Vibrio parahaemolyticus is a gram-negative bacterium ubiquitous in seawater or estuarine water throughout the world. It is a major cause of seafood gastroenteritis complications. In this study, the presence of V. parahaemolyticus was investigated in 66 seawater samples collected during 2018 from 15 stations spread along the Tunisian coast using selective media including CHROMagar Vibrio media. The results show that only eight samples contained V. parahaemolyticus. However, while Vibrio alginolyticus was detected in all samples; both Vibrio cholerae and Vibrio vulnificus were not found. Nine of the presumed V. parahaemolyticus colonies were purified on tryptic soy agar from eight positive samples then identified by the API 20E biochemical test and confirmed by the presence of a specific target toxR gene. The detection of virulence genes, thermostable direct haemolysin (tdh) and thermostable-related haemolysin (trh), by the polymerase chain reaction (PCR) showed the presence of only two trh-positive isolates. The assessment of antibiotic susceptibility of the V. parahaemolyticus isolated revealed a complete resistance to colistin, amikacin, penicillin and cefotaxime and a total sensitivity to chloramphenicol, nitrofurantoin and sulfamethoxazole-trimethoprim with a multiple antibiotic resistance index (MAR) ranging from 0.4 to 0.5.

  • This study represents the first spatiotemporal evaluation of V. parahaemolyticus in the Tunisian coastal seawater.

  • It shows the low presence of V. parahaemolyticus.

  • It provides an idea of the degree of antibiotic resistance of this species.

  • It could indicate the possibility of the emergence of multiresistant strains.

  • The presence of virulent strains suggests further investigations of this bacterium in recreational waters and marine products.

Graphical Abstract

Graphical Abstract
Graphical Abstract

Vibrio parahaemolyticus is a natural halophilic bacterium found in estuarine and in shore marine water throughout the world (Letchumanan et al. 2015; Lopez-Joven et al. 2015). Since its isolation about 72 years ago (Fujino et al. 1953), infection by this bacteria has frequently been reported and has been closely associated with the consumption of raw or insufficiently cooked seafood or through wounds (Oliver 2005; Lopez-Joven et al. 2015). V. parahaemolyticus is recognized as a cosmopolitan bacterium frequently isolated from the USA, Canada (Newton et al. 2012; Taylor et al. 2018), Asia (Letchumanan Chan & Lee 2014; Yang et al. 2017), European countries (Cantet et al. 2013; Passalacqua et al. 2016), South America (Martinez-Urtaza et al. 2013; Raszl et al. 2016) and Africa (Malainine et al. 2013).

Some V. parahaemolyticus strains are pathogenic to humans and were responsible for 25% of seafood-borne diseases (Martinez-Urtaza et al. 2013; Tran et al. 2018). This virulence was associated especially with the production of thermostable direct haemolysin (tdh) and/or thermostable-related haemolysin (trh) (Wang et al. 2018), also known as the Kanagawa phenomenon (KP) (Leoni et al. 2016). Nevertheless, virulence was reported in some negative tdh and trh strains (Ottaviani et al. 2012; Chung et al. 2016). Some specific clones of V. parahaemolyticus were recognized as responsible for pandemic episodes such as O4:K68, O3:K6, and O3:K69 serovars (Haendiges et al. 2015; Han et al. 2017). Apart from its pathogenesis in human beings, this bacterium was previously reported in aquaculture industry outbreaks worldwide (Khouadja et al. 2013b; Soto-Rodriguez et al. 2015).

Several factors influence the distribution and abundance of V. parahaemolyticus in the sea or in estuarine ecosystems including water temperature (De Paola et al. 2003; Konrad et al. 2017), salinity (Raszl et al. 2016), oceanic circulation, zooplankton density, harmful algal (Vezzulli et al. 2016; Han et al. 2017) and faecal pollution (Nongogo & Okoh 2014; Okeyo et al. 2018). Overall, most studies agree that warmer water along with low salinity constitutes suitable conditions for V. parahaemolyticus presence and abundance (Martinez-Urtaza et al. 2008; Urquhart et al. 2016).

The large use of antibiotics in public health or on farm animals is partly responsible for the emergence of multidrug-resistant strains in common environmental bacteria (Letchumanan et al. 2015; Park et al. 2018). Generally, the development of antibiotic resistance in bacteria is controlled by a variety of mechanisms, most commonly gene transfer, mutation (Dalsgaard et al. 2000; Bengtsson-Palm et al. 2018) and cell membrane modification.

While numerous foodborne infections are associated with V. parahaemolyticus worldwide (Wang et al. 2017), only a limited effort has been made to investigate this bacterium in the Tunisian seawater; however, most research has focused on the analysis and characterization of the Vibrio alginolyticus (Ben Kahla-Nakbi et al. 2009; Lajnef et al. 2012). To date, important data gaps are identified regarding the prevalence and the distribution of V. parahaemolyticus in the Tunisian coastal seawater. The few studies carried out on this bacterium reported a number of fish farm outbreaks caused by V. parahaemolyticus (Khouadja et al. 2013b).

In the present study, we provide information on the occurrence, the antimicrobial susceptibility and the potential virulence genes (tdh and trh) of V. parahaemolyticus isolated from 15 stations situated along the Tunisian coastal seawater.

Site's location and sample's collection

During 2018, 66 surface seawater samples from 15 stations located along the Tunisian coast were collected and analysed specifically for the presence of V. parahaemolyticus while reporting the presence of V. alginolyticus, Vibrio vulnificus and Vibrio cholerae (Figure 1). Simultaneously, parameters including geographical coordinates, period of sampling, temperature (°C) of the water samples and the vocation of the sampling area were determined (Table 1). The sampling frequency varies from a minimum of twice a year to once a month depending on the logistics and the distance of each station.

