Abstract

Hydraulic or filtration efficiency of residential swimming pools, quantified in terms of residence time characteristics, is critical to disinfection and thus important to public health. In this study, a three-dimensional computational fluid dynamics model together with Eulerian and Lagrangian-based techniques are used for investigating the residence time characteristics of a passive tracer and particles in the water, representative of chemicals and pathogens, respectively. The flow pattern in the pool is found to be characterized by dead zone regions where water constituents may be retained for extended periods of times, thereby potentially decreasing the pool hydraulic efficiency. Two return-jet configurations are studied in order to understand the effect of return-jet location and intensity on the hydraulic efficiency of the pool. A two-jet configuration is found to perform on par with a three-jet configuration in removing dissolved constituents but the former is more efficient than the latter in removing or flushing particles. The latter result suggests that return-jet location and associated flow circulation pattern have an important impact on hydraulic efficiency. Thus return-jet configuration should be incorporated as a key parameter in the design of swimming pools complementing current design standards.

You do not currently have access to this content.