Free-living amoebae (FLA) include many genera which cause serious diseases such as sight-threatening keratitis, cutaneous ulcers and fatal encephalitis. This study was conducted due to the lack of research regarding genotypes Acanthamoeba, Naegleria and Vermamoeba in mineral springs of Guilan Province in northern Iran. Twenty-five water samples were collected from mineral springs in Guilan Province. After filtration through nitrocellulose membrane, samples were cultured on non-nutrient agar plates. The morphological key of Page was used to identify free-living amoebae (FLA) using an inverted microscope. Positive cultures were analyzed by polymerase chain reaction (PCR) and genotypes based on the NCBI database. Eleven (44%) samples were positive for Acanthamoeba, Naegleria and Vermamoeba. By sequencing the positive isolates, the strains were shown to belong to Acanthamoeba castellanii (three case isolates belonged to T4 genotype), three cases of Vermamoeba vermiformis, and two cases of N. australiensis, two cases of N. pagei and one case of N. gruberi. According to our research the occurrence of Acanthamoeba, Naegleria spp. and Vermamoeba spp. in mineral springs could be hazardous for high risk persons. Regular monitoring and posting warning signs of these waters by health planners could prevent free-living amoebae mediated diseases.

Free-living amoebae (FLA) include many genera which cause serious diseases such as sight-threatening keratitis, cutaneous ulcers and fatal encephalitis. Acanthamoeba spp., Naegleria fowleri and Balamuthia mandrillaris are the most commonly reported causes in the world (Hooshyar et al. 2013; Javanmard et al. 2017; Feiz-Haddad et al. 2019a). Other genera in this group, including Sappinia, Vermamoeba and Vahlkampfia, are causative agents of disease with a lower incidence around the world (Abedkhojasteh et al. 2015; Javanmard et al. 2017). Acanthamoeba is widely distributed in a variety of environments including ocean sediments, tap water, ponds, hydrotherapy pools, lakes and hot springs (Feiz-Haddad et al. 2019b). There have been several reports of finding the source of Acanthamoeba (belonged to T4, T5, T7 and T11 genotype), Naegleria gruberi and Vahlkampfia vahlkampfia from mineral water in Brazil and Mexico (Rivera et al. 1981; Maschio et al. 2015). Further, Todd et al. (2015) reported Acanthamoeba from 50.6 to 17.3% recreational (mineral springs, ponds, lagoons, rivers, beaches and streams) and domestic water, respectively, from Jamaica. Free-living amoebae such as Acanthamoeba spp. can act as a Trojan horse and reservoir for pathogenic microorganisms such as Protozoa, bacteria, viruses and yeasts (Khan 2009).

To date, the Acanthamoeba genus, based on 18S rDNA sequencing, is classified into 21 genotypes (T1–T21) (Corsaro et al. 2017).

At present, in Iran Acanthamoeba genotypes related to keratitis are T4, T3, T2, T11, T13 and T15 (Niyyati & Rezaeian 2015). Acanthamoeba keratitis (AK) is mostly seen among healthy individuals and the young, and most of them (80%) have a history of wearing contact lenses (CLs), and it is seen in people who never use CLs as well (Feiz-Haddad et al. 2019b). In a study carried out by Shokri et al. (2016) in northern Iran on water sources, out of 77 water samples taken from different water sources within the Mazandaran Province in northern Iran (Sari city and suburbs), 83.3% of sequenced isolates belonged to the T4 genotype and the rest belonged to the T2 genotype (Shokri et al. 2016). The presence of FLA in the recreational water of the provinces bordering Guilan has been confirmed (Latifi et al. 2016, 2017; Feiz-Haddad et al. 2019a). Also, there are some studies indicating the presence of Acanthamoeba in river water samples in Guilan Province, northern Iran (Mahmoudi et al. 2012, 2015a, 2015b). However, there is no information regarding free living amoeba in mineral springs in these areas. Guilan Province has numerous mineral springs in different cities. This study was conducted due to the lack of research regarding the genotypes Acanthamoeba, Naegleria and Vermamoeba in mineral springs of Guilan Province in northern Iran.