Table 1

Sampling data and characterizations of some physicochemical parameters of sampling stations

SiteMonthTemp. (°C)Salinity (psu)Turbidity (NTU)pHPresumed V. parahaemolyticus isolates denominationWater useLatitude and longitude
Station1 December 13.3 36.8 0.698 8.21  Aquaculture use 36° 57′45.11″N
8° 45'40.28″E 
 March 16.2 36.2 1.259 8.38    
Station 2 May 19.2 38.7 2.15 8.41 V. parahaemolyticus (Isol 9) Shellfish culture 37°12′59.47″N
9°55'52.14″E 
 June 24.1 38.0 1.149 8.51    
Station 3 February 11.2 38.2 1.589 8.35  Recreational area 36°48′47.49″N
10°18'23.67″E 
 March 15.8 37.8 2.01 8.24    
 April 16.9 37.9 2.51 8.35    
 May 20.2 38.2 2.15 8.61    
Station 4 May 20.1 37.6 0.521 8.05  Recreational area 36°50′4.21″N
11° 7'4.15″E 
 June 23.0 37.8 0.356 8.01    
Station 5 November 22.5 37.8 0.154 7.90 V. parahaemolyticus (Isol 6 and Isol 7) Aquaculture area 36° 2′3.44″N
10°30'35.13″E 
 December 17.3 37.8 0.225 7.89    
 April 18.7 37.8 0.321 8.11    
Station 6 April 18.4 39 1.254 8.55 V. parahaemolyticus (Isol 8) Fishing harbour 35°49′33.30″N
10°38'31.35″E 
 June 22.2 39 2.19 8.65    
 October 25.2 38.7 1.569 8.51    
Station 7 January 15.8 38.5 0.229 8.24 V. parahaemolyticus (Isol 3)
V. parahaemolyticus (Isol 4) 
Aquaculture area 35°44′50.14″N
10°49'49.37″E 
 February 14.9 38.4 1.270 8.24    
 March 16.6 38.6 0.763 8.25    
 April 19.9 38.5 0.274 8.21    
 May 22.3 38.9 0.441 8.22    
 June 24.9 39.2 0.584 8.10    
 July 28.5 41.5 1.816 8.53    
 August 29.3 41.1 2.75 8.04    
 September 26.4 38.2 1.264 8.22    
 October 22.8 38.7 1.349 8.05    
 November 17.5 38.2 1.782 8.03    
 December 14.2 38.5 0.945 8.3    
Station 8 January 13.8 38.2 0.716 8.46 V. parahaemolyticus (Isol 5) Aquaculture area 35°44′39.68″N
10°49'29.74″E 
 February 12.6 38.4 0.961 8.17    
 March 16.5 38.2 1.767 8.35    
 April 18.4 38.3 0.247 8.27    
 May 24.8 38.2 0.971 8.19    
 June 28.4 39.2 0.798 8.39    
 July 29.3 41.2 0.975 8.62    
 August 28.7 42.1 1.658 8.46    
 September 25.4 39.2 1.256 8.05    
 October 22.8 38.5 1.684 8.44    
 November 16.2 38.2 1.313 8.13    
 December 13.1 38.5 0.328 8.31    
Station 9 March 18.4 38.6 1.441 8.45  Recreational area 35°39′58.88″N 10°55'21.85″E 
 May 24.7 39.7 1.887 8.62    
 June 24.7 41.1 0.961 8.52    
 July 31.2 43.1 1.571 8.50    
 September 26.0 41.0 1.581 8.43    
 October 24.6 39.9 2.13 8.10    
 November 20.2 38.9 1.522 8.51    
Station 10 Apr 18.3 38.1 0.356 8.11  Recreational area 35°14′39.12″N
11° 8'5.63″E 
 June 23.3 38.3 0.256 8.09    
 Sep 27.1 38.7 0.456 8.12    
Station 11 February 16.7 38.0 0.722 8.05 V. parahaemolyticus (Isol 1) Fishing area 34°43′37.34″N
11°17'37.71″E 
 May 21.4 38.1 0.220 8.12    
 June 27.7 38.2 0.141 8.22    
 October 24.8 38.1 0.325 8.17    
Station 12 February 16.7 38.1 0.735 8.16 V. parahaemolyticus (Isol 2) Fishing area 34°43′31.72″N
11°16'58.49″E 
 May 21.4 38.1 0.232 8.18    
 June 27.7 38.2 0.165 8.25    
 October 24.8 38.0 0.319 8.19    
Station 13 January 13.5 39.3 0.541 8.24  shellfishing 33°41′23.87″N
10°22'7.01″ 
 February 14.1 37.8 0.741 8.22    
 March 16.2 36.5 0.589 8.54    
 April 23.1 39.6 1.113 8.48    
Station 14 February 13.8 38.5 0.214 8.01  Recreational area 33°46′58.42″N
11° 3'37.23″E 
 March 18.1 38.8 0.351 8.21    
Station 15 April 24.5 39.2 0.524 8.36  Fishing area 33°16′36.64″N 11°17'31.73″E 
 June 29.2 41.1 0.689 8.51    
SiteMonthTemp. (°C)Salinity (psu)Turbidity (NTU)pHPresumed V. parahaemolyticus isolates denominationWater useLatitude and longitude
Station1 December 13.3 36.8 0.698 8.21  Aquaculture use 36° 57′45.11″N
8° 45'40.28″E 
 March 16.2 36.2 1.259 8.38    
Station 2 May 19.2 38.7 2.15 8.41 V. parahaemolyticus (Isol 9) Shellfish culture 37°12′59.47″N
9°55'52.14″E 
 June 24.1 38.0 1.149 8.51    
Station 3 February 11.2 38.2 1.589 8.35  Recreational area 36°48′47.49″N
10°18'23.67″E 
 March 15.8 37.8 2.01 8.24    
 April 16.9 37.9 2.51 8.35    
 May 20.2 38.2 2.15 8.61    
Station 4 May 20.1 37.6 0.521 8.05  Recreational area 36°50′4.21″N
11° 7'4.15″E 
 June 23.0 37.8 0.356 8.01    
Station 5 November 22.5 37.8 0.154 7.90 V. parahaemolyticus (Isol 6 and Isol 7) Aquaculture area 36° 2′3.44″N
10°30'35.13″E 
 December 17.3 37.8 0.225 7.89    
 April 18.7 37.8 0.321 8.11    
Station 6 April 18.4 39 1.254 8.55 V. parahaemolyticus (Isol 8) Fishing harbour 35°49′33.30″N
10°38'31.35″E 
 June 22.2 39 2.19 8.65    
 October 25.2 38.7 1.569 8.51    
Station 7 January 15.8 38.5 0.229 8.24 V. parahaemolyticus (Isol 3)
V. parahaemolyticus (Isol 4) 
Aquaculture area 35°44′50.14″N
10°49'49.37″E 
 February 14.9 38.4 1.270 8.24    
 March 16.6 38.6 0.763 8.25    
 April 19.9 38.5 0.274 8.21    
 May 22.3 38.9 0.441 8.22    
 June 24.9 39.2 0.584 8.10    
 July 28.5 41.5 1.816 8.53    
 August 29.3 41.1 2.75 8.04    
 September 26.4 38.2 1.264 8.22    
 October 22.8 38.7 1.349 8.05    
 November 17.5 38.2 1.782 8.03    
 December 14.2 38.5 0.945 8.3    
Station 8 January 13.8 38.2 0.716 8.46 V. parahaemolyticus (Isol 5) Aquaculture area 35°44′39.68″N
10°49'29.74″E 
 February 12.6 38.4 0.961 8.17    
 March 16.5 38.2 1.767 8.35    
 April 18.4 38.3 0.247 8.27    
 May 24.8 38.2 0.971 8.19    
 June 28.4 39.2 0.798 8.39    
 July 29.3 41.2 0.975 8.62    
 August 28.7 42.1 1.658 8.46    
 September 25.4 39.2 1.256 8.05    
 October 22.8 38.5 1.684 8.44    
 November 16.2 38.2 1.313 8.13    
 December 13.1 38.5 0.328 8.31    
Station 9 March 18.4 38.6 1.441 8.45  Recreational area 35°39′58.88″N 10°55'21.85″E 
 May 24.7 39.7 1.887 8.62    
 June 24.7 41.1 0.961 8.52    
 July 31.2 43.1 1.571 8.50    
 September 26.0 41.0 1.581 8.43    
 October 24.6 39.9 2.13 8.10    
 November 20.2 38.9 1.522 8.51    
Station 10 Apr 18.3 38.1 0.356 8.11  Recreational area 35°14′39.12″N
11° 8'5.63″E 
 June 23.3 38.3 0.256 8.09    
 Sep 27.1 38.7 0.456 8.12    
Station 11 February 16.7 38.0 0.722 8.05 V. parahaemolyticus (Isol 1) Fishing area 34°43′37.34″N
11°17'37.71″E 
 May 21.4 38.1 0.220 8.12    
 June 27.7 38.2 0.141 8.22    
 October 24.8 38.1 0.325 8.17    
Station 12 February 16.7 38.1 0.735 8.16 V. parahaemolyticus (Isol 2) Fishing area 34°43′31.72″N
11°16'58.49″E 
 May 21.4 38.1 0.232 8.18    
 June 27.7 38.2 0.165 8.25    
 October 24.8 38.0 0.319 8.19    
Station 13 January 13.5 39.3 0.541 8.24  shellfishing 33°41′23.87″N
10°22'7.01″ 
 February 14.1 37.8 0.741 8.22    
 March 16.2 36.5 0.589 8.54    
 April 23.1 39.6 1.113 8.48    
Station 14 February 13.8 38.5 0.214 8.01  Recreational area 33°46′58.42″N
11° 3'37.23″E 
 March 18.1 38.8 0.351 8.21    
Station 15 April 24.5 39.2 0.524 8.36  Fishing area 33°16′36.64″N 11°17'31.73″E 
 June 29.2 41.1 0.689 8.51    

