Abstract

Swimming is a popular activity in Aotearoa-New Zealand (NZ). Two variables that strongly influence swimming suitability of waters are faecal contamination, as indicated by the bacterium Escherichia coli, and visual clarity as it affects aesthetics and safety with respect to submerged hazards. We show that E. coli and visual clarity are inversely related overall in NZ rivers (R = −0.54), and more strongly related in many individual rivers, while similar (but positive) correlations apply also to turbidity. This finding, apparently reflecting co-mobilisation of faecal contamination and fine sediment, suggests that visual clarity, measured or estimated from appearance of submerged features, should be a valuable indicator of faecal contamination status and (more generally) swimming suitability. If swimmers were to avoid river waters <1.6 m black disc visibility (a long-established NZ guideline for swimming) they would also avoid microbial hazards (E. coli <550 cfu/100 mL about 99% of the time in NZ rivers). However, urban-affected rivers might sometimes be microbially contaminated when still clear. Water management agencies should measure visual clarity together with E. coli in river surveillance. Real-time information on swimming suitability could then be based on continuous monitoring of turbidity locally calibrated to both visual clarity and E. coli.

You do not currently have access to this content.