Sampling process

Five mineral springs in Guilan Province, northern Iran, were included in the current study and five samples per site were obtained (Latifi et al. 2017). Rudbar, Fuman, Amlash, Rasht and Rudsar (Figure 1) are five cities in this province known for their recreational and therapeutic mineral springs and these are included in the present study (Latifi et al. 2017). Briefly, a volume of 500 mL of surface water was collected from mineral springs and transferred within 4 hours to the laboratory to be processed (Latifi et al. 2017). Physical parameters such as the pH and temperature of water were measured by a portable pH meter (Digital tester DMT-20) (Dodangeh et al. 2018).

Figure 1

Map showing the location of mineral springs in Guilan Province, Iran.

Figure 1

Map showing the location of mineral springs in Guilan Province, Iran.

Close modal

Filtration, cultivation and cloning

Samples were filtered using cellulose nitrate membranes with a pore size of 0.45 μm as reported in a previous study (Latifi et al. 2017). The filters were then inverted and cultured onto 2% non-Nutrient agar plates covered with a layer of Escherichia coli. Incubation of samples was carried out at 30 °C in order to detect Acanthamoeba spp. Naegleria spp. Vermamoeba and 45 °C in order to detect N. fowleri. The morphological key of Page (Page 1988) was used for the identification FLA using both an inverted microscope and wet-mount method. Cloning of the suspected amoebae was performed using the culture replicates method as previously described (Latifi et al. 2017).

PCR amplification and gel electrophoresis

In this study, cloned amoebae in plates were harvested using phosphate buffered saline (pH: 7.2) and the amoebae were precipitated by centrifuging for 5 min at 2,000 rpm. DNA was extracted using the modified phenol-chloroform method (Mahmoudi et al. 2012; Javanmard et al. 2017) and GeNet Bio kit, according to the manufacturer's instructions (GeNet Bio, South Korea). To carry out the polymerase chain reaction (PCR), 25 μL Ampliqone (Taq DNA Polymerase Master Mix RED, Denmark) was combined with DNA (10 ng), 0.1 μM of each primer and distilled water. Four sets of primers were used in order to detect various FLA which are shown in Table 1. In the present study, we used two primer sets, the Naegleria genus-specific and N. fowleri species-specific, designed from the ITS1-ITS2 region by Pelandakis et al. (2000), Latifi et al. (2017) and Javanmard et al. (2017) who had previously provided successful results. The ribosomal ITS sequence was reported to be a powerful tool for detecting inter- and intra-species differences of various organisms, including Vahlkampfia species (Garstecki et al. 2005) and Naegleria (De Jonckheere 1998). As in Naegleria, the differences between species (intra-species of N. fowleri) and genus (inter-species) were due to the polymorphism sequence that occurred at the ITS1 and ITS2 regions, respectively (Johan 2002). The ITS region was also being used for the identification of the new Naegleria isolates (Sheehan et al. 2003; Ithoi et al. 2011). The cycling condition was set as pre-denaturation step for 3 min at 94 °C, followed by 35 repetitions at 94 °C for 35 s, annealing steps were at 56, 56, 56 and 58 °C for 1 min (for Acanthamoeba, Vahlkampfiids, Naegleria fowleri and Vermamoeba, respectively), and 72 °C for 1 min (Javanmard et al. 2017). The expected sizes of PCR amplicons were revealed by electrophoresis on 1.5% horizontal agarose gel in Trisborate-EDTA buffer and stained with a solution of Safe Stain.