Months in bold indicate the presence of presumptive isolates V. parahaemolyticus.

Figure 1

Tunisian map showing the geographical emplacement of sampling sites.

Figure 1

Tunisian map showing the geographical emplacement of sampling sites.

Close modal

Sampling stations were located in the coastal area delimited among 40–500 m from the coastline (Figure 1). The geographical coordinates of each station were obtained by a Garmin 60 GPS. Water samples were collected between 9 and 10 pm at 0.3 m depth in a 500 ml sterile glass bottle and then conserved in the darkness at 10 °C approximately, which is considered a non-stressful condition for Vibrio species (Shen et al. 2009; Wang et al. 2018). According to the proximity of the sampling stations to the laboratory, samples were processed within 7 min to 20 h after sampling.

Physical and chemical characteristics

Simultaneously to sampling, temperature (°C), salinity psu (practical salinity unit) and pH were recorded in situ using a thermo conductive probe (Thermo-salinometer WTW 320) and a pH-meter (WTW pH 3310). The turbidity expressed in NTU (Nephelometric Turbidity Unit) was measured in the laboratory using a turbidity meter Hach model Ratio XR 43900.

Detection of Vibrio species by cultural methods

For Vibrio detection, 100 ml of seawater for each sample were filtered under sterile conditions through a 0.45 μm pore size cellulose nitrate filter (Whatman 7184-004). The filter was transferred in 200 ml of double concentrated alkaline saline peptone water (APW-salt 3% (w/v) NaCl, pH 8.4). After 18 h of incubation at 37 °C under shaking at 25 RPM (revolutions per minute), a loopful of each enrichment was streaked on Vibrio plates (CHROMagar™ Vibrio Microbiology, France), used for the selective isolation of some Vibrio species. The presence of presumptive colonies of V. parahaemolyticus, V. alginolyticus, V. cholerae and V. vulnificus was examined in the CHROMagar plate after 18 h of incubation at 37 °C based on their colours.

