Permanent monitoring of environmental issues demands efficient, accurate, and user-friendly pollutant prediction methods, particularly from operating variables. In this research, the efficiency of multiple polynomial regression in predicting the adsorption capacity of caffeine (q) from an experimental batch mode by multi-walled carbon nanotubes (MWCNTs) was investigated. The MWCNTs were specified by scanning electron microscope, Fourier transform infrared spectroscopy and point of zero charge. The results confirmed that the MWCNTs have a high capacity to uptake caffeine from the wastewater. Five parameters including pH, reaction time (t), adsorbent mass (M), temperature (T) and initial pollutant concentration (C) were selected as input model data and q as the output. The results indicated that multiple polynomial regression which employed C, M and t was the best model (normalized root mean square error = 0.0916 and R2 = 0.996). The sensitivity analysis indicated that the predicted q is more sensitive to the C, followed by M, and t. The results indicated that the pH and temperature have no significant effect on the adsorption capacity of caffeine in batch mode experiments. The results displayed that estimations are slightly overestimated. This study demonstrated that the multiple polynomial regression could be an accurate and faster alternative to available difficult and time-consuming models for q prediction.

You do not currently have access to this content.