Abstract

A new rapid, sensitive and selective method for rotavirus detection in water samples is described in this paper. Amino pink magnetic microparticles were functionalized with monoclonal antibodies and used to capture, concentrate, separate and detect infectious rotavirus particles in distilled and drinking water samples. The fluorescence of the microparticles was used to determine the presumptive presence of rotaviruses by using confocal microscopy. Atomic force microscopy and transmission electron microscopy were used to confirm the presence of the anti-rotavirus antibodies attached to the surface of the magnetic microparticles as well as that of viruses attached through the antibody. In addition, RNA extraction, quantification and amplification were carried out to validate the microscopic observations. The selectivity of the microparticles was tested in a sample containing a mix of enteric viruses. It was concluded that functionalizing fluoromagnetic microparticles with anti-rotavirus monoclonal antibodies constituted a fast, simple and reliable technique for detecting as low as 10 Rotavirus particles in 1 L of artificial or real water in just 2 hours.

You do not currently have access to this content.