Only typical purple colonies of V. parahaemolyticus, in CHROMagar, were selected and plated onto thiosulphate citrate bile salt sucrose (TCBS, SCHARLAU, Spain) for further control. A typical colony with a purple colour in CHROMagar and a green one in TCBS is considered as a presumptive V. parahaemolyticus. Only eight samples from 66 showed the presence of purple colonies. In total, nine presumptive colonies were selected and purified on trypticase soy agar (TSA) (BIORAD) supplemented with 2% NaCl, then stored in the CRYO-BEADS (AES Laboratoire) at −80 °C for further analysis.

Biochemical identification of presumptive V. parahaemolyticus isolates

Catalase and cytochrome oxidase activities were tested, respectively, with hydrogen peroxide (30% volume) and oxidase discs (HIMedia product), while the Gram staining and motility were examined microscopically. The sensitivity to vibriostatic compound was tested by using O129 (150 μg/disk, Oxoid) in TSA supplemented with 2% NaCl (BIORAD). Furthermore, the identification of each presumptive V. parahaemolyticus isolate was performed by commercially available miniaturized identification systems API 20E (API–bioMerieux, Marcy l'Etoile, France) following the manufacturer's instructions. The inocula were prepared in sterile distilled water supplemented with 1% NaCl. Positive results were recorded according to colour change and identified by using the APIWEB identification software (APIWEB™ identification software bioMérieux). The results of identification were presented with the aforementioned acceptability provided by the software. All biochemical tests were made in duplicate.

Antibiotic susceptibility

The antibiotic susceptibility analysis of V. parahaemolyticus was carried out using the disc diffusion method (Bonnet et al. 2018) on Muller Hinton agar plates (Pronadisa Laboratories CONDA, Spain) supplemented with 2% NaCl. The standard commercial antibiotic disks used (Bio-Rad Marnes-la-Coquette France) were as follows: colistin (COL) (50 μg), amikacin (AKN) (30 μg), nalidixic acid (NAL) (30 μg), nitrofurantoin (NFE) (300 μg), cefotaxime (30 μg) (CTX), chloramphenicol (CHL) (30 μg), gentamicin (GMI) (15 μg), tetracycline (TET) (30 μg), trimethoprim/sulphamethoxazole (SXT) (1.25/23.75 μg) and Penicillin (P) (6 μg).

After incubation at 37 °C for 18–24 h, the diameter of the inhibition zone was measured using a calliper, and the obtained values were interpreted according to the standard of Clinical and Laboratory Standards Institute (CLSI 2018). Antibiotics' susceptibilities were carried out in triplicate, and the results are expressed as the mean of the three experiments with standard deviation.

Molecular identification and detection of virulence genes by polymerase chain reaction

The preparation of template DNA for the polymerase chain reaction (PCR) was performed by a boiling technique. Briefly, 1 ml of overnight pure culture in tryptic soy broth supplemented with 2% NaCl of each presumptive isolate was centrifuged at 7,000 RPM, at 4 °C for 8 min. The pellet was suspended in 300 μL of Tris–EDTA (TE) buffer (10 mM Tris, 1 mM EDTA, pH 8.2) and boiled at 100 °C for 8 min. Cell suspension was centrifuged for 8 min at 9,000 RPM at 4 °C, and the obtained supernatant containing the DNA was carefully transferred to a new tube and stored at −20 °C for PCR analysis (Alexopoulou et al. 2006).

The PCR was performed both on the DNA extract obtained from sample enrichment and from the pure culture of presumptive isolates. The species-specific toxR gene (368 bp) was conducted according to the method developed by Kim et al. (1999). DNA extracted from V. parahaemolyticus isolates was further examined to detect the presence of virulence genes tdh (251 bp) and trh (250 bp) (Tada et al. 1992; Kim et al. 1999). Primers used in this study are listed in Table 2.

Table 2

Primers used in this study

GenePrimersProduct size (bp)
toxR 5′-GTCTTCTGACGCAATCGTTG-3′
5′-ATACGAGTGGTTGCTGTCATG-3′ 
368 Kim et al. (1999)  
trh 5′-GGCTCAAAATGGTTAAGCG-3′
5′-CATTTCCGCTCTCATATGC-3′ 
250 Tada et al. (1992)  
tdh 5′-CCACTACCACTCTCATATGC-3′
5′-GGTACTAAATGGCTGACATC-3′ 
251 Tada et al. (1992)  
GenePrimersProduct size (bp)
toxR 5′-GTCTTCTGACGCAATCGTTG-3′
5′-ATACGAGTGGTTGCTGTCATG-3′ 
368 Kim et al. (1999)  
trh 5′-GGCTCAAAATGGTTAAGCG-3′
5′-CATTTCCGCTCTCATATGC-3′ 
250 Tada et al. (1992)  
tdh 5′-CCACTACCACTCTCATATGC-3′
5′-GGTACTAAATGGCTGACATC-3′ 
251 Tada et al. (1992)  

DNA from V. parahaemolyticus AQ 4037 was used as a positive control for trh gene and V. parahaemolyticus ATCC 43996 was used as a positive control for toxR and tdh genes. In all PCRs, DNA extracted from Salmonella typhimurium ATCC 14028s was used as a negative control. Amplification was performed in a thermal cycler ‘TECHNE 3000’. PCR products were electrophoresed on a 1.5% agarose gel, stained with ethidium bromide, visualized and photographed under a UV transilluminator (Bio-Rad ChemiDoc XRS System).