Table 1

Primers used in this study

FLAaPrimer sequenceReferences
N. fowlerib F5′-GTGAAAACCTTTTTTCCATTTACA-3′
R5′-AAATAAAAGATTGACCATTTGAAA-3′ 
Pelandakis et al. (2000); Latifi et al. (2017)  
Vahlkampfiids ITS1 F5′-GAACCTGCGTAGGGATCATTT-3′
ITS2 R 5'TTTCTTTTCCTCCCCTTATTA-3′ 
Pelandakis et al. (2000); Javanmard et al. (2017)  
Acanthamoeba spp. JDP15′-GGCCCAGATCGTTTACCGTGAA-3′
JDP2 5′-TCTCACAAGCTGCTAGGGAGTCA-3′ 
Mahmoudi et al. (2015b)  
Vermamoeba NA1F 5′-TTA CGA GGT CAG GAC ACTGT-3′
NA2R 5′-GAC CAT CCG GAG TTC TCG-3′ 
Javanmard et al. (2017)  
FLAaPrimer sequenceReferences
N. fowlerib F5′-GTGAAAACCTTTTTTCCATTTACA-3′
R5′-AAATAAAAGATTGACCATTTGAAA-3′ 
Pelandakis et al. (2000); Latifi et al. (2017)  
Vahlkampfiids ITS1 F5′-GAACCTGCGTAGGGATCATTT-3′
ITS2 R 5'TTTCTTTTCCTCCCCTTATTA-3′ 
Pelandakis et al. (2000); Javanmard et al. (2017)  
Acanthamoeba spp. JDP15′-GGCCCAGATCGTTTACCGTGAA-3′
JDP2 5′-TCTCACAAGCTGCTAGGGAGTCA-3′ 
Mahmoudi et al. (2015b)  
Vermamoeba NA1F 5′-TTA CGA GGT CAG GAC ACTGT-3′
NA2R 5′-GAC CAT CCG GAG TTC TCG-3′ 
Javanmard et al. (2017)  

aFree living amoebae.

bNaegleria fawleri.

DNA sequencing of the PCR products

PCR products were submitted to DNA sequencing using an ABI 3130XL automatic sequencer. Blast analysis of the sequences with others available in the GeneBank data was performed using BLAST software from the National Center for Biotechnology Information (NCBI) site. The highest homology was the base of species identification (Latifi et al. 2017). The sequences were submitted to the gene bank under the following accession numbers: MK422924, MK441743, MK441744, MK441745-MK441748, MK441750 and MK441752-MK441754.

Results

The pH and temperature of the mineral springs are shown in Table 2. Of the 25 water samples collected from mineral springs in northern Iran, 11 (44%) were positive for Acanthamoeba spp., Naegleria spp. and Vermamoeba spp. based on the morphological criteria of Page (1988). The Acanthamoeba cysts were characterized as being double walled; the ectocyst and endocyst (Figure 2). For Vahlkampfiids round cysts with a smooth wall and Vermamoeba vermiformis round cysts with a smooth wall but smaller Vahlkampfiids refer to Figures 3 and 4 respectively. These 11 isolates were cloned successfully (Figures 24). Positive cultures were analyzed by PCR and genotypes base on the NCBI database. In electrophoresis of PCR products, Acanthamoeba demonstrated an approximately 500 bp band (Figure 5). Acanthamoeba spp. was detected in three of the extracted DNA by PCR, using the JDP primer pairs, which are specific for the Acanthamoeba genus. Water pH and temperature were assessed in situ by using a portable pH meter (Digital tester DMT-20), so that these parameters of Mineral springs were respectively measured as 16–27 °C and 6.1–7.2 pH (Table 2). By sequencing the positive isolates, the strains were shown to belong to Acanthamoeba castellanii (three case isolates belonged to T4 genotype), three cases of Vermamoeba vermiformis and two cases of N. australiensis, two cases of N. pagei and one case of N. gruberi (Table 3).

Table 2

Location and description of mineral springs in Guilan Province

CitySampling siteTemperature (°C)pHAcanthamoebaNaegleriaVermamoeba
Rudbar Damash1 24 6.5 +a – – 
Damash2 27 6.8 – – – 
Damash3 21 6.4 – – 
Damash4 22 6.6 – – – 
Damash5 25 6.5 – – – 
Rasht Cheshmagol1 22 6.9 – – – 
Cheshmagol2 21 7.2 – – – 
Cheshmagol3 18 7.0 – – 
Cheshmagol4 16 6.8 – – 
Cheshmagol5 19 6.7 – – – 
Fuman Ali Zakhani1 24 6.4 – – – 
Ali Zakhani2 22 6.7 – – 
Ali Zakhani3 20 6.4 – – – 
Ali Zakhani4 21 6.4 – – 
Ali Zakhani5 26 6.6 – – 
Amlash Lausanne1 24 6.6 – – – 
Lausanne2 23 6.4 – – 
Lausanne3 22 6.8 – – 
Lausanne4 27 6.4 – – – 
Lausanne5 25 6.1 – – – 
Rudsar Sajiran1 23 6.6 – – 
Sajiran2 28 6.7 – – 
Sajiran3 24 6.3 – – – 
Sajiran4 21 6.4 – – – 
Sajiran5 24 6.8 – – – 
CitySampling siteTemperature (°C)pHAcanthamoebaNaegleriaVermamoeba
Rudbar Damash1 24 6.5 +a – – 
Damash2 27 6.8 – – – 
Damash3 21 6.4 – – 
Damash4 22 6.6 – – – 
Damash5 25 6.5 – – – 
Rasht Cheshmagol1 22 6.9 – – – 
Cheshmagol2 21 7.2 – – – 
Cheshmagol3 18 7.0 – – 
Cheshmagol4 16 6.8 – – 
Cheshmagol5 19 6.7 – – – 
Fuman Ali Zakhani1 24 6.4 – – – 
Ali Zakhani2 22 6.7 – – 
Ali Zakhani3 20 6.4 – – – 
Ali Zakhani4 21 6.4 – – 
Ali Zakhani5 26 6.6 – – 
Amlash Lausanne1 24 6.6 – – – 
Lausanne2 23 6.4 – – 
Lausanne3 22 6.8 – – 
Lausanne4 27 6.4 – – – 
Lausanne5 25 6.1 – – – 
Rudsar Sajiran1 23 6.6 – – 
Sajiran2 28 6.7 – – 
Sajiran3 24 6.3 – – – 
Sajiran4 21 6.4 – – – 
Sajiran5 24 6.8 – – – 

aInverted microscope = +.

Table 3

Data of the free-living amoebae from mineral springs of northern Iran

CodeName of mineral springsNumber/positive samplesSequencingAccession numberPCR (JDP1,2)PCR (ITS1, 2)PCR (NA1/2)PCR for N. fowleri
HN1 Rudbar Damash 1 5/2 T4 genotype MK422924 – – – 
HN3 Rudbar Damash 3 N. pagei MK441745 – – – 
HN8 Rasht Cheshmagol 3 5/2 T4 genotype MK441743 – – – 
HN9 Rasht Cheshmagol 4 N. pagei MK441746 – – – 
HN12 FumanAliZakhani 2 5/3 N. gruberi MK441747 – – – 
HN14 FumanAliZakhani 4 N. australiensis MK441748 – – – 
HN15 FumanAliZakhani 5 vermiformis MK441752 – – – 
HN17 Amlash Lausanne 2 5/2 T4 genotype MK441744 – – – 
HN18 Amlash Lausanne 3 V. vermiformis MK441753 – – – 
HN21 Rudsar Sajiran 1 5/2 V. vermiformis MK441754 – – – 
HN22 Rudsar Sajiran 2 N. australiensis MK441750 – – – 
CodeName of mineral springsNumber/positive samplesSequencingAccession numberPCR (JDP1,2)PCR (ITS1, 2)PCR (NA1/2)PCR for N. fowleri
HN1 Rudbar Damash 1 5/2 T4 genotype MK422924 – – – 
HN3 Rudbar Damash 3 N. pagei MK441745 – – – 
HN8 Rasht Cheshmagol 3 5/2 T4 genotype MK441743 – – – 
HN9 Rasht Cheshmagol 4 N. pagei MK441746 – – – 
HN12 FumanAliZakhani 2 5/3 N. gruberi MK441747 – – – 
HN14 FumanAliZakhani 4 N. australiensis MK441748 – – – 
HN15 FumanAliZakhani 5 vermiformis MK441752 – – – 
HN17 Amlash Lausanne 2 5/2 T4 genotype MK441744 – – – 
HN18 Amlash Lausanne 3 V. vermiformis MK441753 – – – 
HN21 Rudsar Sajiran 1 5/2 V. vermiformis MK441754 – – – 
HN22 Rudsar Sajiran 2 N. australiensis MK441750 – – – 
Figure 2

Acanthamoeba castellanii cysts (400×).

Figure 2

Acanthamoeba castellanii cysts (400×).

Close modal
Figure 3

Vahlkampfiids cysts (400×).

Figure 3

Vahlkampfiids cysts (400×).

Close modal
Figure 4

Vermamoeba vermiformis cysts (400×).

Figure 4

Vermamoeba vermiformis cysts (400×).

Close modal
Figure 5

PCR amplification of the isolated Acanthamoeba strains using JDP primers. M marker, – = negative control, += positive control, two samples.

Figure 5

PCR amplification of the isolated Acanthamoeba strains using JDP primers. M marker, – = negative control, += positive control, two samples.

Close modal

The present study is the first study on the mineral springs of Guilan Province, northern Iran, to determine the pathogenic free-living amoeba via molecular methods. This study reports the presence of potentially pathogenic Acanthamoeba castellanii (genotype T4), Vermamoeba vermiformis and Naegleria strains including: N. australiensis, N. pagei and N. gruberi in the mineral springs of Guilan Province, northern Iran. In the present study pathogenic N. fowleri was not detected and there were no significant differences shown between pH value (and temperature) or the presence/absence of Acanthamoeba, Naegleria and Vermamoeba (Table 2). Some studies conducted in these areas have identified waterborne pathogens such as Acanthamoeba castellanii and Vermamoeba verformis (Mahmoudi et al. 2015b; Dodangeh et al. 2018).

Recently, infections due to Acanthamoeba have increased in the world, which is more likely related to the presence of Acanthamoeba in the natural environment, especially in water sources with a variety of prevalence detected (Liang et al. 2010; Saburi et al. 2017). We isolated one type of Acanthamoeba (T4), unlike Edagawa et al. (2009) who found T3, and Huang & Hsu (2010) who found that T15 predominated in the waters surveyed. Acanthamoeba T4 genotype is associated with AK (Acanthamoeba keratitis). Acanthamoeba keratitis is seen among people who use non-sterile waters and salt pills for disinfecting or storing their CLs (Feiz-Haddad et al. 2019b). Among the 47 known species of Naegleria, only N. fowleri has been reported to be pathogenic for human (De Jonckheere 2014). Naegleria fowleri was not detected in the present study; this may be owing to differences in the incubation temperature of the culture plates and/or the number of springs. Moreover, in contrast to the current study, others have demonstrated the presence of N. fowleri in the cooling waters of a Belgian power plant and hot springs in Taiwan (Behets et al. 2007; Tung et al. 2013). To date, one clinical case of N. fowleri has been reported in the country (Movahedi et al. 2012). We isolated two cases of N. australiensis in the present study (Table 3). Naegleria australiensis could be pathogenic to animal models (John & De Jonckheere 1985). Also, we isolated three cases of Vermamoeba vermiformis in the present study (Table 3). Keratitis owing to Vermamoeba and also a case of mixed infection of Vermamoeba vermiformis and Acanthamoeba were reported during previous studies (Lorenzo-Morales et al. 2007; Abedkhojasteh et al. 2015; Hajialilo et al. 2015). Vermamoeba amoebae are also considered as a reservoir for pathogenic microorganisms such as Legionella pneumophila and Pseudomonas (Centeno et al. 1996). Mineral springs, used therapeutically and as tourist attractions, is growing in popularity; which will increase the chance of exposure to these amoebae. To prevent infection and diseases related to free-living amoebae, mineral springs should be periodically checked, in particular during the summer season when these surface waters are used by thousands of tourists. Furthermore, posting of warning signs at recreational mineral springs could be another option for preventing FLA infections.

The results of our study approve the presence of potentially pathogenic Acanthamoeba castellanii (genotype T4), Vermamoeba vermiformis and Naegleria strains including: N. australiensis, N. pagei and N. gruberi in the mineral springs of Guilan Province. Mineral springs may enhance exposure of the amoebae to individuals. Hence, more attention to mineral springs is needed to prevent free-living amoebae mediated diseases.

The authors thank the esteemed group of Parasitology Ahvaz Jundishapur University of Medical Sciences and Guilan University of Medical Sciences. The present study was financially supported by Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran (Grant No. 98 S 73).

The authors declare that there is no conflict of interests.

Abedkhojasteh
H.
Niyyati
M.
Rezaei
S.
Mohebali
M.
Farnia
S.
Kazemi-Rad
E.
Roozafzoon
R.
Sianati
H.
Rezaeian
M.
Heidari
M.
2015
Identifying differentially expressed genes in trophozoites and cysts of Acanthamoeba T4 genotype: implications for developing new treatments for Acanthamoeba keratitis
.
Eur. J. Protistol.
51
,
34
41
.
Behets
J.
Declerck
P.
Delaedt
Y.
Verelst
L.
Ollevier
F.
2007
Survey for the presence of specific free-living amoebae in cooling waters from Belgian power plants
.
Parasitol. Res.
100
,
1249
1256
.
Centeno
M.
Rivera
F.
Cerva
L.
Tsutsumi
V.
Gallegos
E.
Calderon
A.
Ortiz
R.
Bonilla
P.
Ramírez
E.
Suárez
G.
1996
Hartmannella vermiformis isolated from the cerebrospinal fluid of a young male patient with meningoencephalitis and bronchopneumonia
.
Arch. Med. Res.
27
,
579
586
.
Corsaro
D.
Köhsler
M.
Di Filippo
M. M.
Venditti
D.
Monno
R.
Di Cave
D.
Berrilli
F.
Walochnik
J.
2017
Update on Acanthamoeba jacobsi genotype T15, including full-length 18S rDNA molecular phylogeny
.
Parasitol. Res.
116
,
1273
1284
.
De Jonckheere
J. F.
2014
What do we know by now about the genus Naegleria?
Exp. Parasitol.
145
,
S2
S9
.
Dodangeh
S.
Kialashaki
E.
Daryani
A.
Sharif
M.
Sarvi
S.
Moghaddam
Y. D.
Hosseini
S. A.
2018
Isolation and molecular identification of Acanthamoeba spp. from hot springs in Mazandaran province, northern Iran
.
J. Water Health
16
(
5
),
807
813
.
Feiz-Haddad
M. H.
Khoshnood
S.
Mahmoudi
M. R.
Habibpour
H.
Ali
A. S.
Mirzaei
H.
Feiz-Haddad
R.
Angali
A. K.
2019a
Molecular identification of free-living amoebae (Naegleria spp., Acanthamoeba spp. and Vermamoeba spp.) isolated from unimproved hot springs, Guilan Province, Northern Iran
.
Iran. J. Parasitol
14
(
4
),
584
591
.
Feiz-Haddad
M. H.
Shokri
A.
Habibpour
H.
Nejadi
S. M. H.
2019b
A review of Acanthamoeba keratitis in the middle East and Iran
.
J. Acute Dis.
8
(
4
),
133
141
.
Hajialilo
E.
Niyyati
M.
Solaymani
M.
Rezaeian
M.
2015
Pathogenic free-living amoebae isolated from contact lenses of keratitis patients
.
Iran. J. Parasitol.
10
(
4
),
541
546
.
Hooshyar
H.
Hosseinbigi
B.
Saraei
M.
Alizadeh
S.
Eftakhar
M.
Rasti
S.
Khosro-Shahi
N.
2013
Genotyping of Acanthamoeba isolated from surface and stagnant waters of Qazvin, Central Iran
.
Iran. Red Crescent Med. J.
15
(
6
),
536
538
.
Ithoi
I.
Ahmad
A. F.
Nissapatorn
V.
Lau
Y. L.
Mahmud
R.
Mak
J. W.
2011
Detection of Naegleria species in environmental samples from Peninsular Malaysia
.
PLoS One
6
,
e24327
.
Johan
F.
2002
A century of research on the amoeboflagellate genus Naegleria
.
Acta Protozool.
41
,
309
342
.
Khan
N. A.
2009
Acanthamoeba, Biology and Pathogenesis
, 1st edn.
Caister Academic Press
,
Norwich
,
UK
.
Latifi
A.
Niyyati
M.
Lorenzo-Morales
J.
Haghighi
A.
Tabaei
S. S.
Lasjerdi
Z.
2016
Presence of Balamuthia mandrillaris in hot springs from Mazandaran province, Northern Iran
.
Epidemiol. Infect.
144
,
2456
2461
.
Latifi
A. R.
Niyyati
M.
Lorenzo-Morales
J.
Haghighi
A.
Tabaei
S. J. S.
Lasjerdi
Z.
Azargashb
E.
2017
Occurrence of Naegleria species in therapeutic geothermal water sources, Northern Iran
.
Acta Parasitol.
62
,
104
109
.
Liang
S. Y.
Ji
D. R.
Hsia
K. T.
Hung
C. C.
Sheng
W. H.
Hsu
B. M.
Chen
J. S.
Wu
M. H.
Lai
C. H.
Ji
D. D.
2010
Isolation and identification of Acanthamoeba species related to amoebic encephalitis and nonpathogenic free-living amoeba species from the rice field
.
J. Appl. Microbiol.
109
,
1422
1429
.
Lorenzo-Morales
J.
Martínez-Carretero
E.
Batista
N.
Álvarez-Marín
J.
Bahaya
Y.
Walochnik
J.
Valladares
B.
2007
Early diagnosis of amoebic keratitis due to a mixed infection with Acanthamoeba and Hartmannella
.
Parasitol. Res.
102
,
167
169
.
Mahmoudi
M. R.
Taghipour
N.
Eftekhar
M.
Haghighi
A.
Karanis
P.
2012
Isolation of Acanthamoeba species in surface waters of Gilan province-north of Iran
.
Parasitol. Res.
110
,
473
477
.
Mahmoudi
M. R.
Kazemi
B.
Haghighi
A.
Karanis
P.
2015a
Detection of Acanthamoeba and Toxoplasma in river water samples by molecular methods in Iran
.
Iran. J. Parasitol.
10
(
2
),
250
257
.
Maschio
V. J.
Chies
F.
Carlesso
A. M.
Carvalho
A.
Rosa
S. P.
Van Der Sand
S. T.
Rott
M. B.
2015
Acanthamoeba T4, T5 and T11 isolated from mineral water bottles in southern Brazil
.
Curr. Microbiol.
70
,
6
9
.
Movahedi
Z.
Shokrollahi
M. R.
Aghaali
M.
Heydari
H.
2012
Primary amoebic meningoencephalitis in an Iranian infant
.
Case Rep. Med.
2012
,
1
14
.
Niyyati
M.
Rezaeian
M.
2015
Current status of Acanthamoeba in Iran: a narrative review article
.
Iran. J. Parasitol.
10
,
157
163
.
Page
F. C.
1988
A New Key to Freshwater and Soil Gymnamoebae: With Instructions for Culture
.
Freshwater Biological Association
,
Ambleside
,
UK
.
Rivera
F.
Galván
M.
Robles
E.
Leal
P.
González
L.
Lacy
A. M.
1981
Bottled mineral waters polluted by protozoa in Mexico
.
J. Protozool.
28
,
54
56
.
Saburi
E.
Rajaii
T.
Behdari
A.
Kohansal
M. H.
Vazini
H.
2017
Free-living amoebae in the water resources of Iran: a systematic review
.
J. Parasit. Dis.
41
,
919
928
.
Shokri
A.
Sarvi
S.
Daryani
A.
Sharif
M.
2016
Isolation and genotyping of Acanthamoeba spp. as Neglected Parasites in North of Iran
.
Korean J. Parasitol.
54
,
447
453
.
Todd
C. D.
Reyes-Batlle
M.
Piñero
J. E.
Martínez-Carretero
E.
Valladares
B.
Streete
D.
Lorenzo-Morales
J.
Lindo
J. F.
2015
Isolation and molecular characterization of Acanthamoeba genotypes in recreational and domestic water sources from Jamaica, West Indies
.
J. Water Health
13
,
909
919
.
Tung
M.-C.
Hsu
B.-M.
Tao
C.-W.
Lin
W.-C.
Tsai
H.-F.
Ji
D.-D.
Shen
S.-M.
Chen
J.-S.
Shih
F.-C.
Huang
Y.-L.
2013
Identification and significance of Naegleria fowleri isolated from the hot spring which related to the first primary amebic meningoencephalitis (PAM) patient in Taiwan
.
Int. J. Parasitol.
43
,
691
696
.