Previous predictions of children's blood lead levels (BLLs) through biokinetic models conclude that lead in tap water is not a primary health risk for a typical child under scenarios representative of chronic exposure, when applying a 10 μg/dL BLL of concern. Use of the US Environmental Protection Agency Integrated Exposure Uptake Biokinetic (IEUBK) model and of the International Commission on Radiological Protection (ICRP) biokinetic model to simulate children's exposure to water lead at home and at school was re-examined by expanding the scope of previous modeling efforts to consider new public health goals and improved methodology. Specifically, explicit consideration of the more sensitive population groups (e.g., young children and, particularly, formula-fed infants), the variability in BLLs amongst exposed individuals within those groups (e.g., more sensitive children at the upper tail of the BLL distribution), more conservative BLL reference values (e.g., 5 and 2 μg/dL versus 10 μg/dL) and concerns of acute exposure revealed situations where relatively low water lead levels were predicted to pose a human health concern.