Isolation and biochemical identification

All 66 seawater samples analysed by cultural methods using CHROMagar culture media showed the absence of typical blue-turquoise colonies relative to V. cholerae and green colonies relative to V. vulnificus as well. Our analysis showed the presence of yellow colonies in CHROMagar relative to V. alginolyticus in all seawater samples. These entire presumptive colonies specific to V. alginolyticus in CHROMagar indicated a positive amplification by PCR using collagenase-targeted gene amplification (Di Pinto et al. 2005) (data are not shown in this paper).

Only eight samples revealed the presence of purple colonies in CHROMagar (Table 1) characterizing a typical V. parahaemolyticus. In total, nine presumptive colonies were selected from CHROMagar, grown on TCBS agar for further differentiation and then isolated in pure culture on TSA agar supplemented with NaCl at 2%.

Hence, the analysis showed that all nine purified isolates are motile, Gram-negative, cytochrome oxidase-positive, catalase-negative and sensitive to vibriostatic compound O129 (150 μg/disk). Furthermore, the API 20E biochemical identification confirmed, with a level of acceptance up to 99%, that all presumptive colonies are V. parahaemolyticus (Table 3).

Table 3

Biochemical characterization of V. parahaemolyticus isolates (Isol) by the API 20E test

IsolatesIsol 1Isol 2Isol 3Isol 4Isol 5Isol 6Isol 7Isol 8Isol 9
Biochemical test Abbreviation          
β-galactosidase ONPG − − − − − − − − − 
Arginine dihydrolase ADH − − − − − − − − − 
Lysine décarboxylase LDC 
Ornithine décarboxylase ODC 
Citrate utilization CIT − − 
H2S production H2− − − − − − − − − 
Urease production URE − − − − − − − 
Tryptophane désaminase TDA − − − − 
Indole production IND 
Acétoïne production (Vogues–Proskawer reaction) VP − 
Gelatinase production GEL 
Glucose production GLU 
Manitol acidification MAN 
Inositol acidification INO − − − − − − − − − 
Sorbitol acidification SOR − − − − − − − − − 
Rhamose acidification RHA − − − − − − − − − 
Saccharose acidification SAC − − − − − − − − − 
Melobiose acidification du MEL − − − − − − − 
Amygdalin acidification AMY − − − − − − − − − 
Arabinose acidification ARA 
Nitrite metabolism NO2 
Oxydase test OXY 
Probability of identification (%)  99.8 99.8 99.7 99.8 99.7 99.9 99.8 99.7 99.7 
Gram staining Gram − − − − − − − − − 
Vibriostatic compound sensibility O129 
Motilité 
IsolatesIsol 1Isol 2Isol 3Isol 4Isol 5Isol 6Isol 7Isol 8Isol 9
Biochemical test Abbreviation          
β-galactosidase ONPG − − − − − − − − − 
Arginine dihydrolase ADH − − − − − − − − − 
Lysine décarboxylase LDC 
Ornithine décarboxylase ODC 
Citrate utilization CIT − − 
H2S production H2− − − − − − − − − 
Urease production URE − − − − − − − 
Tryptophane désaminase TDA − − − − 
Indole production IND 
Acétoïne production (Vogues–Proskawer reaction) VP − 
Gelatinase production GEL 
Glucose production GLU 
Manitol acidification MAN 
Inositol acidification INO − − − − − − − − − 
Sorbitol acidification SOR − − − − − − − − − 
Rhamose acidification RHA − − − − − − − − − 
Saccharose acidification SAC − − − − − − − − − 
Melobiose acidification du MEL − − − − − − − 
Amygdalin acidification AMY − − − − − − − − − 
Arabinose acidification ARA 
Nitrite metabolism NO2 
Oxydase test OXY 
Probability of identification (%)  99.8 99.8 99.7 99.8 99.7 99.9 99.8 99.7 99.7 
Gram staining Gram − − − − − − − − − 
Vibriostatic compound sensibility O129 
Motilité 

Biochemical characterization performed in API 20E revealed that all these isolates were β-galactosidase-negative and positive for glucose fermentation and indole. Some variations were registered on enzyme activity, such as tryptophan desaminase, melobiose and citrate metabolism. All the isolates (Isol) were urease-negative except those from station nos 11 and 12 (Isol 1 and Isol 2), indicating a capacity to metabolize urea.

Molecular characterization

All the colonies identified as V. parahaemolyticus by the API 20E test were found to be positive for the toxR gene amplification (Figure 2). Simultaneously, perfect agreement has been found for the toxR amplification that was performed on DNA extracted from the enriched samples and presumptive V. parahaemolyticus isolates obtained by a cultural method. Only the two isolates, Isol 1 and Isol 2, obtained from stations 11 and 12, were found positive for trh gene (Figure 3). However, all isolates were negative for the tdh gene amplification (Figure 4).

Figure 2

Detection of toxR gene in presumptive V. parahaemolyticus isolates on 1.5% agarose gel. Column 1: kb ladder; Columns 2–10: Isol 1–Isol 9; Column 11: negative control (Salmonella typhimurium ATCC 14028s), C; Column 12: positive control (V. parahaemolyticus ATCC 43996), C+.

Figure 2

Detection of toxR gene in presumptive V. parahaemolyticus isolates on 1.5% agarose gel. Column 1: kb ladder; Columns 2–10: Isol 1–Isol 9; Column 11: negative control (Salmonella typhimurium ATCC 14028s), C; Column 12: positive control (V. parahaemolyticus ATCC 43996), C+.

Close modal
Figure 3

Detection of trh gene in V. parahaemolyticus isolates on 1.5% agarose gel. Column 1: kb ladder; Column 2: positive control (V. parahaemolyticus AQ 4037), C+; Column 3: negative control (Salmonella typhimurium ATCC 14028s), C; Columns 4–11: Isol 1–Isol 9; only Isol 1 and Isol 2 show positive results.

