
Sarker
T.
,
Leta
O. T.
,
Raihan
S. U.
,
Khan
I.
&
Ahmed
N.
2023
Understanding the planform complexity and morphodynamic properties of Brahmaputra river in Bangladesh: Protection and exploitation of riparian areas
.
Water (Switzerland)
15
(
7
).
https://doi.org/10.3390/w15071384
.
Sekabira
K.
,
Oryem Origa
H.
,
Basamba
T. A.
,
Mutumba
G.
&
Kakudidi
E.
2010
Assessment of heavy metal pollution in the urban stream sediments and its tributaries
.
International Journal of Environmental Science and Technology
7
(
3
),
435
446
.
Sharma
S. K.
&
Subramanian
V.
2010
Source and distribution of trace metals and nutrients in Narmada and Tapti River basins, India
.
Environmental Earth Sciences
61
(
7
),
1337
1352
.
https://doi.org/10.1007/s12665-010-0452-3
.
Shawky
M.
,
Ahmed
M. R.
,
Ghaderpour
E.
,
Gupta
A.
,
Achari
G.
,
Dewan
A.
&
Hassan
Q. K.
2023
Remote sensing-derived land surface temperature trends over South Asia
.
Ecological Informatics
74
.
https://doi.org/10.1016/j.ecoinf.2022.101969
.
Sin
S. N.
,
Chua
H.
,
Lo
W.
&
Ng
L. M.
n.d.
Assessment of heavy metal cations in sediments of Shing Mun River, Hong Kong. Available from: www.elsevier.com/locate/envint.
Singh
A. V.
&
Pandey
J.
2014
Heavy metals in the midstream of the Ganges River: Spatio-temporal trends in a seasonally dry tropical region (India)
.
Water International
39
(
4
),
504
516
.
https://doi.org/10.1080/02508060.2014.921851
.
Singhal
A.
,
Jaseem
M.
,
Divya
.
,
Sarker
S.
,
Prajapati
P.
,
Singh
A.
&
Jha
S. K.
2024
Identifying potential locations of hydrologic monitoring stations based on topographical and hydrological information
.
Water Resources Management
38
(
1
),
369
384
.
https://doi.org/10.1007/s11269-023-03675-x
.
Taghinia Hejabi
A.
,
Basavarajappa
H. T.
,
Karbassi
A. R.
&
Monavari
S. M.
2011
Heavy metal pollution in water and sediments in the Kabini River, Karnataka, India
.
Environmental Monitoring and Assessment
182
(
1–4
),
1
13
.
https://doi.org/10.1007/s10661-010-1854-0
.
Tiwari
D. K.
,
Singh
K. R.
&
Kumar
V.
2024
Forecasting of water quality parameters of Sandia station in Narmada basin, Central India, using AI techniques
.
Journal of Water and Climate Change
.
https://doi.org/10.2166/wcc.2024.520
.
Wang
Q.
,
Huang
X.
&
Zhang
Y.
2023
Heavy metals and their ecological risk assessment in surface sediments of the Changjiang River Estuary and contiguous East China Sea
.
Sustainability (Switzerland)
15
(
5
).
https://doi.org/10.3390/su15054323
.
Wijesiri
B.
,
Liu
A.
,
Deilami
K.
,
He
B.
,
Hong
N.
,
Yang
B.
,
Zhao
X.
,
Ayoko
G.
&
Goonetilleke
A.
2019
Nutrients and metals interactions between water and sediment phases: An urban river case study
.
Environmental Pollution
251
,
354
362
.
https://doi.org/10.1016/j.envpol.2019.05.018
.
Xie
F.
,
Xie
Z.
,
Zhou
B.
,
Li
L.
,
Zhou
X.
,
Fan
Q.
&
C.
2020
Characteristics and health risk assessment of organochlorine pesticides (OCPs) residues along Sino-Russian boundary river
.
Water, Air, and Soil Pollution
231
(
10
).
https://doi.org/10.1007/s11270-020-04877-4
.
Xu
F.
,
Liu
Z.
,
Cao
Y.
,
Qiu
L.
,
Feng
J.
,
Xu
F.
&
Tian
X.
2017
Assessment of heavy metal contamination in urban river sediments in the Jiaozhou Bay catchment, Qingdao, China
.
Catena
150
,
9
16
.
https://doi.org/10.1016/j.catena.2016.11.004
.
Xu
C.
,
Yan
H.
&
Zhang
S.
2021
Heavy metal enrichment and health risk assessment of karst cave fish in Libo, Guizhou, China
.
Alexandria Engineering Journal
60
(
1
),
1885
1896
.
https://doi.org/10.1016/j.aej.2020.11.036
.
Zhuang
S.
&
Lu
X.
2020
Environmental risk evaluation and source identification of heavy metal (loid)s in agricultural soil of Shangdan valley, northwest China
.
Sustainability (Switzerland)
12
(
14
),
1
15
.
https://doi.org/10.3390/su12145806
.
Zhuang
Q.
,
Li
G.
&
Liu
Z.
2018
Distribution, source and pollution level of heavy metals in river sediments from South China
.
Catena
170
,
386
396
.
https://doi.org/10.1016/j.catena.2018.06.037
.
Zohreh Mirsalari
A. R. S.
2014
Distribution and seasonal variation of heavy metal in surface sediments from Arvand River, Persian Gulf
.
Journal of Marine Science: Research & Development
4
(
3
).
https://doi.org/10.4172/2155-9910.1000150
.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).