Although groundwater is a major water supply source in the Kathmandu Valley of Nepal, it is known that the groundwater has significant microbial contamination exceeding the drinking water quality standard recommended by the World Health Organization (WHO), and that this has been implicated in causing a variety of diseases among people living in the valley. However, little is known about the distribution of pathogenic microbes in the groundwater. Here, we analysed the microbial communities of the six water samples from deep tube wells by using the 16S rRNA gene sequences based culture-independent method. The analysis showed that the groundwater has been contaminated with various types of opportunistic microbes in addition to fecal microbes. Particularly, the clonal sequences related to the opportunistic microbes within the genus Acinetobacter were detected in all samples. As many strains of Acinetobacter are known as multi-drug resistant microbes that are currently spreading in the world, we conducted a molecular-based survey for detection of the gene encoding carbapenem-hydrolysing β-lactamase (blaoxa-23-like gene), which is a key enzyme responsible for multi-drug resistance, in the groundwater samples. Nested polymerase chain reaction (PCR) using two specific primer sets for amplifying blaoxa-23-like gene indicated that two of six groundwater samples contain multi-drug resistant Acinetobacter.