Figure 3

Detection of trh gene in V. parahaemolyticus isolates on 1.5% agarose gel. Column 1: kb ladder; Column 2: positive control (V. parahaemolyticus AQ 4037), C+; Column 3: negative control (Salmonella typhimurium ATCC 14028s), C; Columns 4–11: Isol 1–Isol 9; only Isol 1 and Isol 2 show positive results.

Close modal
Figure 4

Detection of tdh gene in V. parahaemolyticus isolated on 1.5% agarose gel. Column 1: kb ladder; Column 2: positive control (V. parahaemolyticus ATCC 43996), C+; Column 3: negative control (Salmonella typhimurium ATCC 14028s), C; Columns 4–12: Isol 1–Isol 9.

Figure 4

Detection of tdh gene in V. parahaemolyticus isolated on 1.5% agarose gel. Column 1: kb ladder; Column 2: positive control (V. parahaemolyticus ATCC 43996), C+; Column 3: negative control (Salmonella typhimurium ATCC 14028s), C; Columns 4–12: Isol 1–Isol 9.

Close modal

The obtained results showed a limited presence of V. parahaemolyticus in the Tunisian coastal seawater, which was found only in seven stations (Table 1). All V. parahaemolyticus were isolated at temperatures ranging from 13.8 to 29.3 °C and at salinity between 37.8 and 41.1 psu (Table 1). The two positive trh V. parahaemolyticus were isolated from stations 11 and 12 during the month of February (16.7 °C temperature, 38 psu salinity and 0.722 NTU turbidity) (Figure 1; Table 1). V. parahaemolyticus was not found in stations 1, 3, 4, 9, 10, 13, 14 and 15 by both cultural and molecular methods.

Antibiotic susceptibility

Antibiotic susceptibility (Table 4) of different V. parahaemolyticus isolates shows that all isolates exhibited resistance to colistin, amikacin, penicillin and cefotaxime. However, all strains were sensitive to ceftazidime, tetracycline, ciprofloxacin, chloramphenicol, nitrofurantoin and nalidixic acid, and were registered. Different resistance patterns were recorded for tetracycline (66% of isolates), gentamicin (88% of isolates), nitrofurantoin (33% of isolates) and sulfamethoxazole-trimethoprim (11% of isolates). The multiple antibiotic resistance (MAR) index values show that eight of nine V. parahaemolyticus isolates have a value of 0.4, while only one has a 0.5 value (Isol 9).

Table 4

Mean and standard deviations of diameters of the antibiotic inhibition zone (mm)

StrainsCOLNALCTXSXTCHLGMINFEAKNTETPMAR index
Isol 1 0.0±0.0a 22.1±0.2b 0.0±0.0a 21.1±0.0b 31.0±0.0b 13.6±0.2c 22.2±0.1b 0.0±0.0a 21.2±0.1b 0.0±0.0a 0.40 
Isol 2 0.0±0.0a 22.0±0.1b 0.0±0.0a 21.0±0.1b 31.1±0.2b 13.4±0.1c 22.1±0.1b 0.0±0.0a 21.3±0.2b 0.0±0.0a 0.40 
Isol 3 2.2±0.3a 24.0±0.2b 0.0±0.0a 18.8±0.2b 22.7±0.3b 14.0±0.1c 20.0±0.1b 0.0±0.0a 16.6±0.0c 0.0±0.0a 0.40 
Isol 4 4.5±0.2a 21.1±0.1b 0.0±0.0a 19.7±0.0b 23.8±0.0b 15.5±0.1c 22.9±0.3b 0.0±0.0a 17.5±0.1c 0.0±0.0a 0.40 
Isol 5 2.3±0.1a 23.0±0.2b 0.0±0.0a 17.7±0.0b 22.8±0.1b 14.5±0.1c 21.1±0.2b 0.0±0.0a 16.5±0.0c 0.0±0.0a 0.40 
Isol 6 8.5±0.2a 21.0±0.1b 0.0±0.0a 18.0±0.0b 22.9±0.2b 12.9±0.2c 14.7±0.1c 0.0±0.0a 16.5±0.0c 0.0±0.0a 0.40 
Isol 7 6.5±0.3a 16.4±0.3b 0.0±0.0a 16.9±0.1b 22.4±0.1b 14.7±0.1c 16.8±0.2c 0.0±0.0a 16.5±0.0c 0.0±0.0a 0.40 
Isol 8 10.0±0.2a 22.1±0.1b 0.0±0.0a 19.2±0.1b 25.5±0.0b 17.0±0.0c 22.9±0.2b 0.0±0.0a 22.2±0.3b 0.0±0.0a 0.40 
Isol 9 0.0±0.0a 18.0±0.2b 0.0±0.0a 14.0±0.0c 22.3±0.0b 10.0±0.2a 15.0±0.0c 0.0±0.0a 16.5±0.0c 0.0±0.0a 0.50 
StrainsCOLNALCTXSXTCHLGMINFEAKNTETPMAR index
Isol 1 0.0±0.0a 22.1±0.2b 0.0±0.0a 21.1±0.0b 31.0±0.0b 13.6±0.2c 22.2±0.1b 0.0±0.0a 21.2±0.1b 0.0±0.0a 0.40 
Isol 2 0.0±0.0a 22.0±0.1b 0.0±0.0a 21.0±0.1b 31.1±0.2b 13.4±0.1c 22.1±0.1b 0.0±0.0a 21.3±0.2b 0.0±0.0a 0.40 
Isol 3 2.2±0.3a 24.0±0.2b 0.0±0.0a 18.8±0.2b 22.7±0.3b 14.0±0.1c 20.0±0.1b 0.0±0.0a 16.6±0.0c 0.0±0.0a 0.40 
Isol 4 4.5±0.2a 21.1±0.1b 0.0±0.0a 19.7±0.0b 23.8±0.0b 15.5±0.1c 22.9±0.3b 0.0±0.0a 17.5±0.1c 0.0±0.0a 0.40 
Isol 5 2.3±0.1a 23.0±0.2b 0.0±0.0a 17.7±0.0b 22.8±0.1b 14.5±0.1c 21.1±0.2b 0.0±0.0a 16.5±0.0c 0.0±0.0a 0.40 
Isol 6 8.5±0.2a 21.0±0.1b 0.0±0.0a 18.0±0.0b 22.9±0.2b 12.9±0.2c 14.7±0.1c 0.0±0.0a 16.5±0.0c 0.0±0.0a 0.40 
Isol 7 6.5±0.3a 16.4±0.3b 0.0±0.0a 16.9±0.1b 22.4±0.1b 14.7±0.1c 16.8±0.2c 0.0±0.0a 16.5±0.0c 0.0±0.0a 0.40 
Isol 8 10.0±0.2a 22.1±0.1b 0.0±0.0a 19.2±0.1b 25.5±0.0b 17.0±0.0c 22.9±0.2b 0.0±0.0a 22.2±0.3b 0.0±0.0a 0.40 
Isol 9 0.0±0.0a 18.0±0.2b 0.0±0.0a 14.0±0.0c 22.3±0.0b 10.0±0.2a 15.0±0.0c 0.0±0.0a 16.5±0.0c 0.0±0.0a 0.50 

MAR, multiple antibiotic resistance; COL, colistin; AKN, amikacin; NAL, nalidixic acid; NFE, nitrofurantoin; CTX, cefotaxime; CHL, chloramphenicol; GMI, gentamicin; TET, tetracycline; SXT, trimethoprim/sulphamethoxazole; Penicillin, P.

The non-observation of the inhibition zone around the disk was considered as 0 mm of diameter of inhibition.

aResistant.

bSensitive.

cIntermediate.

To our knowledge, this study constitutes the first extended monitoring of the presence of V. parahaemolyticus in Tunisian marine waters. This reveals the low occurrence of V. parahaemolyticus in Tunisian coasts compared to investigation results found in other Mediterranean countries such as Italy, France and Spain (Lopez-Joven et al. 2015; Caburlotto et al. 2016). Our results are in agreement with those reported by Snoussi et al. (2008), Khouadja et al. (2013a), Zrelli et al. (2015) and Gdoura et al. (2016), who also mentioned the rare presence of V. parahaemolyticus in Tunisian seawaters.

V. parahaemolyticus has received extensive attention in numerous countries for its recovery in seafood (Letchumanan et al. 2014; Tran et al. 2018). However, few resources have been allocated in Tunisia to V. parahaemolyticus due to the absence of epidemiological cases (annual report of Institut Pasteur 2017, 2018). A rare infection caused by V. parahaemolyticus is probably due to the absence of consumption of raw or undercooked seafood in Tunisian traditional food. The low presence of V. parahaemolyticus in the Tunisian coastal seawater compared to data in Asian and European countries (Zulkifli et al. 2009; Esteves et al. 2015; Odeyemi 2016) suggests that this species adapts poorly to southern Mediterranean conditions. In fact, the viability of V. parahaemolyticus in the south Mediterranean is likely influenced by the synergistic effect of high temperature, important salinities and sunlight intensity (Givens et al. 2014; Larsen et al. 2015).

However, the high sunning and good water transparency in the sampling sites (lighting superior to 25 Klux and turbidity ranging between 0.141 and 2.75 NTU) contribute to the bacterial die-off by the production of reactive oxygen species (Zaafrane et al. 2004; Schmitz-Valckenberg et al. 2016).

This phototoxicity action induces the rapid passage in viable, but non-culturable (VBNC) cell states in many bacterial species, which partly explains the low presence of V. parahaemolyticus and other pathogenic Vibrio in Tunisian seawater (Zaafrane et al. 2004; Chandran & Hatha 2005; Idil et al. 2013).

In addition to the direct effect of sunlight, the scarcity of rivers, discharging into the sea on the Tunisian context contributes to the elevated salinities, and the limitation of nutrient inputs in the coastal zone, which constitute a selective condition for several germs (Millot & Taupier-Letage 2005; Slimani et al. 2012).

However, it is important to note the limitation of some current methods in quantifying and identifying bacteria in the marine environment due to the presence of the VBNC state (Li et al. 2014; Ding et al. 2017).

Underestimated or undetected in environmental and clinical samples by conventional methods of analysis, this physiological state (VBNC) poses a risk to public health. It also requires the use and the development of efficient techniques to quantify and evaluate pathogenic bacteria in marine environments, especially the ones associated with epidemic and pandemic cases. In this context, the use of techniques such as a High-Performance Flow Cytometry and RT-PCR seems to be required for monitoring different states of pathogenic bacteria. However, these rigorous techniques are actually limited for rapid large-scale use (Zhong & Zhao 2018; Robben et al. 2019; Wagley et al. 2019).

In this study, all V. parahaemolyticus isolates were isolated at temperatures ranging from 15.8 to 22.5 °C and salinities ranging from 37.8 to 39 psu, constituting favourable environmental conditions for this bacterium (De Paola et al. 2003; Zulkifli et al. 2009). Other authors (Martinez-Urtaza et al. 2008; Caburlotto et al. 2016) showed that the presence of V. parahaemolyticus is correlated essentially with low salinity (30.9–36.2 psu).

The absence of V. parahaemolyticus during the summer season (Table 1) characterized by an important photoperiod also explains the stressing synergistic effect of sunlight, high temperature and salinity on the presence of this bacterium (De Paola et al. 2003; Martinez-Urtaza et al. 2008; Liu et al. 2015).

