Abstract

The study investigated two engineered fabrics and five cloth fabrics for low cost drinking water treatment. An optimized fabric filtration method has been developed and tested. Numerical models for predicting particulate removal efficiency have been developed for each fabric as support tools for selecting optimal process configuration. Both engineered fabrics showed better performance and achieved the most effective particulate removal for the highest number of layers used. Sequential filtration was done on eight layers for representative fabrics of each type and recorded higher contaminant removal than one filtration run. Geotextile 1 was better than geotextile 2 in particulate removal and recorded Escherichia coli removals of up to 1.4 log removal value (LRV) for eight-layer normal filtration and 3.0 LRV for four-pot sequential filtration. Brushed cotton was best among the cloth fabrics in particulate removal but performed below expectation in bacterial removal. It recorded E. coli removals of only 0.04 LRV and 0.2 LRV for eight-layer normal filtration and four-pot sequential filtration, respectively. Effluent turbidity decreased exponentially with number of fabric layers, in line with porous media filtration theory. The optimized filtration method produced very clear drinking water of relatively safe quality using geotextile 1. Appropriate disinfection is still recommended to ensure continued water safety.

You do not currently have access to this content.