Global climate models (GCMs) developed by the numerical simulation of physical processes in the atmosphere, ocean, and land are useful tools for climate prediction studies. However, these models involve parameterizations and assumptions for the simulation of complex phenomena, which lead to random and structural errors called biases. So, the GCM outputs need to be bias-corrected with respect to observed data before applying these model outputs for future climate prediction. This study develops a statistical bias correction approach using a four-layer feedforward radial basis neural network – a generalized regression neural network (GRNN) to reduce the biases of the near-surface temperature data in the Indian mainland. The input to the network is the CNRM-CM5 model output gridded data of near-surface temperature for the period 1951–2005, and the target to the model used for bias correcting the input data is the gridded near-surface temperature developed by the Indian Meteorological Department for the same period. Results show that the trained GRNN model can improve the inherent biases of the GCM modelled output with significant accuracy, and a good correlation is seen between the test statistics of observed and bias-corrected data for both the training and testing period. The trained GRNN model developed is then used for bias correction of CNRM-CM5 modelled projected near-surface temperature for 2006–2100 corresponding to the RCP4.5 and RCP8.5 emission scenarios. It is observed that the model can adapt well to the nature of unseen future temperature data and correct the biases of future data, assuming quasi-stationarity of future temperature data for both emission scenarios. The model captures the seasonal variation in near-surface temperature over the Indian mainland, having diverse topography appreciably, and this is evident from the bias-corrected output.

  • Analysed the performance of the GRNN in correcting the inherent biases of GCM output data.

  • The results show that the method has better accuracy in correcting the biases as compared to the prevalent techniques, considering the diverse topography and seasonal variations in the study area.

  • The method is also successful in correcting the biases in future TAS gridded data with decent accuracy.

This content is only available as a PDF.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (