Abstract

The global water bottling market grows annually. Today, to ensure consumer safety, it is important to verify the possible migration of compounds from bottles into the water contained in them. Potential health risks due to the prevalence of bisphenol A (BPA) and phthalates (PAEs) exposure through water bottle consumption have become an important issue. BPA, benzyl butyl phthalate (BBP), di-n-butyl phthalate (DBP) and di (2-ethylhexyl) phthalate (DEHP) can cause adverse effects on human health. Papers of literature published in English, with BPA, BBP, DBP and DEHP detections during 2017, by 2019 by liquid chromatography and gas chromatography analysis methods were searched. The highest concentrations of BPA, BBP, DBP and DEHP in all the bottled waters studied were found to be 5.7, 12.11, 82.8 and 64.0 μg/L, respectively. DBP was the most compound detected and the main contributor by bottled water consumption with 23.7% of the Tolerable Daily Intake (TDI). Based on the risk assessment, BPA, BBP, DBP and DEHP in commercial water bottles do not pose a serious concern for humans. The average estrogen equivalent level revealed that BPA, BBP, DBP and DEHP in bottled waters may induce adverse estrogenic effects on human health.

HIGHLIGHTS

  • DBP was the most compound detected.

  • An estimated intake of BPA, BBP, DBP and DEHP was far below their TDIs.

  • The risk assessment of BPA, BBP, DBP and DEHP does not raise serious concern for humans.

  • The average estrogen equivalent level for BPA, BBP, DBP and DEHP may induce adverse estrogenic effects on human health.

  • BPA, BBP, DBP and DEHP in bottled water need more accurate data to avoid their effects on human health.

Graphical Abstract

Graphical Abstract
Graphical Abstract

INTRODUCTION

Reports show that, in 2018, 64% of produced bottles were made of polyethylene terephthalate (PET), 34% of high-density polyethylene (HDPE), 1.8% of polypropylene and 1% other (polycarbonate (PC) included here) (ACC 2019). According to the American Chemistry Council (ACC), in 2018, 0.31 million pounds of postconsumer PC bottles were collected for recycling. PET and HDPE continued to dominate as selected resins to produce plastic bottles (97.1% by weight of produced bottles has made of PET or HDPE) (ACC 2019).

The bottled water industry is a phenomenon in practically every region of the world. First, bottled water became a mainstream commercial beverage category in Western Europe and later grew into a truly global beverage (IBWA 2018). The bottled industry produces mainly two types of packaged water: packaged natural mineral drinking water and packaged drinking water. The last is water derived from any source of a potable water (ground, well, bore well water, etc.), which must be subjected to different treatment processes such as filtration, aeration, decantation, and reverse osmosis (Jain et al. 2019). In 2018, for the first time, global bottled water consumption has surpassed that 100 billion gallons is estimated to, and the per capita consumption exceeded 42 gallons (158,987 liters). It should be stressing that per capita consumption by individual regions or countries can differ from the global average (IBWA 2019). In 2018, the rank of the 10 leading countries’ consumption was China, United States, Mexico, Indonesia, Brazil, India, Thailand, Germany, Italy and France, respectively (IBWA 2019).

In 2018, approximately 7.7% (27.64 million tons out of the total plastic production of 359 million tons) of the plastic demand was constituted by PET worldwide was used in bottles for water, soft drinks, juices, and cleaners (Plastics Europe 2020). PET is the packaging most used in water bottles (Coniglio et al. 2020). PET and PC as the packing materials have been widely used for Chinese bottled water (Wang et al. 2020).

Bisphenol A (BPA), benzyl butyl phthalate (BBP), di-n-butyl phthalate (DBP) and di (2-ethylhexyl) phthalate (DEHP) have recently been detected in commercial water bottles raising concerns and discussions on possible risks for human health (Dada et al. 2018; Pinsrithong & Bunkoed 2018; Karayaka et al. 2019; Wu et al. 2019). Many countries included BPA, BBP, DBP and DEHP in the priority list of pollutants (Pignotti et al. 2017; Goeury et al. 2019; Li et al. 2019; Fard et al. 2020). Acceptable exposure levels for these compounds have been created to protect human health (Čelić et al. 2020; Fard et al. 2020). The maximum contaminant level (MCL) is the highest level of a contaminant that is allowed in drinking water (US EPA 2021). The MCL for drinking water for BPA, BBP, DBP and DEHP is in the section ‘Extraction techniques for detection’.

According to Hassan et al. (2020), BPA and PAEs exhibit similar toxicogenomics and health effects. How BPA and PAEs are not bound to the matrix, they can leach out into the surroundings by delicate changes in the environment, like temperature, pH and pressure alterations (Hassan et al. 2020). The Regulation (EU) No. 10/2011 (EC 2011) defines the Specific Migration Limit (SML) as the maximum permitted amount of a given substance released from a material or article into food or food simulants. The SML values by the EU for BBP, DBP and DEHP are 30, 0.3 and 1.5 mg/kg, respectively (EFSA 2019). The detection of very low BPA, BBP, DBP and DEHP in water can be carry out by high-performance liquid (HPLC) and gas (GC) chromatography (Gorji et al. 2019; Karayaka et al. 2019; Li et al. 2019; Yin et al. 2019). The detection power can be improved by preconcentrating analytes before instrumental measurement and the type of detector (Kumar et al. 2014; Chang et al. 2017; Farajzadeh et al. 2019; Karayaka et al. 2019; Li et al. 2019).

In this context, due to the increasing popularity of bottled water consumption, the potential health effects of possible migration of chemical compounds from the bottles into the water can pose a health risk to consumers. The purpose of this minireview is to verify if recent BPA, BBP, DBP and DEHP detections in commercial water bottles around the world using HPLC and gas GC may pose a risk to human health.

Papers of literature published in English, that detected BPA and PAEs (BBP, DBP and DEHP) in commercial bottles during 2017, by 2019 were searched. Papers with storage studies were also taken into account. For data sources for further analysis were identified a total of 41 publications from 17 countries. PC bottles were not considered. Thus, this work hopes to aid decision-making in future research focusing on BPA, BBP, DBP and DEHP in commercial water bottles using HPLC and GC. Moreover, this review hopes to avoid consumer exposure to these chemicals and to guarantee consumer safety.

BPA AND PAEs IN PET BOTTLED WATER

The production process of water bottles uses PC plastics containing BPA (antioxidant or monomer) (Alfarhani et al. 2019; Fikarová et al. 2019; Liu et al. 2019). Although BPA is not used in the manufacture of PET, it should consider the use of recycled PET (R-PET) as a possible source of BPA coming from cross-contamination, not only during the recycling process but also during the manufacture of virgin PET (Dreolin et al. 2019). BPA leachable from polymer packaging due to its moderate water solubility (120–300 mg/L: pH 7.0 at 25 °C) and low log Kow (3.32) in water (Borrirukwisitsak et al. 2012; Fikarová et al. 2019). Guart et al. (2011) not detected BPA in PET bottles cut in pieces, but on the other hand, detected BPA in HDPE caps at concentrations of 0.145 μg/dm2. Bach et al. (2012) also indicated that the containers’ caps, in PET bottled water, could be a source of BPA.

The manufacturing of beverage bottles widely uses PAEs (Li et al. 2019) and like they are not chemically bound to polymers, they may also enter drinking samples. This process can occur through the production, packaging and storage (bottling lines and water refinement centers) (Manzo et al. 2019; Pacyga et al. 2019). According to Bach et al. (2014), background pollution, as a source of PAEs, cannot be excluded. PAEs’ presence in PET bottled water can be associated with PAEs in the source of water (groundwater or tap water) used to fill in the bottles (Jeddi et al. 2015). The type of closure (‘cap’) on the bottles could be a more important source of PAEs than the bottle material (glass or PET) (EFSA 2019). The caps of plastic bottles are made of high- and low-density polyethylene (HDPE and LDPE) and polystyrene (PS) (Guart et al. 2011). Guart et al. (2011) identified BPA in HDPE, LDPE and PS plastics. The adhesive used for sticking the bottle labels could thus be considered one of the sources of PAEs in water samples (Cincotta et al. 2018). Aznar et al. (2011) identified DBP and DEHP in adhesive based on vinyl acetate-ethylene.

PAEs are hydrophobic organic compounds under normal conditions (25 °C), very insoluble in water (BBP: 2.69 mg/L, DBB: 11.2 mg/L and DEHP: 0.27 mg/L) and have a particular affinity for fats and alcohols (Grinbaum et al. 2019; PubChem 2020). However, exposure to these low levels in water may also cause significant risks to humans under long-term chronic exposure by resulting in a considerable total health risk (Abtahi et al. 2019; Chen et al. 2019a; Abdelghani et al. 2020). Exposure to that low level can cause problems such as spasms in arms and legs, bronchial obstruction in children, irritation of the eyes and endocrine disruption (Abdelghani et al. 2020).

CHROMATOGRAPHIC AND EXTRACTION TECHNIQUES FOR DETECTION

Chromatographic techniques for detection

A wide range of methods analyzes BPA and PAEs. The liquid chromatography (LC) and gas chromatography (GC) analysis methods for detection and respective extraction techniques used for the determination in commercial water bottles are presented in Table 1. The choice of the detector and extraction influences the detection limit (LOD) and the quantification limit (LOQ) values obtained.

Table 1

Extraction methods for the determination of BPA, BBP, DBP and DEHP in commercial water bottles

Without migration study
Detected analyte (s)Extraction methodChromatographic techniqueLODs (μg/L)LOQs (μg/L)Reference
BPA SPE UFLC–MS/MS 0.004–0.055a 1.4 × 10−2–1.2 × 10−2a Zhou et al. (2019)  
BPA SBSE HPLC–UV/Vis 0.02 0.06 Gorji et al. (2019)  
BPA USAE-MIP-μ-SPE HPLC–DAD 0.07 0.15 Rozaini et al. (2017)  
BPA MDMIP- SPE HPLC–DAD 0.083 0.114 Chang et al. (2017)  
BPA SPME HPLC–DAD 0.20 Not stated Mohammadnezhad et al. (2017)  
BPA SLLME GC–MS 0.54 1.8 Karayaka et al. (2019)  
BPA BBP; DBP; DEHP LLE LC–MS/MS GC–MS Not stated Not stated Wu et al. (2019)  
BBP; DBP MIP-SPE HPLC–MS 0.16; 0.84 0.55; 2.81 Barciela-Alonso et al. (2017)  
BBP; DBP IT-UAA-LLME GC–MS 1.67; 0.75 5.50; 2.46 Farahani et al. (2017)  
BBP; DBP m-μdSPE UHPLC–MS/MS Not stated 6 × 10−3; 11 × 10−3 Santana-Mayor et al. (2018)  
BBP; DBP; DEHP MSPE HPLC–UV/Vis 0.0103; 0.003b; 0.0167 0.0342; 0.022b; 0.0556 Yin et al. (2019)  
BBP; DBP; DEHP SPE GC–MS/MS 0.18; 0.021; 0.036 0.60; 0.070; 0.12 Li et al. (2019)  
BBP; DBP; DEHP LLE GC–MS/MS 1.0; 1.0; 0.5 3.0; 3.0; 0.15 Tran-Lam et al. (2018)  
BBP; DBP; DEHP MSPE GC–MS 5.0; 1.0; 5.0 Not stated Wei et al. (2018)  
DBP TSP-LLME GC–MS 0.007 0.021 Chen et al. (2019b)  
DBP SVA-LLME GC–MS 0.15 0.50 Mohebbi et al. (2017)  
DBP DSPE–DLLME GC–FID 1.24 4.11 Farajzadeh et al. (2019)  
DBP SPE HPLC–UV/Vis 2.4 7.9 Salazar-Beltrán et al. (2017)  
DBP MISPME HPLC–UV/Vis 10 Soheilifar et al. (2018)  
DBP m-μdSPE GC–MS/MS Not stated 0.009 González-Sálamo et al. (2017)  
DBP LLE HPLC–UV/Vis Not stated Not stated Dada et al. (2018)  
DBP HF-LPME GC–MS/MS Not stated Not stated González-Sálamo et al. (2018)  
DBP; DEHP MEPS–DLLME GC–FID 0.001; 0.005 0.003; 0.015 Amiri & Ghaemi (2017)  
DBP; DEHP MSPE GC–MS/MS 0.005; 0.008 0.02; 0.03 Pinsrithong & Bunkoed (2018)  
DBP; DEHP RDSE GC–MS 0.01; 0.03 0.04; 0.10 Manzo et al. (2019)  
DBP; DEHP LLE GC–MS 0.01–0.05c 0.03–0.15c Tri et al. (2018)  
DBP; DEHP MEPS GC–FID 0.05; 0.10 0.10; 0.25 Amiri et al. (2017)  
DBP; DEHP LLE GC–FID Not stated Not stated Szendi et al. (2018)  
DEHP DMIMS–SPE GC–MS 0.00039 0.0013 Özer et al. (2017)  
DEHP MSPE GC–FID 0.02 Not stated Chahkandi & Amiri (2019)  
DEHP DLLME GC–FID Notardonato et al. (2018)  
Detected analyte (s) Extraction method Chromatographic technique LODs (mg/kg) LOQs (mg/kg) Reference 
BBP; DBP; DEHP LLE GC–MS 0.00031; 0.00025; 0.00042 0.00096; 0.0008; 0.00122 Yang et al. (2017)  
With migration study 
Detected analyte (s) Extraction method Chromatographic technique LODs (μg/L) LOQs (μg/L) Reference 
BPA PT-μ-SPE HPLC–FLD 0.001 0.0032 Kaykhaii et al. (2020)  
BBP; DBP; DEHP μSPE GC–FID 0.025; 0.017; 0.031 Not stated Abtahi et al. (2019)  
BBP; DBP; DEHP Not stated LC–MS/MS 0.20; 0.20; 0.30 0.64; 0.60; 0.94 Surhio et al. (2017)  
DBP MIP-SPME GC–FID 0.12 Not stated Hashemi-Moghaddam & Maddah (2018)  
DBP HS-SPME GC–MS 0.17 0.57 Cincotta et al. (2018)  
DBP; DEHP SPE GC–MS 0.015d Not stated Sulentic et al. (2018)  
DBP; DEHP LLE GC–MS/MS 0.043; 0.062 Not stated Zaki & Shoeib (2018)  
DBP; DEHP AALLME GC–MS 0.3; 0.2 Not stated Yousefi et al. (2019)  
DEHP UA-DLLME GC–MS 10–100e 50–500e Annamalai & Namasivayam (2017)  
Without migration study
Detected analyte (s)Extraction methodChromatographic techniqueLODs (μg/L)LOQs (μg/L)Reference
BPA SPE UFLC–MS/MS 0.004–0.055a 1.4 × 10−2–1.2 × 10−2a Zhou et al. (2019)  
BPA SBSE HPLC–UV/Vis 0.02 0.06 Gorji et al. (2019)  
BPA USAE-MIP-μ-SPE HPLC–DAD 0.07 0.15 Rozaini et al. (2017)  
BPA MDMIP- SPE HPLC–DAD 0.083 0.114 Chang et al. (2017)  
BPA SPME HPLC–DAD 0.20 Not stated Mohammadnezhad et al. (2017)  
BPA SLLME GC–MS 0.54 1.8 Karayaka et al. (2019)  
BPA BBP; DBP; DEHP LLE LC–MS/MS GC–MS Not stated Not stated Wu et al. (2019)  
BBP; DBP MIP-SPE HPLC–MS 0.16; 0.84 0.55; 2.81 Barciela-Alonso et al. (2017)  
BBP; DBP IT-UAA-LLME GC–MS 1.67; 0.75 5.50; 2.46 Farahani et al. (2017)  
BBP; DBP m-μdSPE UHPLC–MS/MS Not stated 6 × 10−3; 11 × 10−3 Santana-Mayor et al. (2018)  
BBP; DBP; DEHP MSPE HPLC–UV/Vis 0.0103; 0.003b; 0.0167 0.0342; 0.022b; 0.0556 Yin et al. (2019)  
BBP; DBP; DEHP SPE GC–MS/MS 0.18; 0.021; 0.036 0.60; 0.070; 0.12 Li et al. (2019)  
BBP; DBP; DEHP LLE GC–MS/MS 1.0; 1.0; 0.5 3.0; 3.0; 0.15 Tran-Lam et al. (2018)  
BBP; DBP; DEHP MSPE GC–MS 5.0; 1.0; 5.0 Not stated Wei et al. (2018)  
DBP TSP-LLME GC–MS 0.007 0.021 Chen et al. (2019b)  
DBP SVA-LLME GC–MS 0.15 0.50 Mohebbi et al. (2017)  
DBP DSPE–DLLME GC–FID 1.24 4.11 Farajzadeh et al. (2019)  
DBP SPE HPLC–UV/Vis 2.4 7.9 Salazar-Beltrán et al. (2017)  
DBP MISPME HPLC–UV/Vis 10 Soheilifar et al. (2018)  
DBP m-μdSPE GC–MS/MS Not stated 0.009 González-Sálamo et al. (2017)  
DBP LLE HPLC–UV/Vis Not stated Not stated Dada et al. (2018)  
DBP HF-LPME GC–MS/MS Not stated Not stated González-Sálamo et al. (2018)  
DBP; DEHP MEPS–DLLME GC–FID 0.001; 0.005 0.003; 0.015 Amiri & Ghaemi (2017)  
DBP; DEHP MSPE GC–MS/MS 0.005; 0.008 0.02; 0.03 Pinsrithong & Bunkoed (2018)  
DBP; DEHP RDSE GC–MS 0.01; 0.03 0.04; 0.10 Manzo et al. (2019)  
DBP; DEHP LLE GC–MS 0.01–0.05c 0.03–0.15c Tri et al. (2018)  
DBP; DEHP MEPS GC–FID 0.05; 0.10 0.10; 0.25 Amiri et al. (2017)  
DBP; DEHP LLE GC–FID Not stated Not stated Szendi et al. (2018)  
DEHP DMIMS–SPE GC–MS 0.00039 0.0013 Özer et al. (2017)  
DEHP MSPE GC–FID 0.02 Not stated Chahkandi & Amiri (2019)  
DEHP DLLME GC–FID Notardonato et al. (2018)  
Detected analyte (s) Extraction method Chromatographic technique LODs (mg/kg) LOQs (mg/kg) Reference 
BBP; DBP; DEHP LLE GC–MS 0.00031; 0.00025; 0.00042 0.00096; 0.0008; 0.00122 Yang et al. (2017)  
With migration study 
Detected analyte (s) Extraction method Chromatographic technique LODs (μg/L) LOQs (μg/L) Reference 
BPA PT-μ-SPE HPLC–FLD 0.001 0.0032 Kaykhaii et al. (2020)  
BBP; DBP; DEHP μSPE GC–FID 0.025; 0.017; 0.031 Not stated Abtahi et al. (2019)  
BBP; DBP; DEHP Not stated LC–MS/MS 0.20; 0.20; 0.30 0.64; 0.60; 0.94 Surhio et al. (2017)  
DBP MIP-SPME GC–FID 0.12 Not stated Hashemi-Moghaddam & Maddah (2018)  
DBP HS-SPME GC–MS 0.17 0.57 Cincotta et al. (2018)  
DBP; DEHP SPE GC–MS 0.015d Not stated Sulentic et al. (2018)  
DBP; DEHP LLE GC–MS/MS 0.043; 0.062 Not stated Zaki & Shoeib (2018)  
DBP; DEHP AALLME GC–MS 0.3; 0.2 Not stated Yousefi et al. (2019)  
DEHP UA-DLLME GC–MS 10–100e 50–500e Annamalai & Namasivayam (2017)  

BPA, bisphenol A; BBP, benzylbutyl phthalate; DBP, di-n-butyl phthalate; DEHP, di(2-ethylhexyl) phthalate; SPE, solid-phase extraction; SBSE, stir bar sorptive extraction; USAE, ultrasound-assisted emulsification; MIP, molecularly imprinted polymer; μ-SPE, micro-solid-phase extraction; MDMIP, magnetic dummy molecularly imprinted polymer; SPME, solid-phase microextraction; SLLME, switchable liquid–liquid microextraction; LLE, liquid–liquid extraction; IT-UAA, in tube ultrasonic and air-assisted; LLME, liquid–liquid microextraction; m-μdSPE, magnetic micro-dispersive solid-phase extraction; MSPE, magnetic solid-phase extraction; TSP, temperature-sensitive polymer; SVA, solvent vapor-assisted; DSPE, dispersive solid-phase extraction; DLLME, dispersive liquid–liquid microextraction; MISPME, molecularly imprinted solid-phase microextraction; HF-LPME, hollow fiber liquid-phase microextraction; MEPS, microextraction in packed syringe; RDSE, rotating disk sorptive extraction; DMIMS, dual-template molecularly imprinted mesoporous silica; PT-μ-SPE, pipette-tip micro-solid-phase extraction; μSPE, micro-solid-phase extraction; HS, headspace; AALLME, air-assisted liquid–liquid microextraction; UA, ultrasound-assisted; GC, gas chromatography; MS, mass spectrometry; HPLC, high-performance liquid chromatography; DAD, diode-array detection; FID, flame ionization detector; UV/Vis, dual-wavelength ultraviolet/visible; MS/MS, tandem mass spectrometry; UHPLC, ultra-high-performance liquid chromatography; UFLC, ultra-fast liquid chromatography; UPLC–MS, ultra-performance liquid chromatography–mass spectrometry; FLD, fluorescence detector.

aCorresponds to four bisphenols – BPA; BPB: bisphenol B; BPF: bisphenol F; BPS: bisphenol S.

bCorresponds to two phthalates – DBP: bis(2-butoxyethyl) phthalate/DBP.

cCorresponds to nine phthalates – DEP: diethyl phthalate; DPP: dipropyl phthalate; DiBP: di-isobutyl phthalate; DBP; DCHP: dicyclohexyl phthalate; DnHP: dihexyl phthalate; BzBP: benzyl butyl phthalate; DnOP: di(n-octyl)phthalate; DEHP.

dCorresponds to three phthalates – DiBP; DBP; DEHP.

eCorresponds to 14 phthalates – BBP; DBP; DEHP; DPP; DEP; DiBP; DCHP; DNOP: di-n-octyl phthalate; DMP: dimethyl phthalate; DHP: dihexyl phthalate; DiNP: di-isononyl phthalate; DiDP: di-isodecyl phthalate; BBEP: bis (2-n-butoxyethyl) phthalate; BMEP: bis (2-methoxy ethyl) phthalate.

HPLC coupled with diode-array detection (HPLC–DAD) was the most used in BPA detections. HPLC is adequate for the analysis of BPA since it is a relatively polar compound. The DAD detector allows simultaneous collection of chromatograms over a range of wavelengths during a single run, providing more information on sample composition than is provided by the use of a single wavelength detector (Waksmundzka-Hajnos & Sherma 2010). DAD is preferable since it is sufficiently selective for compound identification (McGowin 2006).

GC coupled with mass spectrometry (GC–MS) was the most used technique in PAEs detections. GC can separate volatile and semi-volatile compounds with high resolution, and its combination with MS can identify them, providing detailed structural information on most compounds such that they can be identified correctly (Hussain & Maqbool 2014). Only Karayaka et al. (2019) analyzed BPA by GC–MS and derivatization is not used. BPA has volatility and thermal stability suitable for detection and quantification by GC–MS. However, derivatization can improve the sensitivity, selectivity and performance of the chromatographic properties (Nollet 2005).

BPA analysis underivatized by GC–MS can be found in the literature because sensitivity can be improved using preconcentration and liquid–liquid extraction (Oca et al. 2013). Karayaka et al. (2019) used the switchable liquid–liquid microextraction (SLLME) to preconcentrate BPA and improving the detection power of GC–MS. Microextraction methods are eco-friendly because they use too small quantities of chemicals, no compromising extraction efficiency and agree with green chemistry (Armenta et al. 2015).

Extraction techniques for detection

The sample preparation has been considered as the Achilles’ heel (Fumes et al. 2015). Matrix-related compounds can be co-extracted and can interfere in the analysis; so, the sample preparation has a multifarious role related to target analyte extraction, preconcentration and clean-up from co-existing species (Gao et al. 2015). A preconcentration step is usually necessary before the final analysis of compounds (Gao et al. 2015; Feizi et al. 2017). However, some methods often require high amounts of organic solvents that are harmful to the environment (Gao et al. 2015; Feizi et al. 2017; Płotka-Wasylka et al. 2017). A concept that has been approached is the green analytical chemistry, which decreases or eliminates organic solvents during the extraction procedure (Fumes et al. 2015; Płotka-Wasylka et al. 2017). Karayaka et al. (2019) developed a method to extract BPA from drinking water bottles using a switchable polarity solvent (N,N-dimethylbenzylamine), which is a green solvent. Also, it is very important to use a proper sample preparation to reach the required lower LODs (Gao et al. 2015). Discoveries in materials science may supply new tools for the preparation of samples (Jalili et al. 2020). Mohammadnezhad et al. (2017) developed ionic liquid-bonded fused silica as a new solid-phase microextraction (SPME) fiber for the liquid chromatographic determination of BPA in mineral water bottled in PET. Wei et al. (2018) synthesized a novel magnetic solid-phase extraction (MSPE) for the determination of six phthalic acid esters in mineral water (including BBP, DBP and DEHP). The development of natural sorbents has also been investigated, which are cheap and readily available and sometimes their performance was comparable with synthetic sorbents (Sajid et al. 2016).

Some works in Table 1 developed extraction methods. González-Sálamo et al. (2017) used the first application of core–shell poly (dopamine) magnetic nanoparticles as a sorbent for the extraction of a group of 11 phthalic acid esters of interest. Pinsrithong & Bunkoed (2018) synthesized a hierarchically porous composite nanostructure of polypyrrole, reduced graphene oxide, magnetite nanoparticles and alginate hydrogel microspheres (PPy-rGOx-Fe3O4). They applied as a magnetic solid-phase extraction adsorbent for PAEs, including BBP, DBP and DEHP. Farajzadeh et al. (2019) developed a natural and costless adsorbent for the accomplishment of a dispersive solid-phase extraction (DSPE) procedure followed by dispersive liquid–liquid microextraction (DLLME) for the extraction and preconcentration of PAEs and alkylphenols. None of the methods of Table 1 present LOD and LOQ values lower than the MCL to BPA in drinking water by EC (0.1 μg/L), but are lower than in China (10 μg/L) (EC 2020; GB-5749-2006).

Currently, MCL has not been established for BBP (US EPA 2019a), although, in 1990, US EPA proposed an MCL of 100 μg/L (Parks et al. 1993). In 2004, New Jersey State Primary and Secondary Drinking Water Standards derived the same value, multiplying the drinking water equivalent level of 7 mg/L by the relative source contribution factor of 20% and dividing the result by the additional uncertainty factor of 10 for possible human carcinogens (NJDEP 2004). All methods show LOD and LOQ below this proposed MCL value for BBP.

Almost all methods exhibit LOD and LOQ lower than DBP by China for drinking water (3 μg/L) (GB-5749-2006). All methods show LOD and LOQ lower than DEHP by US FDA for bottled water (6 μg/L) and by WHO, Codex Alimentarius, China for drinking water (8 μg/L) (Codex Alimentarius 2001; GB-5749-2006; WHO 2017; ECFR 2020). Yang et al. (2017) analyzed BBP, DBP and DEHP by GC–MS/LLE. The values of LOD and LOQ are given in mg/kg. The LOD and LOQ are lower than the SML values by the EU for BBP (30 mg/kg), DBP (0.3 mg/kg) and DEHP (1.5 mg/kg) (EFSA 2019).

DETECTIONS OF BPA AND PAEs

The detected levels of BPA, BBP, DBP and DEHP in commercial water bottles without the storage study are present in Table 2 and Figure 1. Wei et al. (2018) and Yang et al. (2017) are not included in Figure 1 because the units are in mg/kg. The detected levels of BPA, BBP, DBP and DEHP in commercial water bottles with the storage study are present in Table 3 and Figure 2. For articles with concentration ranges, averages were used to generate Figures 1 and 2. A better understanding of the methods used in storage studies can be verified in their respective articles.

Table 2

Levels of BPA, BBP, DBP and DEHP in commercial water bottles without the storage study

Detected analyteSampleCountryType of bottleNumber of brands or samplesConcentration (μg/L)Reference
BPA Drinking water bottle Turkey Not stated 5.7 Karayaka et al. (2019)  
BPA Mineral water bottle Iran PETa 5.5 Mohammadnezhad et al. (2017)  
BPA Mineral water Malaysia Not stated 1.25 Rozaini et al. (2017)  
BPA Plastic bottled mineral water China Not stated 0.127 Chang et al. (2017)  
BPA Bottled mineral water Iran Not stated 0.07 Gorji et al. (2019)  
BPA Bottled water China Not stated Not stated 0.05–0.08 Zhou et al. (2019)  
BPA Bottled water China Not stated 17 0.01 Wu et al. (2019)  
BBP Mineral water Iran PET 2.9–5.5 Farahani et al. (2017)  
BBP Bottled water China Not stated 17 1.86 Wu et al. (2019)  
BBP Bottled water in plastic Spain Not stated 0.75–1.9 Barciela-Alonso et al. (2017)  
BBP Mineral water China Not stated 0.515–0.690 Yin et al. (2019)  
BBP Mineral water Vietnam Not stated 14 0.30–0.95 Tran-Lam et al. (2018)  
BBP Bottled drinking water China Not stated 60 0.019–0.032 Li et al. (2019)  
BBP Mineral water bottled in plastic Spain Not stated <LOQ Santana-Mayor et al. (2018)  
DBP Plastic bottled Water Nigeria Not stated 15 42 Dada et al. (2018)  
DBP Drinking water Mexico PET 10 20.5–82.8 Salazar-Beltrán et al. (2017)  
DBP Mineral water China Not stated 8.98–11.5 Yin et al. (2019)  
DBP Bottled water in plastic Spain Not stated 4.6–8.2 Barciela-Alonso et al. (2017)  
DBP Plastic bottled water Thailand Not stated 17.0 Pinsrithong & Bunkoed (2018)  
DBP Plastic bottled water Iran Not stated 5.2 Mohebbi et al. (2017)  
DBP Mineral water Cyprus Not stated Not stated 4.35 Farajzadeh et al. (2019)  
DBP Bottled mineral water Iran Not stated 4.5 Amiri & Ghaemi (2017)  
DBP Mineral water China Not stated 2.68 Chen et al. (2019b)  
DBP Bottled water China Not stated 17 1.34 Wu et al. (2019)  
DBP Mineral water Iran Not stated 1.1–2.5 Amiri et al. (2017)  
DBP Mineral water Iran PET 1.1–1.7 Farahani et al. (2017)  
DBP Mineral water Spain Not stated <1 González-Sálamo et al. (2018)  
DBP Mineral bottled water Spain PET 0.36 González-Sálamo et al. (2017)  
DBP Water packed in plastic bottle (still, sparkling and light sparkling) Chile Not stated 5 (2 – still, 2 – sparkling, 1 – light sparkling) 0.353–2.756 Manzo et al. (2019)  
DBP Plastic bottled water Iran Not stated 10 0.26–1.13 Soheilifar et al. (2018)  
DBP Plastic bottled beverages (water) Vietnam Not stated 0.24–1.86 Tri et al. (2018)  
DBP Mineral water bottled in plastic Spain Not stated 0.184 Santana-Mayor et al. (2018)  
DBP Mineral water Vietnam Not stated 14 0.09–0.95 Tran-Lam et al. (2018)  
DBP Bottled drinking water China Not stated 60 0.021–0.51 Li et al. (2019)  
DBP Bottled mineral water Hungary PET <0.005–0.2 Szendi et al. (2018)  
DEHP Plastic bottled water Thailand Not stated 64.0 Pinsrithong & Bunkoed (2018)  
DEHP Bottled water Italy Not stated 22.9–24.4 Notardonato et al. (2018)  
DEHP Plastic bottled beverages (water) Vietnam Not stated 10.3–42.3 Tri et al. (2018)  
DEHP Plastic bottled water Turkey Not stated Not stated 10.06–11.90 Özer et al. (2017)  
DEHP Bottled mineral water Iran Not stated 3.0 Amiri & Ghaemi (2017)  
DEHP Bottled mineral water Iran Not stated 2.6 Chahkandi & Amiri (2019)  
DEHP Bottled water China Not stated 17 2.50 Wu et al. (2019)  
DEHP Water packed in plastic bottle (still, sparkling and light sparkling) Chile Not stated 5 (2 – still, 2 – sparkling, 1 – light sparkling) 1.258–4.321 Manzo et al. (2019)  
DEHP Mineral water Iran Not stated 0.5–3.5 Amiri et al. (2017)  
DEHP Mineral water Vietnam Not stated 14 0.46–1.8 Tran-Lam et al. (2018)  
DEHP Mineral water China Not stated <LOQ–0.733 Yin et al. (2019)  
DEHP Bottled mineral water Hungary PET <0.29–11.289 Szendi et al. (2018)  
DEHP Bottled drinking water China Not stated 60 0.013–0.021 Li et al. (2019)  
Detected analyteSampleCountryType of bottleNumber of brands or samplesConcentration (mg/kg)Reference
BBP Mineral water China Not stated 0.001 Wei et al. (2018)  
DBP     0.014 
DEHP     0.018 
BBP Mineral water
Soda water 
China Not stated Not stated 0.32 × 10−4–1.1 × 10−4
<LOD–1.3 × 10−4 
Yang et al. (2017)  
DBP Mineral water
Soda water 
   1.3 × 10−4–10.2 × 10−4
1.6 × 10−4–63.4 × 10−4 
DEHP Mineral water
Soda water 
   2.2 × 10−4–43.9 × 10−4
5.7 × 10−4–72.9 × 10−4 
Detected analyteSampleCountryType of bottleNumber of brands or samplesConcentration (μg/L)Reference
BPA Drinking water bottle Turkey Not stated 5.7 Karayaka et al. (2019)  
BPA Mineral water bottle Iran PETa 5.5 Mohammadnezhad et al. (2017)  
BPA Mineral water Malaysia Not stated 1.25 Rozaini et al. (2017)  
BPA Plastic bottled mineral water China Not stated 0.127 Chang et al. (2017)  
BPA Bottled mineral water Iran Not stated 0.07 Gorji et al. (2019)  
BPA Bottled water China Not stated Not stated 0.05–0.08 Zhou et al. (2019)  
BPA Bottled water China Not stated 17 0.01 Wu et al. (2019)  
BBP Mineral water Iran PET 2.9–5.5 Farahani et al. (2017)  
BBP Bottled water China Not stated 17 1.86 Wu et al. (2019)  
BBP Bottled water in plastic Spain Not stated 0.75–1.9 Barciela-Alonso et al. (2017)  
BBP Mineral water China Not stated 0.515–0.690 Yin et al. (2019)  
BBP Mineral water Vietnam Not stated 14 0.30–0.95 Tran-Lam et al. (2018)  
BBP Bottled drinking water China Not stated 60 0.019–0.032 Li et al. (2019)  
BBP Mineral water bottled in plastic Spain Not stated <LOQ Santana-Mayor et al. (2018)  
DBP Plastic bottled Water Nigeria Not stated 15 42 Dada et al. (2018)  
DBP Drinking water Mexico PET 10 20.5–82.8 Salazar-Beltrán et al. (2017)  
DBP Mineral water China Not stated 8.98–11.5 Yin et al. (2019)  
DBP Bottled water in plastic Spain Not stated 4.6–8.2 Barciela-Alonso et al. (2017)  
DBP Plastic bottled water Thailand Not stated 17.0 Pinsrithong & Bunkoed (2018)  
DBP Plastic bottled water Iran Not stated 5.2 Mohebbi et al. (2017)  
DBP Mineral water Cyprus Not stated Not stated 4.35 Farajzadeh et al. (2019)  
DBP Bottled mineral water Iran Not stated 4.5 Amiri & Ghaemi (2017)  
DBP Mineral water China Not stated 2.68 Chen et al. (2019b)  
DBP Bottled water China Not stated 17 1.34 Wu et al. (2019)  
DBP Mineral water Iran Not stated 1.1–2.5 Amiri et al. (2017)  
DBP Mineral water Iran PET 1.1–1.7 Farahani et al. (2017)  
DBP Mineral water Spain Not stated <1 González-Sálamo et al. (2018)  
DBP Mineral bottled water Spain PET 0.36 González-Sálamo et al. (2017)  
DBP Water packed in plastic bottle (still, sparkling and light sparkling) Chile Not stated 5 (2 – still, 2 – sparkling, 1 – light sparkling) 0.353–2.756 Manzo et al. (2019)  
DBP Plastic bottled water Iran Not stated 10 0.26–1.13 Soheilifar et al. (2018)  
DBP Plastic bottled beverages (water) Vietnam Not stated 0.24–1.86 Tri et al. (2018)  
DBP Mineral water bottled in plastic Spain Not stated 0.184 Santana-Mayor et al. (2018)  
DBP Mineral water Vietnam Not stated 14 0.09–0.95 Tran-Lam et al. (2018)  
DBP Bottled drinking water China Not stated 60 0.021–0.51 Li et al. (2019)  
DBP Bottled mineral water Hungary PET <0.005–0.2 Szendi et al. (2018)  
DEHP Plastic bottled water Thailand Not stated 64.0 Pinsrithong & Bunkoed (2018)  
DEHP Bottled water Italy Not stated 22.9–24.4 Notardonato et al. (2018)  
DEHP Plastic bottled beverages (water) Vietnam Not stated 10.3–42.3 Tri et al. (2018)  
DEHP Plastic bottled water Turkey Not stated Not stated 10.06–11.90 Özer et al. (2017)  
DEHP Bottled mineral water Iran Not stated 3.0 Amiri & Ghaemi (2017)  
DEHP Bottled mineral water Iran Not stated 2.6 Chahkandi & Amiri (2019)  
DEHP Bottled water China Not stated 17 2.50 Wu et al. (2019)  
DEHP Water packed in plastic bottle (still, sparkling and light sparkling) Chile Not stated 5 (2 – still, 2 – sparkling, 1 – light sparkling) 1.258–4.321 Manzo et al. (2019)  
DEHP Mineral water Iran Not stated 0.5–3.5 Amiri et al. (2017)  
DEHP Mineral water Vietnam Not stated 14 0.46–1.8 Tran-Lam et al. (2018)  
DEHP Mineral water China Not stated <LOQ–0.733 Yin et al. (2019)  
DEHP Bottled mineral water Hungary PET <0.29–11.289 Szendi et al. (2018)  
DEHP Bottled drinking water China Not stated 60 0.013–0.021 Li et al. (2019)  
Detected analyteSampleCountryType of bottleNumber of brands or samplesConcentration (mg/kg)Reference
BBP Mineral water China Not stated 0.001 Wei et al. (2018)  
DBP     0.014 
DEHP     0.018 
BBP Mineral water
Soda water 
China Not stated Not stated 0.32 × 10−4–1.1 × 10−4
<LOD–1.3 × 10−4 
Yang et al. (2017)  
DBP Mineral water
Soda water 
   1.3 × 10−4–10.2 × 10−4
1.6 × 10−4–63.4 × 10−4 
DEHP Mineral water
Soda water 
   2.2 × 10−4–43.9 × 10−4
5.7 × 10−4–72.9 × 10−4 

BPA, bisphenol A; BBP, benzylbutyl phthalate; DBP, di-n-butyl phthalate; DEHP, di(2-ethylhexyl) phthalate.

aPolyethylene terephthalate.

Table 3

Levels of BPA, BBP, DBP and DEHP in commercial water bottles with the storage study

Detected analyteSampleCountryType of bottleNumber of brands or samplesStorage studyConcentration (μg/L)Reference
BPA Bottled drinking water Iran Not stated Freezing temperature (24 h)a 0.0023  
Sunlight (for a week) 0.007 Kaykhaii et al. (2020)  
Boiled in a steel jar and quickly poured into the bottle (cooled to ambient temperature)a 0.016  
BBP Mineral water bottle Pakistan Not stated Sunlight (7 days with 10 h/day – 46–48 °C) NDb – 12.11 (median: 7.43) Surhio et al. (2017)  
BBP Bottled water Iran PETc 10 Sunlight (roof on sunny days for 1 week) 0.03–0.13 Abtahi et al. (2019)  
DBP Mineral water bottle Pakistan Not stated Sunlight (7 days with 10 h/day – 46–48 °C) NDb – 26.16 (median: 21.7) Surhio et al. (2017)  
DBP Bottled water Iran PET 10 Sunlight (roof on sunny days for 1 week) NDb – 0.12 (median: 0.10) Abtahi et al. (2019)  
DBP Bottled water Romania Not stated Not stated Room temperature 1–4 °Ca 6.11
5.12 
Sulentic et al. (2018)  
DBP Water in plastic bottle Iran Not stated Room temperaturea
Freezing temperaturea 
5.32
10.12 
Hashemi-Moghaddam & Maddah (2018)  
DBP Bottled mineral water Italy PET 15 6 months at 25 °C
12 months at 60 °C
18 months at 60 °C 
1.23
3.14
6.01 
Cincotta et al. (2018)  
DBP Bottled water Egypt PET 1 months (4 ± 1 °C)
2 months(4 ± 1 °C)
4 months(4 ± 1 °C)
1 months (40 ± 5 °C)
2 months (40 ± 5 °C)
4 months (40 ± 5 °C)
2 months (25 ± 5 °C)
6 months (25 ± 5 °C) 
0.107
0.128
0.173
0.124
0.167
0.229
0.136
0.227 
Zaki & Shoeib (2018)  
DBP Drinking water bottled Iran PET First week of the production
Sunlight
(23 ± 2 °C at 5 days)
Incubator
(25 °C for 75 days)
Incubator
(42 °C for 15 days) 
0.80
5.86
Not stated
Not stated 
Yousefi et al. (2019)  
DEHP Mineral water bottle Pakistan Not stated Sunlight (7 days with 10 h/day – 46–48 °C) 20.23 Surhio et al. (2017)  
DEHP Bottled water Iran PET 10 Sunlight (roof on sunny days for 1 week) 0.7–0.12 Abtahi et al. (2019)  
DEHP Drinking water bottled Iran PET First week of the production
Sunlight
(23 ± 2 °C at 5 days)
Incubator
(25 °C for 75 days)
Incubator
(42 °C for 15 days) 
0.77
Not stated
9.62d and 12.67e
10.33f 
Yousefi et al. (2019)  
DEHP Bottled water Romania Not stated Not stated Room temperature
1 to 4 °Ca 
0.52
2.00 
Sulentic et al. (2018)  
DEHP Bottled water India PET Not stated 2 months at 4 °C
2 months at 37 °C
4 months at 4 °C
4 months at 37 °C
6 months at 4 °C
6 months at 37 °C 
0.303
0.081
0.40
0.2010
1.09
0.59 
Annamalai & Namasivayam (2017)  
DEHP Bottled water Egypt PET 1 months (4 ± 1 °C)
2 months(4 ± 1 °C)
4 months(4 ± 1 °C)
1 months (40 ± 5 °C)
2 months (40 ± 5 °C)
4 months (40 ± 5 °C)
2 months (25 ± 5 °C)
6 months (25 ± 5 °C) 
0.135
0.235
0.307
0.190
0.306
0.432
0.274
0.396 
Zaki & Shoeib (2018)  
Detected analyteSampleCountryType of bottleNumber of brands or samplesStorage studyConcentration (μg/L)Reference
BPA Bottled drinking water Iran Not stated Freezing temperature (24 h)a 0.0023  
Sunlight (for a week) 0.007 Kaykhaii et al. (2020)  
Boiled in a steel jar and quickly poured into the bottle (cooled to ambient temperature)a 0.016  
BBP Mineral water bottle Pakistan Not stated Sunlight (7 days with 10 h/day – 46–48 °C) NDb – 12.11 (median: 7.43) Surhio et al. (2017)  
BBP Bottled water Iran PETc 10 Sunlight (roof on sunny days for 1 week) 0.03–0.13 Abtahi et al. (2019)  
DBP Mineral water bottle Pakistan Not stated Sunlight (7 days with 10 h/day – 46–48 °C) NDb – 26.16 (median: 21.7) Surhio et al. (2017)  
DBP Bottled water Iran PET 10 Sunlight (roof on sunny days for 1 week) NDb – 0.12 (median: 0.10) Abtahi et al. (2019)  
DBP Bottled water Romania Not stated Not stated Room temperature 1–4 °Ca 6.11
5.12 
Sulentic et al. (2018)  
DBP Water in plastic bottle Iran Not stated Room temperaturea
Freezing temperaturea 
5.32
10.12 
Hashemi-Moghaddam & Maddah (2018)  
DBP Bottled mineral water Italy PET 15 6 months at 25 °C
12 months at 60 °C
18 months at 60 °C 
1.23
3.14
6.01 
Cincotta et al. (2018)  
DBP Bottled water Egypt PET 1 months (4 ± 1 °C)
2 months(4 ± 1 °C)
4 months(4 ± 1 °C)
1 months (40 ± 5 °C)
2 months (40 ± 5 °C)
4 months (40 ± 5 °C)
2 months (25 ± 5 °C)
6 months (25 ± 5 °C) 
0.107
0.128
0.173
0.124
0.167
0.229
0.136
0.227 
Zaki & Shoeib (2018)  
DBP Drinking water bottled Iran PET First week of the production
Sunlight
(23 ± 2 °C at 5 days)
Incubator
(25 °C for 75 days)
Incubator
(42 °C for 15 days) 
0.80
5.86
Not stated
Not stated 
Yousefi et al. (2019)  
DEHP Mineral water bottle Pakistan Not stated Sunlight (7 days with 10 h/day – 46–48 °C) 20.23 Surhio et al. (2017)  
DEHP Bottled water Iran PET 10 Sunlight (roof on sunny days for 1 week) 0.7–0.12 Abtahi et al. (2019)  
DEHP Drinking water bottled Iran PET First week of the production
Sunlight
(23 ± 2 °C at 5 days)
Incubator
(25 °C for 75 days)
Incubator
(42 °C for 15 days) 
0.77
Not stated
9.62d and 12.67e
10.33f 
Yousefi et al. (2019)  
DEHP Bottled water Romania Not stated Not stated Room temperature
1 to 4 °Ca 
0.52
2.00 
Sulentic et al. (2018)  
DEHP Bottled water India PET Not stated 2 months at 4 °C
2 months at 37 °C
4 months at 4 °C
4 months at 37 °C
6 months at 4 °C
6 months at 37 °C 
0.303
0.081
0.40
0.2010
1.09
0.59 
Annamalai & Namasivayam (2017)  
DEHP Bottled water Egypt PET 1 months (4 ± 1 °C)
2 months(4 ± 1 °C)
4 months(4 ± 1 °C)
1 months (40 ± 5 °C)
2 months (40 ± 5 °C)
4 months (40 ± 5 °C)
2 months (25 ± 5 °C)
6 months (25 ± 5 °C) 
0.135
0.235
0.307
0.190
0.306
0.432
0.274
0.396 
Zaki & Shoeib (2018)  

BPA, bisphenol A; BBP, benzylbutyl phthalate; DBP, di-n-butyl phthalate; DEHP, di(2-ethylhexyl) phthalate.

aUnspecified temperature.

bNot detected.

cPolyethylene terephthalate.

dMean concentration.

eHighest mean concentration.

fMaximum amount.

Figure 1

BPA, BBP, DBP and DEHP concentrations detected in commercial water bottles without the storage study. The number in ‘Sample-Type of bottle’ represents different samples. NS is ‘Not stated’.

Figure 1

BPA, BBP, DBP and DEHP concentrations detected in commercial water bottles without the storage study. The number in ‘Sample-Type of bottle’ represents different samples. NS is ‘Not stated’.

Figure 2

Levels of BPA, BBP, DBP and DEHP variation in commercial water bottles with the storage study. The number in ‘Sample-Type of bottle’ represents different samples. NS is ‘Not stated’.

Figure 2

Levels of BPA, BBP, DBP and DEHP variation in commercial water bottles with the storage study. The number in ‘Sample-Type of bottle’ represents different samples. NS is ‘Not stated’.

Some papers presented values above the MCL to BPA (0.1 μg/L) by EC (EC 2020). All the papers exhibited levels lower than MCL to BPA by China (GB-5749-2006). Even though there is no specific legislation for BBP so far, all the papers showed levels lower than MCL of 100 μg/L proposed by US EPA. It should be noted that this is a proposed value and has not been defined as a standard, but the proposed value serves to analyze the results for the moment. Almost all papers exhibited DBP levels low than 3 μg/L (GB-5749-2006) and displayed DEHP levels low than 6 or 8 μg/L (Codex Alimentarius 2001; GB-5749-2006; WHO 2017; ECFR 2020). The values of BBP, DBP and DEHP obtained by Wei et al. (2018) and Yang et al. (2017) are lower than the SML values by the EU for BBP (30 mg/kg), DBP (0.3 mg/kg) and DEHP (1.5 mg/kg) (EFSA 2019).

The countries with the reported highest levels of BPA, BBP, DBP and DEHP were Turkey (5.7 μg/L – Figure 1), Pakistan (12.11 μg/L – Figure 2), Mexico (82.8 μg/L – Figure 1) and Thailand (64.0 μg/L – Figure 1), respectively. The PAE values detected were highest than those established by legislation. Thailand also was the country with the first rank with DEHP (94.1 μg/L) in bottled waters in the review by Luo et al. (2018). The value was obtained by Uansiri et al. (2016) in bottled water contained in plastic containers. DEHP is known as a dominant PAE in bottled water (Keresztes et al. 2013; Guart et al. 2014; Zaki & Shoeib 2018; Abtahi et al. 2019).

DBP was the most compound detected. Luo et al. (2018) also verified that DBP was the PAE with more detection frequency in bottled water. All the samples (10 brands) analyzed by Soheilifar et al. (2018) present DBP. Among 16 PAEs studied by Zhang et al. (2018), DBP was the most ubiquitous and dominant contaminant in the study population. Soheilifar et al. (2018) optimized a molecularly imprinted polymer as a highly selective sorbent toward DBP. Dada et al. (2018) also analyzed packaged sachet water, and DBP concentrations were almost four-time higher (160 μg/L) relative to bottled water. Sachet water is packaging in plastic bags (Semey et al. 2020) made of LDPE (Jnr et al. 2018), and it is relatively cheaper than a water bottle (Dada et al. 2018).

Kaykhaii et al. (2020) verified that the water sample presented more BPA migration (Figure 2) when brought to boiling in a steel jar, quickly poured into the bottle and after cooling at ambient temperature (Figure 2). Surhio et al. (2017) detected the highest value of BBP migration studied with the influence of sunlight in Pakistan (Figure 2). The intensity of sunlight may affect the degradation degree of PAEs (Lertsirisopon et al. 2009), and the occurrence of PAEs in water stored in PET bottles depended mainly on the country of origin of the bottle (Schmid et al. 2008; Keresztes et al. 2013). All the papers that specified the type of bottle demonstrated DBP levels above the MCL (3 μg/L). Yousefi et al. (2019) also studied PET bottled water exposed to sunlight and as well as Surhio et al. (2017) verified an increase in DBP concentration. DBP values at room temperature were lower than at freezing for Hashemi-Moghaddam & Maddah (2018), while the reverse occurred for Sulentic et al. (2018). The presence of DBP may be due to different production facilities used by the different brands tested (Al-Saleh et al. 2011; Guart et al. 2014). Annamalai & Namasivayam (2017) obtained bigger values to DEHP at 4 °C and smaller values at 37 °C. To Zaki & Shoeib (2018) occurred the reverse. These authors analyzed DEHP in PET bottled water.

The migration of PAEs in bottled water results from the combined effects of multiple factors, as reported by Luo et al. (2018). The possible reason for the migration of PAEs is the usage of low-quality plastic as well as solubility in water (Saeed et al. 2010). The plastic type is that influences the presence of specific contaminants, where the migration of plasticizers from the cap material plays an important role (Guart et al. 2014). Jeddi et al. (2016) noted that the effect of temperatures and sunlight exposure on the release of the BBP, DBP and DEHP into the water is more than the effect due to storage duration. Keresztes et al. (2013) analyzed identical brands of water samples in PET containers having different volumes. The authors verified that how much higher is the contact surface between water and PET material, higher concentrations of BBP, DBP and DEHP were observed.

RISK ASSESSMENT

Daily intake-associated risk assessment

To compare the health risk via commercial water bottle consumption was used the risk assessment. The highest levels of BPA, BBP, DBP and DEHP in commercial water bottles are presented in Table 4 and Figure 3. The BPA in PET bottled water suggests other sources of contamination beside the packaging itself. The presence of BPA in PC packaging is known. In the case of PET bottled water, BPA can result from leaching by bottle caps or contamination of the water before bottling (Guart et al. 2011; Bach et al. 2012; Rowell et al. 2016). The water quality intended for bottling can be affected by the leaching of pollutants from unprotected agricultural and industrial areas (Bono-Blay et al. 2012). Bono-Blay et al. (2012) studied Spanish water sources intended for bottling, where BPA was one of the most frequently detected compounds at concentrations between 0.031 and 0.203 μg/L.

Table 4

Estimation of exposure to BPA, BBP, DBP and DEHP in commercial water bottles

Without the storage study
Detected analyteCountryConcentration (μg/L)aEDI (μg/kg-bw/day)bContribution via bottled water (%)cELCRdReference
BPA Turkey 5.7 ≈0.163 ≈4.1 – Karayaka et al. (2019)  
BPA Iran 5.5 ≈0.157 ≈3.9 – Mohammadnezhad et al. (2017)  
BPA Malaysia 1.25 ≈3.6 × 10−2 ≈0.9 – Rozaini et al. (2017)  
BPA China 0.127 ≈3.6 × 10−3 ≈0.09 – Chang et al. (2017)  
BPA China 0.08 ≈2.3 × 10−3 ≈0.058 – Zhou et al. (2019)  
BPA Iran 0.07 2.0 × 10−3 ≈0.05 – Gorji et al. (2019)  
BPA China 0.01 ≈2.9 × 10−4 ≈7.3 × 10−3 – Wu et al. (2019)  
BBP Iran 5.5 ≈0.157 ≈0.03 – Farahani et al. (2017)  
BBP Spain 1.9 ≈5.4 × 10−2 ≈1.1 × 10−2 – Barciela-Alonso et al. (2017)  
BBP China 1.86 5.3 × 10−2 ≈1.1 × 10−2 – Wu et al. (2019)  
BBP Vietnam 0.95 ≈2.7 × 10−2 ≈5.4 × 10−3 – Tran-Lam et al. (2018)  
BBP China 0.690 ≈2.0 × 10−2 ≈4.0 × 10−3 – Yin et al. (2019)  
BBP China 0.032 ≈9.1 × 10−4 ≈1.8 × 10−4 – Li et al. (2019)  
BBP Spain <LOQ (0.006) <1.7 × 10−4 <3.4 × 10−5 – Santana-Mayor et al. (2018)  
DBP Mexico 82.8 2.37 23.7 – Salazar-Beltrán et al. (2017)  
DBP Nigeria 42 1.2 12 – Dada et al. (2018)  
DBP Thailand 17.0 ≈0.486 ≈4.86 – Pinsrithong & Bunkoed (2018)  
DBP China 11.5 ≈0.329 ≈3.29 – Yin et al. (2019)  
DBP Spain 8.2 ≈0.234 ≈2.34 – Barciela-Alonso et al. (2017)  
DBP Iran 5.2 ≈0.149 ≈1.49 – Mohebbi et al. (2017)  
DBP Iran 4.5 0.129 1.29 – Amiri & Ghaemi (2017)  
DBP Iran 4.35 ≈0.124 1.24 – Farajzadeh et al. (2019)  
DBP China 2.68 ≈7.7 × 10−2 ≈0.77 – Chen et al. (2019b)  
DBP Iran 2.5 ≈7.1 × 10−2 ≈0.71 – Amiri et al. (2017)  
DBP Vietnam 1.86 5.3 × 10−2 0.53 – Tri et al. (2018)  
DBP Iran 1.7 ≈4.9 × 10−2 ≈0.49 – Farahani et al. (2017)  
DBP China 1.34 ≈3.8 × 10−2 ≈0.38 – Wu et al. (2019)  
DBP Iran 1.13 ≈3.2 × 10−2 ≈0.32 – Soheilifar et al. (2018)  
DBP Spain <1 <2.9 × 10−2 <0.29 – González-Sálamo et al. (2018)  
DBP Vietnam 0.95 ≈2.7 × 10−2 ≈0.27 – Tran-Lam et al. (2018)  
DBP China 0.51 ≈1.5 × 10−2 0.15 – Li et al. (2019)  
DBP Spain 0.36 1.0 × 10−2 0.1 – González-Sálamo et al. (2017)  
DBP Hungary <0.2 <5.7 × 10−3 <0.057 – Szendi et al. (2018)  
DBP Spain 0.184 ≈5.3 × 10−3 ≈0.053 – Santana-Mayor et al. (2018)  
DEHP Thailand 64.0 ≈1.83 ≈3.66 ≈3.0 × 10−5 Pinsrithong & Bunkoed (2018)  
DEHP Vietnam 42.3 ≈1.21 2.42 ≈2.0 × 10−5 Tri et al. (2018)  
DEHP China 2.50 ≈7.1 × 10−2 ≈1.42 ≈1.2 × 10−6 Wu et al. (2019)  
DEHP Italy 24.4 ≈0.697 ≈1.39 ≈1.1 × 10−5 Notardonato et al. (2018)  
DEHP Turkey 11.90 0.34 0.68 ≈5.6 × 10−6 Özer et al. (2017)  
DEHP Hungary <11.289 <0.323 <0.646 ≈< 5.3 × 10−6 Szendi et al. (2018)  
DEHP Chile 4.321 ≈0.123 ≈0.246 ≈2.0 × 10−6 Manzo et al. (2019)  
DEHP Iran 3.5 0.1 ≈0.2 ≈1.6 × 10−6 Amiri et al. (2017)  
DEHP Iran 3.0 0.086 0.172 ≈1.4 × 10−6 Amiri & Ghaemi (2017)  
DEHP Vietnam 1.8 5.1 × 10−2 ≈0.1 ≈8.53 × 10−7 Tran-Lam et al. (2018)  
DEHP China 0.733 ≈2.1 × 10−2 ≈0.042 ≈3.4 × 10−7 Yin et al. (2019)  
DEHP China 0.021 6.0 × 10−4 1.2 × 10−3 ≈9.9 × 10−9 Li et al. (2019)  
Detected analyteCountryConcentration (μg/kg)aEDI (μg/kg-bw/day)bContribution via bottled water (%)cCRdReference
BBP China Mineral water (MW): 0.11
Soda water (SW): 0.13 
≈3.1 × 10−3
≈3.7 × 10−3 
≈6.2 × 10−4
≈7.4 × 10−4 
– Yang et al. (2017)  
DBP  Mineral water: 1.02
Soda water: 6.34 
≈2.9 × 10−2
≈0.181 
≈0.29
≈1.8 
–  
DEHP  Mineral water: 4.3
Soda water: 7.29 
≈0.123
≈0.208 
≈0.246
≈0.416 
≈5.2 × 10−8
≈3.4 × 10−6 
 
With storage study
Detected analyteCountryConcentration (μg/L)aEDI (μg/kg-bw/day)bContribution via bottled water (%)cCRdReference
BPA Iran 0.016 ≈4.6 × 10−4 ≈1.2 × 10−2 – Kaykhaii et al. (2020)  
BBP Pakistan 12.11 0.346 ≈0.069 – Surhio et al. (2017)  
BBP Iran 0.13 ≈3.7 × 10−3 ≈7.4 × 10−4 – Abtahi et al. (2019)  
DBP Pakistan 26.16 ≈0.747 7.47 – Surhio et al. (2017)  
DBP Iran 10.12 ≈0.289 ≈2.89 – Hashemi-Moghaddam & Maddah (2018)  
DBP Iran 8.45 ≈0.241 ≈2.41 – Yousefi et al. (2019)  
DBP Romania 6.11 ≈0.175 ≈1.75 – Sulentic et al. (2018)  
DBP Italy 6.01 ≈0.172 ≈1.72 – Cincotta et al. (2018)  
DBP Egypt 0.229 ≈6.5 × 10−3 ≈0.065 – Zaki & Shoeib (2018)  
DBP Iran 0.12 ≈3.4 × 10−3 ≈0.034 – Abtahi et al. (2019)  
DEHP Pakistan 20.23 0.578 ≈1.16 ≈9.5 × 10−6 Surhio et al. (2017)  
DEHP Iran 12.67 0.362 ≈0.724 ≈6.0 × 10−6 Yousefi et al. (2019)  
DEHP Romania 2.00 ≈5.7 × 10−2 ≈0.114 9.4 × 10−7 Sulentic et al. (2018)  
DEHP Egypt 0.432 ≈1.2 × 10−2 ≈0.024 ≈2.0 × 10−7 Zaki & Shoeib (2018)  
DEHP Iran 0.12 ≈3.4 × 10−3 ≈6.8 × 10−3 ≈5.6 × 10−8 Abtahi et al. (2019)  
DEHP India 1.09 ≈3.1 × 10−2 ≈0.062 ≈5.1 × 10−7 Annamalai & Namasivayam (2017)  
Without the storage study
Detected analyteCountryConcentration (μg/L)aEDI (μg/kg-bw/day)bContribution via bottled water (%)cELCRdReference
BPA Turkey 5.7 ≈0.163 ≈4.1 – Karayaka et al. (2019)  
BPA Iran 5.5 ≈0.157 ≈3.9 – Mohammadnezhad et al. (2017)  
BPA Malaysia 1.25 ≈3.6 × 10−2 ≈0.9 – Rozaini et al. (2017)  
BPA China 0.127 ≈3.6 × 10−3 ≈0.09 – Chang et al. (2017)  
BPA China 0.08 ≈2.3 × 10−3 ≈0.058 – Zhou et al. (2019)  
BPA Iran 0.07 2.0 × 10−3 ≈0.05 – Gorji et al. (2019)  
BPA China 0.01 ≈2.9 × 10−4 ≈7.3 × 10−3 – Wu et al. (2019)  
BBP Iran 5.5 ≈0.157 ≈0.03 – Farahani et al. (2017)  
BBP Spain 1.9 ≈5.4 × 10−2 ≈1.1 × 10−2 – Barciela-Alonso et al. (2017)  
BBP China 1.86 5.3 × 10−2 ≈1.1 × 10−2 – Wu et al. (2019)  
BBP Vietnam 0.95 ≈2.7 × 10−2 ≈5.4 × 10−3 – Tran-Lam et al. (2018)  
BBP China 0.690 ≈2.0 × 10−2 ≈4.0 × 10−3 – Yin et al. (2019)  
BBP China 0.032 ≈9.1 × 10−4 ≈1.8 × 10−4 – Li et al. (2019)  
BBP Spain <LOQ (0.006) <1.7 × 10−4 <3.4 × 10−5 – Santana-Mayor et al. (2018)  
DBP Mexico 82.8 2.37 23.7 – Salazar-Beltrán et al. (2017)  
DBP Nigeria 42 1.2 12 – Dada et al. (2018)  
DBP Thailand 17.0 ≈0.486 ≈4.86 – Pinsrithong & Bunkoed (2018)  
DBP China 11.5 ≈0.329 ≈3.29 – Yin et al. (2019)  
DBP Spain 8.2 ≈0.234 ≈2.34 – Barciela-Alonso et al. (2017)  
DBP Iran 5.2 ≈0.149 ≈1.49 – Mohebbi et al. (2017)  
DBP Iran 4.5 0.129 1.29 – Amiri & Ghaemi (2017)  
DBP Iran 4.35 ≈0.124 1.24 – Farajzadeh et al. (2019)  
DBP China 2.68 ≈7.7 × 10−2 ≈0.77 – Chen et al. (2019b)  
DBP Iran 2.5 ≈7.1 × 10−2 ≈0.71 – Amiri et al. (2017)  
DBP Vietnam 1.86 5.3 × 10−2 0.53 – Tri et al. (2018)  
DBP Iran 1.7 ≈4.9 × 10−2 ≈0.49 – Farahani et al. (2017)  
DBP China 1.34 ≈3.8 × 10−2 ≈0.38 – Wu et al. (2019)  
DBP Iran 1.13 ≈3.2 × 10−2 ≈0.32 – Soheilifar et al. (2018)  
DBP Spain <1 <2.9 × 10−2 <0.29 – González-Sálamo et al. (2018)  
DBP Vietnam 0.95 ≈2.7 × 10−2 ≈0.27 – Tran-Lam et al. (2018)  
DBP China 0.51 ≈1.5 × 10−2 0.15 – Li et al. (2019)  
DBP Spain 0.36 1.0 × 10−2 0.1 – González-Sálamo et al. (2017)  
DBP Hungary <0.2 <5.7 × 10−3 <0.057 – Szendi et al. (2018)  
DBP Spain 0.184 ≈5.3 × 10−3 ≈0.053 – Santana-Mayor et al. (2018)  
DEHP Thailand 64.0 ≈1.83 ≈3.66 ≈3.0 × 10−5 Pinsrithong & Bunkoed (2018)  
DEHP Vietnam 42.3 ≈1.21 2.42 ≈2.0 × 10−5 Tri et al. (2018)  
DEHP China 2.50 ≈7.1 × 10−2 ≈1.42 ≈1.2 × 10−6 Wu et al. (2019)  
DEHP Italy 24.4 ≈0.697 ≈1.39 ≈1.1 × 10−5 Notardonato et al. (2018)  
DEHP Turkey 11.90 0.34 0.68 ≈5.6 × 10−6 Özer et al. (2017)  
DEHP Hungary <11.289 <0.323 <0.646 ≈< 5.3 × 10−6 Szendi et al. (2018)  
DEHP Chile 4.321 ≈0.123 ≈0.246 ≈2.0 × 10−6 Manzo et al. (2019)  
DEHP Iran 3.5 0.1 ≈0.2 ≈1.6 × 10−6 Amiri et al. (2017)  
DEHP Iran 3.0 0.086 0.172 ≈1.4 × 10−6 Amiri & Ghaemi (2017)  
DEHP Vietnam 1.8 5.1 × 10−2 ≈0.1 ≈8.53 × 10−7 Tran-Lam et al. (2018)  
DEHP China 0.733 ≈2.1 × 10−2 ≈0.042 ≈3.4 × 10−7 Yin et al. (2019)  
DEHP China 0.021 6.0 × 10−4 1.2 × 10−3 ≈9.9 × 10−9 Li et al. (2019)  
Detected analyteCountryConcentration (μg/kg)aEDI (μg/kg-bw/day)bContribution via bottled water (%)cCRdReference
BBP China Mineral water (MW): 0.11
Soda water (SW): 0.13 
≈3.1 × 10−3
≈3.7 × 10−3 
≈6.2 × 10−4
≈7.4 × 10−4 
– Yang et al. (2017)  
DBP  Mineral water: 1.02
Soda water: 6.34 
≈2.9 × 10−2
≈0.181 
≈0.29
≈1.8 
–  
DEHP  Mineral water: 4.3
Soda water: 7.29 
≈0.123
≈0.208 
≈0.246
≈0.416 
≈5.2 × 10−8
≈3.4 × 10−6 
 
With storage study
Detected analyteCountryConcentration (μg/L)aEDI (μg/kg-bw/day)bContribution via bottled water (%)cCRdReference
BPA Iran 0.016 ≈4.6 × 10−4 ≈1.2 × 10−2 – Kaykhaii et al. (2020)  
BBP Pakistan 12.11 0.346 ≈0.069 – Surhio et al. (2017)  
BBP Iran 0.13 ≈3.7 × 10−3 ≈7.4 × 10−4 – Abtahi et al. (2019)  
DBP Pakistan 26.16 ≈0.747 7.47 – Surhio et al. (2017)  
DBP Iran 10.12 ≈0.289 ≈2.89 – Hashemi-Moghaddam & Maddah (2018)  
DBP Iran 8.45 ≈0.241 ≈2.41 – Yousefi et al. (2019)  
DBP Romania 6.11 ≈0.175 ≈1.75 – Sulentic et al. (2018)  
DBP Italy 6.01 ≈0.172 ≈1.72 – Cincotta et al. (2018)  
DBP Egypt 0.229 ≈6.5 × 10−3 ≈0.065 – Zaki & Shoeib (2018)  
DBP Iran 0.12 ≈3.4 × 10−3 ≈0.034 – Abtahi et al. (2019)  
DEHP Pakistan 20.23 0.578 ≈1.16 ≈9.5 × 10−6 Surhio et al. (2017)  
DEHP Iran 12.67 0.362 ≈0.724 ≈6.0 × 10−6 Yousefi et al. (2019)  
DEHP Romania 2.00 ≈5.7 × 10−2 ≈0.114 9.4 × 10−7 Sulentic et al. (2018)  
DEHP Egypt 0.432 ≈1.2 × 10−2 ≈0.024 ≈2.0 × 10−7 Zaki & Shoeib (2018)  
DEHP Iran 0.12 ≈3.4 × 10−3 ≈6.8 × 10−3 ≈5.6 × 10−8 Abtahi et al. (2019)  
DEHP India 1.09 ≈3.1 × 10−2 ≈0.062 ≈5.1 × 10−7 Annamalai & Namasivayam (2017)  

BPA, bisphenol A; BBP, benzylbutyl phthalate; DBP, di-n-butyl phthalate; DEHP, di(2-ethylhexyl) phthalate.

aThe worst-case scenario (the maximum level of each compound) was employed.

bEDI = (C × IR)/BW, where C is the concentration of target compounds (μg/L or mg/kg), ingestion rate (IR) is the daily consumption rate of bottled water (L/day or g/day), and BW is body weight (Luo et al. 2018), and the IR was assumed to be 2.0 L/day or and 2.0 kg/day for a 70 kg for adult (BW) (WHO 2005). The value of 2.0 L/day refers to all water sources that includes water from all supply sources such as community water supply (i.e., tap water), bottled water, etc.

μg/kg-bw/day: microgram per kilogram of the body weight of the person taking per day.

cContribution via drinking water = (EDI/TDI) × 100 (Zaki & Shoeib 2018), where the TDI for BPA, BBP, DBP, and DEHP are available for reference as established by EFSA (4, 500, 10 and 50 μg/kg-bw/day).

dELCR is the Excess Lifetime Cancer Risks due to exposure to chemicals through the use of bottled water. ELCR = DWUR × MC, where Drinking Water Unit Risk is equal to 4.7 × 10−7 μg/L of DEHP in water, and MC is the maximum concentration (μg/L or μg/kg) of DEHP in bottled water (Jeddi et al. 2015). Here was considered the value of 4.7 × 10−7 μg/kg for papers with concentrations give in mg/kg.

Figure 3

BPA, BBP, DBP and DEHP contribution via commercial water bottles. The number in parentheses represents articles from the same country with different concentrations. MW is mineral water and SW is soda water.

Figure 3

BPA, BBP, DBP and DEHP contribution via commercial water bottles. The number in parentheses represents articles from the same country with different concentrations. MW is mineral water and SW is soda water.

Although the estimated daily intake (EDI) of BPA, BBP, DBP and DEHP detected in PET bottled waters analyzed was below the legislative values (Table 4), considering all types of food, it may contribute to the total daily intake of these compounds. The highest contributions via commercial water bottles of BPA, BBP, DBP and DEHP in all the bottled waters studied were 4.1, 0.069, 23.7 and 3.66% of TDI, respectively (Figure 3). The results demonstrate that contribution via commercial water bottles (Table 4) could represent a substantial source of exposure to these compounds (considering the highest contributions), when the daily consumption rate, of 2.0 L/day of bottled water and body weight of 70 kg, is used according to the standard WHO (2005). If Reference Dose (RfD) were considered (Table 5), which is more restrictive for DEHP, the contribution would be much higher (9.15%).

Table 5

Estimated human exposure and estrogenic effects of BPA, BBP, DBP and DEHP via commercial bottled water ingested for other population groups

BPABBPDBPDEHP
Reference Karayaka et al. (2019)  Surhio et al. (2017)  Salazar-Beltrán et al. (2017)  Pinsrithong & Bunkoed (2018)  
Maximum concentration (μg/L) 5.7 12.11 82.8 64.0 
EDI (μg/kg-bw/day) 
 Infants (birth to <12 months)*a ≈0.042 ≈0.089 ≈0.61 ≈0.471 
 Children (1 to <3 years)*b ≈0.106 ≈0.225 ≈1.539 ≈1.19 
 Children (3 to <11 years)*c ≈0.072 ≈0.154 ≈1.051 ≈0.813 
 Teenage (11 to <16 years)*d ≈0.053 ≈0.112 ≈0.767 ≈0.593 
 Young adult (16 <21 years)*e ≈0.061 ≈0.129 ≈0.882 ≈0.682 
 Adult (≥21 years)*f ≈0.060 ≈0.128 ≈0.876 ≈0.677 
 Pregnant (15–44)*g ≈0.046 ≈0.097 ≈0.662 0.512 
 Elderly (≥65 years)*h ≈0.057 ≈0.120 ≈0.821 ≈0.635 
 Tolerable daily intake (μg/kg-bw/day) 500 10 50 
Contribution via bottled water (%)# 
 Infants (birth to <12 months)*a ≈1.05 ≈1.78 × 10−2 ≈6.10 ≈0.942 
 Children (1 to <3 years)*b ≈2.65 ≈4.50 × 10−2 ≈15.40 ≈2.38 
 Children (3 to <11 years)*c ≈1.80 ≈3.08 × 10−2 ≈1.05 ≈1.63 
 Teenage (11 to <16 years)*d ≈1.33 ≈2.24 × 10−2 ≈7.67 ≈1.19 
 Young adult (16 to <21 years)*e ≈1.53 ≈2.58 × 10−2 ≈8.82 ≈1.36 
 Adult (≥21 years)*f ≈1.50 ≈2.56 × 10−2 ≈8.76 ≈1.35 
 Pregnant (15–44)*g ≈1.15 ≈1.94 × 10−2 ≈6.62 1.02 
 Elderly (≥65 years)*h ≈1.43 ≈1.2 × 10−2 ≈8.21 ≈1.27 
 RfD (μg/kg-bw/day)i 50 500 100 20 
HQj 
 Infants (birth to <12 months)*a ≈8.40 × 10−4 ≈1.78 × 10−4 ≈6.10 × 10−3 ≈2.36 × 10−2 
 Children (1 to <3 years)*b ≈2.12 × 10−3 ≈4.50 × 10−4 ≈1.54 × 10−2 ≈5.95 × 10−2 
 Children (3 to <11 years)*c ≈1.44 × 10−3 ≈3.08 × 10−4 ≈1.05 × 10−2 ≈4.07 × 10−2 
 Teenage (11 to <16 years)*d ≈1.06 × 10−3 ≈2.24 × 10−4 ≈7.67 × 10−3 ≈2.97 × 10−2 
 Young adult (16 to <21 years)*e ≈1.22 × 10−3 ≈2.58 × 10−4 ≈8.82 × 10−3 ≈3.41 × 10−2 
 Adult (≥21 years)*f ≈1.20 × 10−3 ≈2.56 × 10−4 ≈8.76 × 10−3 ≈3.39 × 10−2 
 Pregnant (15–44)*g ≈9.20 × 10−4 ≈1.94 × 10−4 ≈6.62 × 10−3 2.56 × 10−2 
 Elderly (≥65 years)*h ≈1.14 × 10−3 ≈2.4 × 10−4 ≈8.21 × 10−3 ≈3.18 × 10−3 
SF (based on maximum concentration) 
 Infants (birth to <12 months)*a 1,190 5,620 164 42.5 
 Children (1 to <3 years)*b 472 2,220 65 16.8 
 Children (3 to <11 years)*c 694 3,250 95.1 24.6 
 Teenage (11 to <16 years)*d 943 4,460 130 33.7 
 Young adult (16 <21 years)*e 820 3,880 113 29.3 
 Adult (≥21 years)*f 833 3,910 114 29.5 
 Pregnant (15–44)*g 1,090 5,150 151 39.1 
 Elderly (≥65 years)*h 877 4,170 122 31.5 
Estrogenic potency (EP) 5.9E−05l 2E−4m 4.1E−5m 3E−7n 
EEQ (ng E2/L)& 0.336 2.42 3.39 0.0192 
Total compounds    6.1652 
BPABBPDBPDEHP
Reference Karayaka et al. (2019)  Surhio et al. (2017)  Salazar-Beltrán et al. (2017)  Pinsrithong & Bunkoed (2018)  
Maximum concentration (μg/L) 5.7 12.11 82.8 64.0 
EDI (μg/kg-bw/day) 
 Infants (birth to <12 months)*a ≈0.042 ≈0.089 ≈0.61 ≈0.471 
 Children (1 to <3 years)*b ≈0.106 ≈0.225 ≈1.539 ≈1.19 
 Children (3 to <11 years)*c ≈0.072 ≈0.154 ≈1.051 ≈0.813 
 Teenage (11 to <16 years)*d ≈0.053 ≈0.112 ≈0.767 ≈0.593 
 Young adult (16 <21 years)*e ≈0.061 ≈0.129 ≈0.882 ≈0.682 
 Adult (≥21 years)*f ≈0.060 ≈0.128 ≈0.876 ≈0.677 
 Pregnant (15–44)*g ≈0.046 ≈0.097 ≈0.662 0.512 
 Elderly (≥65 years)*h ≈0.057 ≈0.120 ≈0.821 ≈0.635 
 Tolerable daily intake (μg/kg-bw/day) 500 10 50 
Contribution via bottled water (%)# 
 Infants (birth to <12 months)*a ≈1.05 ≈1.78 × 10−2 ≈6.10 ≈0.942 
 Children (1 to <3 years)*b ≈2.65 ≈4.50 × 10−2 ≈15.40 ≈2.38 
 Children (3 to <11 years)*c ≈1.80 ≈3.08 × 10−2 ≈1.05 ≈1.63 
 Teenage (11 to <16 years)*d ≈1.33 ≈2.24 × 10−2 ≈7.67 ≈1.19 
 Young adult (16 to <21 years)*e ≈1.53 ≈2.58 × 10−2 ≈8.82 ≈1.36 
 Adult (≥21 years)*f ≈1.50 ≈2.56 × 10−2 ≈8.76 ≈1.35 
 Pregnant (15–44)*g ≈1.15 ≈1.94 × 10−2 ≈6.62 1.02 
 Elderly (≥65 years)*h ≈1.43 ≈1.2 × 10−2 ≈8.21 ≈1.27 
 RfD (μg/kg-bw/day)i 50 500 100 20 
HQj 
 Infants (birth to <12 months)*a ≈8.40 × 10−4 ≈1.78 × 10−4 ≈6.10 × 10−3 ≈2.36 × 10−2 
 Children (1 to <3 years)*b ≈2.12 × 10−3 ≈4.50 × 10−4 ≈1.54 × 10−2 ≈5.95 × 10−2 
 Children (3 to <11 years)*c ≈1.44 × 10−3 ≈3.08 × 10−4 ≈1.05 × 10−2 ≈4.07 × 10−2 
 Teenage (11 to <16 years)*d ≈1.06 × 10−3 ≈2.24 × 10−4 ≈7.67 × 10−3 ≈2.97 × 10−2 
 Young adult (16 to <21 years)*e ≈1.22 × 10−3 ≈2.58 × 10−4 ≈8.82 × 10−3 ≈3.41 × 10−2 
 Adult (≥21 years)*f ≈1.20 × 10−3 ≈2.56 × 10−4 ≈8.76 × 10−3 ≈3.39 × 10−2 
 Pregnant (15–44)*g ≈9.20 × 10−4 ≈1.94 × 10−4 ≈6.62 × 10−3 2.56 × 10−2 
 Elderly (≥65 years)*h ≈1.14 × 10−3 ≈2.4 × 10−4 ≈8.21 × 10−3 ≈3.18 × 10−3 
SF (based on maximum concentration) 
 Infants (birth to <12 months)*a 1,190 5,620 164 42.5 
 Children (1 to <3 years)*b 472 2,220 65 16.8 
 Children (3 to <11 years)*c 694 3,250 95.1 24.6 
 Teenage (11 to <16 years)*d 943 4,460 130 33.7 
 Young adult (16 <21 years)*e 820 3,880 113 29.3 
 Adult (≥21 years)*f 833 3,910 114 29.5 
 Pregnant (15–44)*g 1,090 5,150 151 39.1 
 Elderly (≥65 years)*h 877 4,170 122 31.5 
Estrogenic potency (EP) 5.9E−05l 2E−4m 4.1E−5m 3E−7n 
EEQ (ng E2/L)& 0.336 2.42 3.39 0.0192 
Total compounds    6.1652 

*The values of weights and bottled water ingested are based on US EPA (2011) and US EPA (2019b): a0.0685 L/day for 9.3 kg, b0.2305 L/day for 12.45 kg, c0.3365 L/day for 26.5 kg, d0.517 L/day for 55.8 kg, e0.753 L/day for 70.7 kg; f0.84 L/day for 79.4 kg; g0.6 L/day for 75 kg; h0.749 L/day for 75.5 kg (Table 8–24, 8–25, 8–29, 3–34, 3–71, and Table A-2).

#Contribution via drinking water = (EDI/TDI) × 100 (Zaki & Shoeib 2018), where the TDI for BPA, BBP, DBP, and DEHP are available for reference as established by EFSA.

jHazard Quotient (HQ) = EDI/RfD, where HQ is associated with the exposure via the specified exposure route (unitless) (Jeddi et al. 2015).

kSafety factor (SF) = RfD/EDI (Luo et al. 2018).

&EEQ = EPi × ci, where EP and c denote the estrogenic potency of an individual estrogenic compound (in vitro bioassays) and its corresponding concentration (Liu et al. 2009).

The carcinogenic risk (Excess Lifetime Cancer Risks – ELCR) posed by the highest concentration of DEHP in bottled water was negligible for all papers, with extremely below or between the accepted risk level of 10−6–10−4 cancer risk (WHO 2017). As mentioned by WHO (2017), daily water intake can vary significantly in different parts of the world and location-specific data on drinking water consumption are preferred. As reported by Leung et al. (2013), infants and children have been subject to increased risks that are approximately six times greater than those in adolescents and adults due to their high drinking water consumption based on body weight. As specified by US EPA (2011), older adults (≥65 years of age) and pregnant are other susceptible groups due to their physiological properties change. As reported by Gerba et al. (1996), the elderly may be less able to create an effective defense against contaminants because of a pre-existing disease or weakened immune system. The risk is inherent to the pregnant and also to the fetus (Wee & Aris 2019).

Table 5 shows more detailed the risk assessment to other population groups based on only the ingestion of bottled water. The values of bottled water ingestion are based on US EPA (2011) and US EPA (2019b). US EPA (2019b) includes only bottled water consumed directly as a beverage, not including bottled water used in the preparation of foods. As stated by Hossain et al. (2013), the regional variability in water intake can be due to differences in weather conditions and food intake habits of the population. As can be seen in Table 5, the results demonstrate that bottled water can represent a substantial source of exposure to these compounds. Children (1 to <3 years) had a higher EDI, and as a result, a high contribution via bottled water consumption (15.4%) and high Hazard Quotient (HQ). As previously reported, if RfD for DEHP were considered, the contribution would be much higher (5.95%). The highest HQ for the compounds via bottled water consumption was much lower than 1 for all compounds, indicating an absence of risk (US EPA 2011). The safety factor (SF) calculated for the selected compounds with the maximum concentrations was all far above 1 for all groups, denoting that the BPA, BBP, DBP and DEHP concentrations disclosed in bottled water should not represent grave safety concerns, corroborating with the review by Luo et al. (2018).

Potential estrogenic effect of BPA and PAEs

Despite the safety factor indicates that the levels of the compounds in bottled waters are acceptable in terms of water safety, the potential estrogenic effects of the compounds by an average Estrogen Equivalent (EEQ) level in bottled waters are based on the highest concentrations that were evaluated (Table 5). The EEQ provides valuable information on human exposure to estrogen-like compounds, aiding in the estimation of the total dietary intake of estrogenicity (Schilirò et al. 2013). The potential estrogenic effects of BBP and DBP in bottled water should not be ignored due to their relatively high concentrations. As can be seen in Table 5, the average EEQ level in the bottled waters is significantly at 6.1652 ng E2/L, which was 22.8 times higher than those that cause adverse estrogenic effects on zebrafish (0.27 ng E2/L) as reported by Soares et al. (2009). Thus, the average EEQ level indicated that BPA, BBP, DBP and DEHP in bottled waters may induce adverse estrogenic effects on human health.

CONCLUSIONS

Although the governments have published the guideline tolerance values of bisphenol A and PAEs in drinking water, they are still detected in water bottles. HPLC–DAD was the most used in BPA detections, while GC–MS was the most used in PAE detections. New methods to improve the extraction of BPA, BBP, DBP and DEHP from commercial water bottles have been developed. DBP and DEHP have still been detected in concentrations greater than those established by legislation. Contradictory observations, with decreasing and increasing concentrations on PAE concentration in bottled water, are reported. No consistent or clear trends regarding the effects of storage conditions, on PAE concentration in bottled water, are demonstrated. Based on the risk assessment, BPA, BBP, DBP and DEHP in commercial water bottles do not raise serious concern for humans. The average EEQ level revealed that BPA, BBP, DBP and DEHP in bottled waters may induce adverse estrogenic effects on human health. Besides that, the use of bottled water kept in unsuitable conditions is not appropriate and especially for sensitive groups. Thus, the occurrence of individual BPA, BBP, DBP and DEHP and their association in bottled water need to be verified to avoid their synergistic effects on human health.

DATA AVAILABILITY STATEMENT

All relevant data are included in the paper or its Supplementary Information.

REFERENCES

Abdelghani
J. I.
Freihat
R. S.
El-Sheikh
A. H.
2020
Magnetic solid phase extraction of phthalate products from bottled, injectable and tap waters using graphene oxide: effect of oxidation method of graphene
.
Journal of Environmental Chemical Engineering
8
(
2
),
103527
.
https://doi.org/10.1016/j.jece.2019.103527
.
Abtahi
M.
Dobaradaran
S.
Torabbeigi
M.
Jorfi
S.
Gholamnia
R.
Koolivand
A.
Darabi
H.
Kavousi
A.
Saeedi
R.
2019
Health risk of phthalates in water environment: occurrence in water resources, bottled water, and tap water, and burden of disease from exposure through drinking water in Tehran, Iran
.
Environmental Research
173
,
469
479
.
https://doi.org/10.1016/j.envres.2019.03.071
.
ACC
2019
United States National Postconsumer Plastic Bottle Recycling Report (2019)
. .
Alfarhani
B. F.
Al-Tameem
M.
Fadhel
A. A.
Hammza
R. A.
Kadhem
M. I.
2019
Endocrine disrupting bisphenol A detection in different water samples in Iraq
.
Journal of Physics: Conference Series
1294
(
5
),
052045
.
https://doi.org/10.1088/1742-6596/1294/5/052045
.
Al-Saleh
I.
Shinwari
N.
Alsabbaheen
A.
2011
Phthalates residues in plastic bottled waters
.
The Journal of Toxicological Sciences
36
(
4
),
469
478
.
https://doi.org/10.2131/jts.36.469
.
Amiri
A.
Chahkandi
M.
Targhoo
A.
2017
Synthesis of nano-hydroxyapatite sorbent for microextraction in packed syringe of phthalate esters in water samples
.
Analytica Chimica Acta
950
,
64
70
.
https://doi.org/10.1016/j.aca.2016.11.027
.
Annamalai
J.
Namasivayam
V.
2017
Determination of effect of pH and storage temperature on leaching of phthalate esters from plastic containers by ultrasound-assisted dispersive liquid–liquid micro-extraction
.
Journal of Food Measurement and Characterization
11
(
4
),
2222
2232
.
https://doi.org/10.1007/s11694-017-9607-1
.
Armenta
S.
Garrigues
S.
de la Guardia
M.
2015
The role of green extraction techniques in Green Analytical Chemistry
.
TrAC Trends in Analytical Chemistry
71
,
2
8
.
https://doi.org/10.1016/j.trac.2014.12.011
.
Aznar
M.
Vera
P.
Canellas
E.
Nerín
C.
Mercea
P.
Störmer
A.
2011
Composition of the adhesives used in food packaging multilayer materials and migration studies from packaging to food
.
Journal of Materials Chemistry
21
(
12
),
4358
4370
.
https://doi.org/10.1039/C0JM04136 J
.
Bach
C.
Dauchy
X.
Chagnon
M. C.
Etienne
S.
2012
Chemical compounds and toxicological assessments of drinking water stored in polyethylene terephthalate (PET) bottles: a source of controversy reviewed
.
Water Research
46
(
3
),
571
583
.
https://doi.org/10.1016/j.watres.2011.11.062
.
Bach
C.
Dauchy
X.
Severin
I.
Munoz
J. F.
Etienne
S.
Chagnon
M. C.
2014
Effect of sunlight exposure on the release of intentionally and/or non-intentionally added substances from polyethylene terephthalate (PET) bottles into water: chemical analysis and in vitro toxicity
.
Food Chemistry
162
,
63
71
.
https://doi.org/10.1016/j.foodchem.2014.04.020
.
Barciela-Alonso
M. C.
Otero-Lavandeira
N.
Bermejo-Barrera
P.
2017
Solid phase extraction using molecular imprinted polymers for phthalate determination in water and wine samples by HPLC-ESI-MS
.
Microchemical Journal
132
,
233
237
.
https://doi.org/10.1016/j.microc.2017.02.007
.
Bono-Blay
F.
Guart
A.
de la Fuente
B.
Pedemonte
M.
Pastor
M. C.
Borrell
A.
Lacorte
S.
2012
Survey of phthalates, alkylphenols, bisphenol A and herbicides in Spanish source waters intended for bottling
.
Environmental Science and Pollution Research
19
(
8
),
3339
3349
.
https://doi.org/10.1007/s11356-012-0851-y
.
Borrirukwisitsak
S.
Keenan
H. E.
Gauchotte-Lindsay
C.
2012
Effects of salinity, pH and temperature on the octanol-water partition coefficient of bisphenol A
.
International Journal of Environmental Science and Development
3
(
5
),
460
.
Cavanagh
J. A. E.
Trought
K.
Mitchell
C.
Northcott
G.
Tremblay
L. A.
2018
Assessment of endocrine disruption and oxidative potential of bisphenol-A, triclosan, nonylphenol, diethylhexyl phthalate, galaxolide, and carbamazepine, common contaminants of municipal biosolids
.
Toxicology In Vitro
48
,
342
349
.
https://doi.org/10.1016/j.tiv.2018.02.003
.
Čelić
M.
Škrbić
B. D.
Insa
S.
Živančev
J.
Gros
M.
Petrović
M.
2020
Occurrence and assessment of environmental risks of endocrine disrupting compounds in drinking, surface and wastewaters in Serbia
.
Environmental Pollution
262
,
114344
.
https://doi.org/10.1016/j.envpol.2020.114344
.
Chahkandi
M.
Amiri
A.
2019
Hydroxyapatite/Fe3O4 nanocomposite as efficient sorbent for the extraction of phthalate esters from water samples
.
Inorganic Chemistry Research
2
(
1
),
50
64
.
https://doi.org/10.22036/icr.2019.184834.1045
.
Chen
H.
Mao
W.
Shen
Y.
Feng
W.
Mao
G.
Zhao
T.
Yang
L.
Yang
L.
Meng
C.
Li
Y.
Wu
X.
2019a
Distribution, source, and environmental risk assessment of phthalate esters (PAEs) in water, suspended particulate matter, and sediment of a typical Yangtze River Delta City, China
.
Environmental Science and Pollution Research
26
(
24
),
24609
24619
.
https://doi.org/10.1007/s11356-019-05259-y
.
Chen
X.
Xin
L.
Xu
Y.
Liu
J.
Li
Z.
Wang
Y.
Zhao
J.
2019b
Polymer phase transition characteristics coupled with GC-MS for the determination of phthalate esters
.
Journal of Separation Science
42
(
19
),
3095
3101
.
https://doi-org.ez11.periodicos.capes.gov.br/10.1002/jssc.201900410
.
Cincotta
F.
Verzera
A.
Tripodi
G.
Condurso
C.
2018
Non-intentionally added substances in PET bottled mineral water during the shelf-life
.
European Food Research and Technology
244
(
3
),
433
439
.
https://doi.org/10.1007/s00217-017-2971-6
.
Codex Alimentarius
2001
General standard for bottled/packaged drinking waters (other than natural mineral waters)
.
Available from: http://www.fao.org/input/download/standards/369/CXS_227e.pdf (accessed 18 June 2020)
.
Coniglio
M. A.
Fioriglio
C.
Laganà
P.
2020
Polyethylene terephthalate
. In:
Non-Intentionally Added Substances in PET-Bottled Mineral Water
(M. A. Coniglio, C. Fioriglio & P. Laganà, eds).
Springer International Publishing
,
Cham
.
Dada
E. O.
Osidipe
V. A.
Iyaomolere
K. E.
Itoje
S. O.
Akinola
M. O.
2018
Concentrations of phthalates and metals in commercially packaged sachet and plastic bottled water sold in Lagos, Nigeria
.
Journal of Food Quality and Hazards Control
5
(
4
),
134
139
.
https://doi.org/10.29252/jfqhc.5.4.4
.
Dreolin
N.
Aznar
M.
Moret
S.
Nerin
C.
2019
Development and validation of a LC–MS/MS method for the analysis of bisphenol A in polyethylene terephthalate
.
Food Chemistry
274
,
246
253
.
https://doi.org/10.1016/j.foodchem.2018.08.109
.
EC
2011
Commisssion Regulation (EU) No. 10/2011 on Plastic Materials and Articles Intended to Come Into Contact with Food. The European Commission, Brussels. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?
EC
2020
Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption (Recast) (Text with EEA Relevance). The European Commission, Brussels. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32020L2184&qid=1612894729778 (accessed 9 February 2021)
.
ECFR
2020
§165.110 Bottled Water. Electronic Code of Federal Regulations
. .
EFSA
2005a
Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC) on A Request From the Commission Related to Di-Butylphthalate (DBP) for use in Food Contact Materials
. .
EFSA
2005b
Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC) on a Request From the Commission Related to Di-(2-Ethylhexyl) Phthalate (DEHP) for use in Food Contact Materials
.
European Food Safety Authority
.
Available from: https://www.efsa.europa.eu/en/efsajournal/pub/243 (accessed 20 June 2020)
.
EFSA
2005c
Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC) on A Request From the Commission Related to Butyl Benzyl Phthalate (BBP) for use in Food Contact Materials
.
European Food Safety Authority
.
Available from: https://www.efsa.europa.eu/en/efsajournal/pub/241 (accessed 21 June 2020)
.
EFSA
2019
Update of the risk assessment of di-butylphthalate (DBP), butyl-benzyl-phthalate (BBP), bis (2-ethylhexyl) phthalate (DEHP), di-isononylphthalate (DINP) and di-isodecylphthalate (DIDP) for use in food contact materials
.
EFSA Journal
17
,
e05838
.
Available from: https://doi-org.ez11.periodicos.capes.gov.br/10.2903/j.efsa.2019.5838 (accessed 20 June 2020)
.
Farahani
A.
Ramezani
M.
Hassan
J.
Niazi
A.
2017
In tube ultrasonic and air assisted liquid-liquid microextraction-gas chromatography-mass spectrometry determination: a novel method for the determination of phthalate esters in aqueous samples
.
Journal of the Brazilian Chemical Society
28
(
6
),
967
974
.
https://doi.org/10.21577/0103-5053.20160247
.
Farajzadeh
M. A.
Pezhhanfar
S.
Mohebbi
A.
2019
Development of a dispersive solid phase extraction procedure using a natural adsorbent as an efficient and costless sorbent followed by dispersive liquid–liquid microextraction
.
International Journal of Environmental Analytical Chemistry
1
14
.
https://doi.org/10.1080/03067319.2019.1685667
.
Feizi
N.
Yamini
Y.
Moradi
M.
Salamat
Q.
2017
Nanostructured Gemini-based supramolecular solvent coupled with ultrasound-assisted back extraction as a preconcentration step before GC–MS
.
Journal of Separation Science
40
(
24
),
4788
4795
.
https://doi.org/10.1002/jssc.201700548
.
Fikarová
K.
Cocovi-Solberg
D. J.
Rosende
M.
Horstkotte
B.
Sklenářová
H.
Miró
M.
2019
A flow-based platform hyphenated to on-line liquid chromatography for automatic leaching tests of chemical additives from microplastics into seawater
.
Journal of Chromatography A
1602
,
160
167
.
https://doi.org/10.1016/j.chroma.2019.06.041
.
Fumes
B. H.
Silva
M. R.
Andrade
F. N.
Nazario
C. E. D.
Lanças
F. M.
2015
Recent advances and future trends in new materials for sample preparation
.
TrAC Trends in Analytical Chemistry
71
,
9
25
.
https://doi.org/10.1016/j.trac.2015.04.011
.
Gao
Y.
Xia
B.
Liu
J.
Ji
B.
Ma
F.
Ding
L.
Li
B.
Zhou
Y.
2015
Development and characterization of a nanodendritic silver-based solid-phase extraction sorbent for selective enrichment of endocrine-disrupting chemicals in water and milk samples
.
Analytica Chimica Acta
900
,
76
82
.
https://doi.org/10.1016/j.aca.2015.10.019
.
GB 9685-2016
2016
Standards for the use of Additives for Food Contact Materials and Products
.
Available from: https://www.chinesestandard.net/PDF.aspx/GB9685-2016 (accessed 18 June 2020)
.
Gerba
C. P.
Rose
J. B.
Haas
C. N.
1996
Sensitive populations: who is at the greatest risk?
International Journal of Food Microbiology
30
(
1–2
),
113
123
.
https://doi.org/10.1016/0168-1605(96)00996-8
.
Goeury
K.
Duy
S. V.
Munoz
G.
Prévost
M.
Sauvé
S.
2019
Analysis of Environmental Protection Agency priority endocrine disruptor hormones and bisphenol A in tap, surface and wastewater by online concentration liquid chromatography tandem mass spectrometry
.
Journal of Chromatography A
1591
,
87
98
.
https://doi.org/10.1016/j.chroma.2019.01.016
.
González-Sálamo
J.
Socas-Rodríguez
B.
Hernández-Borges
J.
Rodríguez-Delgado
M. Á
.
2017
Determination of phthalic acid esters in water samples using core-shell poly (dopamine) magnetic nanoparticles and gas chromatography tandem mass spectrometry
.
Journal of Chromatography A
1530
,
35
44
.
https://doi.org/10.1016/j.chroma.2017.11.013
.
González-Sálamo
J.
González-Curbelo
M. Á.
Socas-Rodríguez
B.
Hernández-Borges
J.
Rodríguez-Delgado
M. Á
.
2018
Determination of phthalic acid esters in water samples by hollow fiber liquid-phase microextraction prior to gas chromatography tandem mass spectrometry
.
Chemosphere
201
,
254
261
.
https://doi.org/10.1016/j.chemosphere.2018.02.180
.
Gorji
S.
Bahram
M.
Biparva
P.
2019
Optimized stir bar sorptive extraction based on self-magnetic nanocomposite monolithic kit for determining bisphenol A in bottled mineral water and bottled milk samples
.
Analytical and Bioanalytical Chemistry Research
6
(
1
),
137
156
. .
Grinbaum
M.
Camponovo
A.
Desseigne
J. M.
Poupault
P.
Meisterman
E.
Chatelet
B.
Davaux
F.
Lempereur
V.
2019
Phthalates: potential sources and control measures
.
BIO Web of Conferences
12
,
04008
.
https://doi.org/10.1051/bioconf/20191204008
.
Guart
A.
Bono-Blay
F.
Borrell
A.
Lacorte
S.
2011
Migration of plasticizersphthalates, bisphenol A and alkylphenols from plastic containers and evaluation of risk
.
Food Additives and Contaminants
28
(
5
),
676
685
.
https://doi.org/10.1080/19440049.2011.555845
.
Guart
A.
Bono-Blay
F.
Borrell
A.
Lacorte
S.
2014
Effect of bottling and storage on the migration of plastic constituents in Spanish bottled waters
.
Food Chemistry
156
,
73
80
.
https://doi.org/10.1016/j.foodchem.2014.01.075
.
Hashemi-Moghaddam
H.
Maddah
S.
2018
Coating of optical fiber with a smart thermosensitive polymer for the separation of phthalate esters by solid-phase microextraction
.
Journal of Separation Science
41
(
4
),
886
892
.
https://doi-org.ez11.periodicos.capes.gov.br/10.1002/jssc.201700994
.
Hassan
S.
Ali
R.
Shah
D.
Sajjad
N.
Qadir
J.
2020
Bisphenol A and phthalates exhibit similar toxicogenomics and health effects
. In:
Handbook of Research on Environmental and Human Health Impacts of Plastic Pollution
(A. W. Khursheed, A. Lutfah, & S. M. Zuber, eds).
Hershey, IGI Global, Engineering Science Reference
, pp.
263
287
.
Hossain
M. A.
Rahman
M. M.
Murrill
M.
Das
B.
Roy
B.
Dey
S.
Maity
D.
Chakraborti
D.
2013
Water consumption patterns and factors contributing to water consumption in arsenic affected population of rural West Bengal, India
.
Science of the Total Environment
463
,
1217
1224
.
https://doi.org/10.1016/j.scitotenv.2012.06.057
.
Hussain
S. Z.
Maqbool
K.
2014
GC-MS: principle, technique and its application in food science
.
International Journal of Current Science
13
,
116
126
. .
IBWA
2018
Statistics: 2017 Market Report findings
.
International Bottled Water Association. Virginia, United States. Available from: https://www.bottledwater.org/eco-nomics/industry-statistics (accessed 12 June 2020)
.
IBWA
2019
IBWA Buyers' Guide Edition July/August 2019
.
International Bottled Water Association. Virginia, United States. Available from: https://www.bottledwater.org/newsroom/bottled-water-reporter (accessed 13 June 2020)
.
Jain
B.
Singh
A. K.
Susan
M. A. B. H.
2019
The world around bottled water
. In:
Bottled and Packaged Water
(A. Grumezescu & A. M. Holban, eds).
Woodhead Publishing
,
Kidlington, UK
, pp.
39
62
.
Jalili
V.
Barkhordari
A.
Ghiasvand
A.
2020
New extraction media in microextraction techniques. A review of reviews
.
Microchemical Journal
153
,
104386
.
https://doi.org/10.1016/j.microc.2019.104386
.
Jeddi
M. Z.
Rastkari
N.
Ahmadkhaniha
R.
Yunesian
M.
2015
Concentrations of phthalates in bottled water under common storage conditions: do they pose a health risk to children?
Food Research International
69
,
256
265
.
https://doi.org/10.1016/j.foodres.2014.11.057
.
Jeddi
M. Z.
Rastkari
N.
Ahmadkhaniha
R.
Yunesian
M.
2016
Endocrine disruptor phthalates in bottled water: daily exposure and health risk assessment in pregnant and lactating women
.
Environmental Monitoring and Assessment
188
(
9
),
534
.
https://doi.org/10.1007/s10661-016-5502-1
.
Jnr
A. K. L.
Yunana
D.
Kamsouloum
P.
Webster
M.
Wilson
D. C.
Cheeseman
C.
2018
Recycling waste plastics in developing countries: use of low-density polyethylene water sachets to form plastic bonded sand blocks
.
Waste Management
80
,
112
118
.
https://doi.org/10.1016/j.wasman.2018.09.003
.
Kaykhaii
M.
Yavari
E.
Sargazi
G.
Ebrahimi
A. K.
2020
Highly sensitive determination of bisphenol A in bottled water samples by HPLC after its extraction by a novel Th-MOF pipette-tip micro-SPE
.
Journal of Chromatographic Science
58
(
4
),
373
382
.
https://doi.org/10.1093/chromsci/bmz111
.
Keresztes
S.
Tatár
E.
Czégény
Z.
Záray
G.
Mihucz
V. G.
2013
Study on the leaching of phthalates from polyethylene terephthalate bottles into mineral water
.
Science of the Total Environment
458
,
451
458
.
https://doi.org/10.1016/j.scitotenv.2013.04.056
.
Kim
Y. J.
Ryu
J. C.
2006
Evaluation of estrogenic effects of phthalate analogues using in vitro and in vivo screening assays
.
Molecular & Cellular Toxicology
2
(
2
),
106
113
.
Kumar
R.
Gaurav
H.
Malik
A. K.
Kabir
A.
Furton
K. G.
2014
Efficient analysis of selected estrogens using fabric phase sorptive extraction and high performance liquid chromatography-fluorescence detection
.
Journal of Chromatography A
1359
,
16
25
.
https://doi.org/10.1016/j.chroma.2014.07.013
.
Legler
J.
van den Brink
C. E.
Brouwer
A.
Murk
A. J.
van der Saag
P. T.
Vethaak
A. D.
van der Burg
B.
1999
Development of a stably transfected estrogen receptor-mediated luciferase reporter gene assay in the human t47d breast cancer cell line
.
Toxicological Sciences
48
(
1
),
55
66
.
https://doi.org/10.1093/toxsci/48.1.55
.
Lertsirisopon
R.
Soda
S.
Sei
K.
Ike
M.
2009
Abiotic degradation of four phthalic acid esters in aqueous phase under natural sunlight irradiation
.
Journal of Environmental Sciences
21
(
3
),
285
290
.
https://doi.org/10.1016/S1001-0742(08)62265-2
.
Leung
H. W.
Jin
L.
Wei
S.
Tsui
M. M. P.
Zhou
B.
Jiao
L.
Cheung
P. C.
Chun
Y. K.
Murphy
M. B.
Lam
P. K. S.
2013
Pharmaceuticals in tap water: human health risk assessment and proposed monitoring framework in China
.
Environmental Health Perspectives
121
(
7
),
839
846
.
https://doi-org.ez11.periodicos.capes.gov.br/10.1289/ehp.1206244
.
Li
H.
Li
C.
An
L.
Deng
C.
Su
H.
Wang
L.
Zhang
C.
Jin
F.
2019
Phthalate esters in bottled drinking water and their human exposure in Beijing, China
.
Food Additives & Contaminants: Part B
12
(
1
),
1
9
.
https://doi.org/10.1080/19393210.2018.1495272
.
Liu
Z. H.
Ito
M.
Kanjo
Y.
Yamamoto
A.
2009
Profile and removal of endocrine disrupting chemicals by using an ER/AR competitive ligand binding assay and chemical analyses
.
Journal of Environmental Sciences
21
(
7
),
900
906
.
https://doi.org/10.1016/S1001-0742(08)62356-6
.
Liu
Z.
Li
Y.
Sun
L.
Yang
H.
Zheng
X.
Wang
L.
2019
Investigation of diazo-derivatization of bisphenol A and its applicability for quantitation in food safety inspections using high-performance liquid chromatography
.
Biomedical Chromatography
33
(
3
),
e4419
.
https://doi-org.ez11.periodicos.capes.gov.br/10.1002/bmc.4419
.
Luo
Q.
Liu
Z. H.
Yin
H.
Dang
Z.
Wu
P. X.
Zhu
N. W.
Lin
Z.
Liu
Y.
2018
Migration and potential risk of trace phthalates in bottled water: a global situation
.
Water Research
147
,
362
372
.
https://doi.org/10.1016/j.watres.2018.10.002
.
Manzo
V.
Becerra-Herrera
M.
Arismendi
D.
Molina-Balmaceda
A.
Caraballo
M. A.
Richter
P.
2019
Rotating-disk sorptive extraction coupled to gas chromatography mass spectrometry for the determination of phthalates in bottled water
.
Analytical Methods
11
(
48
),
6111
6118
.
https://doi.org/10.1039/C9AY02076D
.
Mohammadnezhad
N.
Matin
A. A.
Samadi
N.
Shomali
A.
Valizadeh
H.
2017
Ionic liquid-bonded fused silica as a new solid-phase microextraction fiber for the liquid chromatographic determination of bisphenol A as an endocrine disruptor
.
Journal of AOAC International
100
(
1
),
218
223
.
https://doi.org/10.5740/jaoacint.16-0189
.
Mohebbi
M.
Heydari
R.
Ramezani
M.
2017
Solvent-vapor-assisted liquid–liquid microextraction: a novel method for the determination of phthalate esters in aqueous samples using GC–MS
.
Journal of Separation Science
40
(
22
),
4394
4402
.
https://doi-org.ez11.periodicos.capes.gov.br/10.1002/jssc.201700755
.
McGowin
A. E.
2006
Polycyclic aromatic hydrocarbons
. In:
Chromatographic Analysis of the Environment
(L. M. L. Nollet & D. A. Lambropoulou, eds).
CRC Press, Taylor and Francis Group, LLC
,
Boca Raton
, pp.
555
616
.
NJDEP
2004
Ground Water Quality Standards
.
N.J.A.C. 7:9-6 as N.J.A.C. 7:9C. New Jersey Department of Environmental Protection, New Jersey, United States. Available from: https://www.nj.gov/dep/rules/adoptions/7.9-6_7.9C.pdf (accessed 3 July 2020)
.
Nollet
L. M.
2005
Chromatographic Analysis of the Environment
.
Taylor & Francis – CRC Press
,
London
.
Notardonato
I.
Russo
M. V.
Avino
P.
2018
Phthalates and bisphenol-A residues in water samples: an innovative analytical approach. Rendiconti Lincei
.
Scienze Fisiche e Naturali
29
(
4
),
831
840
.
https://doi.org/10.1007/s12210-018-0745-0
.
Özer
E. T.
Osman
B.
Yazıcı
T.
2017
Dummy molecularly imprinted microbeads as solid-phase extraction material for selective determination of phthalate esters in water
.
Journal of Chromatography A
1500
,
53
60
.
https://doi.org/10.1016/j.chroma.2017.04.013
.
Pacyga
D. C.
Sathyanarayana
S.
Strakovsky
R. S.
2019
Dietary predictors of phthalate and bisphenol exposures in pregnant women
.
Advances in Nutrition
10
(
5
),
803
815
.
https://doi.org/10.1093/advances/nmz029
.
Parks
W. S.
Mirecki
J. E.
Kingsbury
J. A.
1993
Hydrogeology, Ground-Water Quality, and Potential for Water-Supply Contamination Near an Abandoned Wood-Preserving Plant Site at Jackson, Tennessee
.
Memphis, Tennessee
.
Pignotti
E.
Farré
M.
Barceló
D.
Dinelli
E.
2017
Occurrence and distribution of six selected endocrine disrupting compounds in surface- and groundwaters of the Romagna area (North Italy)
.
Environmental Science and Pollution Research
24
(
26
),
21153
21167
.
https://doi.org/10.1007/s11356-017-9756-0
.
Plastics Europe
2020
Plastics – the Facts 2019. An Analysis of European Plastics Production, Demand and Waste Data
.
Brussels
,
Belgium
.
Available from: https://www.plasticseurope.org/download_file/force/3183/181 (accessed 10 April 2020).
Płotka-Wasylka
J.
Rutkowska
M.
Owczarek
K.
Tobiszewski
M.
Namieśnik
J.
2017
Extraction with environmentally friendly solvents
.
TrAC Trends in Analytical Chemistry
91
,
12
25
.
https://doi.org/10.1016/j.trac.2017.03.006
.
PubChem
2020
Explore Chemistry
.
Available from: https://pubchem-ncbi-nlm-nih.ez11.periodicos.capes.gov.br/ (accessed 15 January 2020)
.
Rowell
C.
Kuiper
N.
Preud'Homme
H.
2016
Is container type the biggest predictor of trace element and BPA leaching from drinking water bottles?
Food Chemistry
202
,
88
93
.
https://doi.org/10.1016/j.foodchem.2016.01.109
.
Rozaini
M. N. H.
Yahaya
N.
Saad
B.
Kamaruzaman
S.
Hanapi
N. S. M.
2017
Rapid ultrasound assisted emulsification micro-solid phase extraction based on molecularly imprinted polymer for HPLC-DAD determination of bisphenol A in aqueous matrices
.
Talanta
171
,
242
249
.
https://doi.org/10.1016/j.talanta.2017.05.006
.
Saeed
M.
Niaz
A.
Shah
A.
Afridi
H. I.
Rauf
A.
2010
Fast voltammetric assay of water soluble phthalates in bottled and coolers water
.
Analytical Methods
2
(
7
),
844
850
.
https://doi.org/10.1039/C0AY00156B
.
Sajid
M.
Basheer
C.
Alsharaa
A.
Narasimhan
K.
Buhmeida
A.
Al Qahtani
M.
Al-Ahwal
M. S.
2016
Development of natural sorbent based micro-solid-phase extraction for determination of phthalate esters in milk samples
.
Analytica Chimica Acta
924
,
35
44
.
https://doi.org/10.1016/j.aca.2016.04.016
.
Salazar-Beltrán
D.
Hinojosa-Reyes
L.
Ruiz-Ruiz
E.
Hernández-Ramírez
A.
Guzmán-Mar
J. L.
2017
Determination of phthalates in bottled water by automated on-line solid phase extraction coupled to liquid chromatography with UV detection
.
Talanta
168
,
291
297
.
https://doi.org/10.1016/j.talanta.2017.03.060
.
Santana-Mayor
Á.
Socas-Rodríguez
B.
del Mar Afonso
M.
Palenzuela-López
J. A.
Rodríguez-Delgado
M. Á
.
2018
Reduced graphene oxide-coated magnetic-nanoparticles as sorbent for the determination of phthalates in environmental samples by micro-dispersive solid-phase extraction followed by ultra-high-performance liquid chromatography tandem mass spectrometry
.
Journal of Chromatography A
1565
,
36
47
.
https://doi.org/10.1016/j.chroma.2018.06.031
.
Schilirò
T.
Porfido
A.
Longo
A.
Coluccia
S.
Gilli
G.
2013
The E-screen test and the MELN gene-reporter assay used for determination of estrogenic activity in fruits and vegetables in relation to pesticide residues
.
Food and Chemical Toxicology
62
,
82
90
.
https://doi.org/10.1016/j.fct.2013.07.067
.
Schmid
P.
Kohler
M.
Meierhofer
R.
Luzi
S.
Wegelin
M.
2008
Does the reuse of PET bottles during solar water disinfection pose a health risk due to the migration of plasticisers and other chemicals into the water?
Water Research
42
(
20
),
5054
5060
.
https://doi.org/10.1016/j.watres.2008.09.025
.
Semey
M. D.
Dotse-Gborgbortsi
W.
Dzodzomenyo
M.
Wright
J.
2020
Characteristics of packaged water production facilities in Greater Accra, Ghana: implications for water safety and associated environmental impacts
.
Journal of Water, Sanitation and Hygiene for Development
10
(
1
),
146
156
.
https://doi.org/10.2166/washdev.2020.110
.
Soares
J.
Coimbra
A. M.
Reis-Henriques
M. A.
Monteiro
N. M.
Vieira
M. N.
Oliveira
J. M. A.
Guedes-Dias
P.
Fontaínhas-Fernandes
A.
Parra
S. S.
Carvalho
A. P.
Castro
L. F. C.
Santos
M. M.
2009
Disruption of zebrafish (Danio rerio) embryonic development after full life-cycle parental exposure to low levels of ethinylestradiol
.
Aquatic Toxicology
95
(
4
),
330
338
.
https://doi.org/10.1016/j.aquatox.2009.07.021
.
Soheilifar
S.
Rajabi-Moghaddam
M. J.
Karimi
G.
Mohammadinejad
A.
Motamedshariaty
V. S.
Mohajeri
S. A.
2018
Application of molecularly imprinted polymer in solid-phase microextraction coupled with HPLC-UV for analysis of dibutyl phthalate in bottled water and soft drink samples
.
Journal of Liquid Chromatography & Related Technologies
41
(
9
),
552
560
.
https://doi.org/10.1080/10826076.2018.1488138
.
Sulentic
R. O.
Dumitrascu
I.
Deziel
N. C.
Gurzau
A. E.
2018
Phthalate exposure from drinking water in Romanian adolescents
.
International Journal of Environmental Research and Public Health
15
(
10
),
2109
.
https://doi.org/10.3390/ijerph15102109
.
Surhio
M. A.
Talpur
F. N.
Nizamani
S. M.
Talpur
M. K.
Afridi
H. I.
Khaskheli
A. A.
Bhurgri
S.
Surhio
J. A.
2017
Leaching of phthalate esters from different drinking stuffs and their subsequent biodegradation
.
Environmental Science and Pollution Research
24
(
22
),
18663
18671
.
https://doi.org/10.1007/s11356-017-9470-y
.
Szendi
K.
Gyöngyi
Z.
Kontár
Z.
Gerencsér
G.
Berényi
K.
Hanzel
A.
Fekete
J.
Kovács
A.
Varga
C.
2018
Mutagenicity and phthalate level of bottled water under different storage conditions
.
Exposure and Health
10
(
1
),
51
60
.
https://doi.org/10.1007/s12403-017-0246-x
.
Tran-Lam
T. T.
Dao
Y. H.
Nguyen
D. T.
Ma
H. K.
Pham
T. Q.
Le
G. T.
2018
Optimization of sample preparation for detection of 10 phthalates in non-alcoholic beverages in Northern Vietnam
.
Toxics
6
(
4
),
69
.
https://doi.org/10.3390/toxics6040069
.
Tri
T. M.
Anh
N. T. N.
Thao
P. T. P.
Trung
N. Q.
2018
Determination and distribution of phthalate diesters in plastic bottled beverages collected in Hanoi, Vietnam
.
VNU Journal of Science: Natural Sciences and Technology
34
(
4
),
97
104
.
https://doi.org/10.25073/2588-1140/vnunst.4822
.
Uansiri
S.
Vichapong
J.
Kanchanamayoon
W.
2016
Ultrasound-assisted low density solvent based dispersive liquid-liquid microextraction for determination of phthalate esters in bottled water samples
.
Chemical Research in Chinese Universities
32
(
2
),
178
183
.
https://doi.org/10.1007/s40242-016-5343-z
.
US EPA
1987a
Integrated Risk Information System (IRIS) – Dibutyl phthalate (CASRN 84-74-2)
.
United States Environmental Protection Agency, Washington, United States. Available at: https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0038_summary.pdf (accessed 3 July 2020)
.
US EPA
1987b
Integrated Risk Information System (IRIS), Di (2-ethylhexyl) phthalate (CASRN 117-81-7)
.
United States Environmental Protection Agency, Washington, United States. Available at: https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0014_summary.pdf (accessed 3 July 2020).
US EPA
1988
Integrated Risk Information System (IRIS), Butyl benzyl phthalate (CASRN 85-68-7)
.
United States Environmental Protection Agency, Washington, United States. Available at: https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0293_summary.pdf (accessed 4 July 2020).
US EPA
2011
Exposure Factors Handbook 2011 Edition (Final Report)
.
United States Environmental Protection Agency. Washington, United States. Available at: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252 (accessed 5 July 2020).
US EPA
2019a
Proposed Designation of Butyl Benzyl Phthalate (CASRN 85-68-7) as a High-Priority Substance for Risk Evaluation
.
United States Environmental Protection Agency. Washington, United States. Available from: https://www.epa.gov/sites/production/files/2019-08/documents/butylbenzylphthalate_85-68-7_highpriority_proposeddesignation_082319.pdf (accessed 3 July 2020).
US EPA
2019b
Update for Chapter 3 of the Exposure Factors Handbook Ingestion of Water and Other Select Liquids
.
U.S. EPA Office of Research and Development, Washington, DC. EPA/600/R-18/259F, 2019. United States Environmental Protection Agency. Available from: https://www.epa.gov/sites/production/files/2019-02/documents/efh__chapter_3_update.pdf (accessed 3 July 2020).
US EPA
2021
Ground Water and Drinking Water
.
National Primary Drinking Water Regulations. Washington, United States. Available from: https://www.epa.gov/ground-water-and-drinking-water/nationalprimary-drinking-water-regulations (accessed 11 March 2021).
Waksmundzka-Hajnos
M.
Sherma
J.
2010
Overview of the field of high performance liquid chromatography in phytochemical analysis and the structure of the book
. In:
High Performance Liquid Chromatography in Phytochemical Analysis
(M. Waksmundzka-Hajnos & J. Sherma, eds).
CRC Press
,
Boca Raton
.
Wang
H.
Liu
Z. H.
Tang
Z.
Zhang
J.
Yin
H.
Dang
Z.
Wu
P.
Liu
Y.
2020
Bisphenol analogues in Chinese bottled water: quantification and potential risk analysis
.
Science of The Total Environment
713
,
136583
.
https://doi.org/10.1016/j.scitotenv.2020.136583
.
Wee
S. Y.
Aris
A. Z.
2019
Occurrence and public-perceived risk of endocrine disrupting compounds in drinking water
.
NPJ Clean Water
2
(
1
),
1
14
.
https://doi-org.ez11.periodicos.capes.gov.br/10.1038/s41545-018-0029-3
.
Wei
S. L.
Liu
W. T.
Huang
X. C.
Ma
J. K.
2018
Preparation and application of a magnetic plasticizer as a molecularly imprinted polymer adsorbing material for the determination of phthalic acid esters in aqueous samples
.
Journal of Separation Science
41
(
19
),
3806
3814
.
https://doi-org.ez11.periodicos.capes.gov.br/10.1002/jssc.201800535
.
WHO
2005
Sustainable Development and Healthy Environments Cluster. Nutrients in Drinking Water
.
World Health Organization
,
Geneva
.
Available from: https://apps.who.int/iris/handle/10665/43403 (accessed 4 July 2020)
.
WHO
2017
Guidelines for Drinking-Water Quality. Fourth Edition, Incorporating the First Addendum
.
World Health Organization
,
Geneva
. .
Wu
H.
Wu
L. H.
Wang
F.
Gao
C. J.
Chen
D.
Guo
Y.
2019
Several environmental endocrine disruptors in beverages from South China: occurrence and human exposure
.
Environmental Science and Pollution Research
26
(
6
),
5873
5884
.
https://doi.org/10.1007/s11356-018-3933-7
.
Yang
J. F.
Yang
L. M.
Zheng
L. Y.
Ying
G. G.
Liu
C. B.
Luo
S. L.
2017
Phthalates in plastic bottled non-alcoholic beverages from China and estimated dietary exposure in adults
.
Food Additives and Contaminants: Part B
10
(
1
),
44
50
.
https://doi.org/10.1080/19393210.2016.1245679
.
Yin
S.
Yang
Y.
Yang
D.
Li
Y.
Jiang
Y.
Wu
L.
Sun
C.
2019
Determination of 11 phthalate esters in beverages by magnetic solid-phase extraction combined with high-performance liquid chromatography
.
Journal of AOAC International
102
(
5
),
1624
1631
.
https://doi.org/10.1093/jaoac/102.5.1624
.
Yousefi
Z.
Ala
A.
Babanezhad
E.
Ali Mohammadpour
R.
2019
Evaluation of exposure to phthalate esters through the use of various brands of drinking water bottled in polyethylene terephthalate (PET) containers under different storage conditions
.
Environmental Health Engineering and Management Journal
6
(
4
),
247
255
.
https://doi.org/10.15171/EHEM.2019.28
.
Zaki
G.
Shoeib
T.
2018
Concentrations of several phthalates contaminants in Egyptian bottled water: effects of storage conditions and estimate of human exposure
.
Science of the Total Environment
618
,
142
150
.
https://doi.org/10.1016/j.scitotenv.2017.10.337
.
Zhang
S. H.
Shen
Y. X.
Li
L.
Fan
T. T.
Wang
Y.
Wei
N.
2018
Phthalate exposure and high blood pressure in adults: a cross-sectional study in China
.
Environmental Science and Pollution Research
25
(
16
),
15934
15942
.
https://doi.org/10.1007/s11356-018-1845-1
.
Zhou
J.
Chen
X. H.
Pan
S. D.
Wang
J. L.
Zheng
Y. B.
Xu
J. J.
Zhao
Y. G.
Cai
Z. X.
Jin
M. C.
2019
Contamination status of bisphenol A and its analogues (bisphenol S, F and B) in foodstuffs and the implications for dietary exposure on adult residents in Zhejiang Province
.
Food Chemistry
294
,
160
170
.
https://doi.org/10.1016/j.foodchem.2019.05.022
.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).