Abstract

The use of reverse osmosis (RO) membranes has been expanding not only to medical applications but also to water supply and reclaimed water applications due to its strong ability to remove a wide range of contaminants. Many researchers reported RO performance as a barrier against waterborne viruses; however, there are limited reports on its ability to remove bacteria from water. This investigation evaluated the removal performances of several spiral-wound RO modules and a hollow fiber ultrafiltration (UF) module in two different ways: dosing tests in batch-wise mode operation and in continuous-mode operation. The dosing tests of Escherichia coli using RO modules confirmed that E. coli could leak from the feed-side into the permeate. The log removal values (LRVs) (4.21- to >7.44-log10) by the RO modules from different production lots were found to vary greatly. In continuous-mode operation of the RO module, the LRVs for indigenous heterotrophic bacteria decreased over the operation period. These results clearly illustrate that bacteria, which originate on the feed-side, can leak into the permeate-side and then begin to proliferate in the permeate. On the other hand, using a UF module, E. coli was not detected in the permeate regardless of the operation mode.

Graphical Abstract

Graphical Abstract
Graphical Abstract
You do not currently have access to this content.