Considering the limited number of V. parahaemolyticus isolates, and the few salinity fluctuations, it would be difficult to correlate the presence of this bacterium with this parameter (Table 1). However, some monitoring performed in the Tunisian coastal seawater showed that the distribution of V. alginolyticus and other pathogenic bacteria is correlated essentially with the water temperature (Cherif et al. 2011).

The important presence of V. alginolyticus in all samples is due not only to its capacity to tolerate hostile environmental conditions, but also its ability to use a zooplankton chitin as a nutrient (Rao et al. 2013). Moreover, several authors demonstrate that V. alginolyticus exhibited a better survival and a larger distribution in seawater than V. parahaemolyticus and V. vulnificus (Munro et al. 1994; Eiler et al. 2007).

The amplification of the toxR gene by the PCR from suspected V. parahaemolyticus isolates is in perfect concordance with the results of PCR performed directly from the enriched samples.

The amplification of virulence genes shows only the presence of trh in two isolates (stations 11 and 12) (Figure 1). These virulent isolates are found at the same time and in the same area (situated near to the anchorage area of the commercial Sfax harbour) and seem to be derived from ballast water.

The presence of positive trh strain is rarely observed in environmental isolates; however, some authors connect this presence with the season (Caburlotto et al. 2016; Di et al. 2019). Several studies demonstrate that the percentage of presence of tdh and trh strains in a marine environment remained between 2 and 9% for tdh and trh, respectively, and this proportion depends on environmental factors and geographical context (Caburlotto et al. 2016; Di et al. 2019). The two isolates possessing a trh gene also exhibit a positive urease activity in the API 20E test.

Normally, most urease-positive strains isolated from the environment are mainly positive for trh gene (Wang et al. 2017); yet, some research reported the presence of non-virulent strains (trh and tdh) but having a capacity to hydrolyze urea (Ottaviani et al. 2012; Zrelli et al. 2015).

Although several authors criticize the use of API 20E systems for the identification of presumptive environmental isolate (Croci et al. 2007; Copin et al. 2012; Amalina & Ina-Salwany 2016), our results show a high degree of identification by phenotypic methods. In our investigation, cultural methods using CHROMagar and non-fermentation of the sucrose in TCBS seem to be an efficacious procedure for rapid control and differentiation of the three major pathogenic Vibrio species in environmental samples (Larsen et al. 2015; Nigro & Steward 2015).

Antibiotic susceptibility showed that most isolates are sensitive to sulphamide and chloramphenicol, yet resistant to amikacin, cefotaxime and penicillin. They presented intermediate susceptibility to gentamicin and tetracycline. These results are in agreement with those found by Letchumanan et al. (2015), Yang et al. (2017) and Elmahdi et al. (2018), which recorded an increase in multidrug resistance in environmental Vibrio and Aeromonas isolates. We note that all isolates are sensitive to the antibiotics used in the therapeutic treatment of V. parahaemolyticus such as amikacin sulphamide and nalidixic acid.

The tetracycline resistance observed in 66% of V. parahaemolyticus isolates is probably attributed to the large use of this antibiotic in aquaculture farms (Yang et al. 2017; Fri et al. 2018; Park et al. 2018). In fact, antibiotics and their residues have been reported frequently at sea and coastal areas (Smaldone et al. 2014; Patrolecco et al. 2018). In the same context, it is common that the isolation of V. parahaemolyticus strains is resistant to β lactams through the penicillinase production (Zago et al. 2020; Siddique et al. 2021). The recorded sensitivity to chloramphenicol in our case contrary to V. parahaemolyticus strains resistance observed in other countries (Han et al. 2017) is probably due to the limited use of this family of antibiotics in food product (Angulo et al. 2004; Chantziaras et al. 2014).

The MAR index ranges from 0.4 to 0.5 are greater than 0.2, which indicate that V. parahaemolyticus isolates have been exposed to antibiotics at least once in their cycles and probably have acquired a genetic resistance (Krumperman 1983; Letchumanan et al. 2015).

It has been largely demonstrated that antibiotic resistance acquired in bacteria is generally mediated by extrachromosomal plasmids and transmitted to the next generation or exchanged among the different bacterial population (von Wintersdorff et al. 2016). In the same framework, Letchumanan et al. (2015) demonstrated that the resistance to amikacin, ceftazidime, cefotaxime, kanamycin and levofloxacin depended on a plasmid carry in V. parahaemolyticus. Recent research has demonstrated the existence of two cellular signals inducted by bacteria for controlling antibiotic responses: a quorum-sensing signal responsible for inducing antibiotic resistance between bacteria and a quorum-quenching signal that altered this communication (Munita & Arias 2016). The transfer of mobile genetic elements of antibiotic resistance between marine bacteria (Partridge et al. 2018) and the large use of antibiotics is mostly responsible for the increase of multidrug resistance. This requires the development of environmental monitoring programmes in order to explore this emergence in marine bacteria.

This study conducted in 2018 showed the rare presence of V. parahaemolyticus in Tunisian coastal seawaters. This is probably due to poor adaptation of this bacterium for the south Mediterranean context (high sunning and salinity). However, the presence of virulent trh strains suggests the establishment of monitoring programmes for the detection and characterization of antibiotic resistance of V. parahaemolyticus and other pathogenic Vibrio species in Tunisian seawater and seafood product. Nevertheless, these results do not fail to record the expanding presence of V. parahaemolyticus and other pathogenic Vibrio species in the Tunisian context as a consequence of climate change as well as the disturbance in water quality.

The authors declare no conflicts of interest to disclose.

All relevant data are included in the paper or its Supplementary Information.

Alexopoulou
K.
,
Foka
A.
,
Petinaki
E.
,
Jelastopulu
E.
,
Dimitracopoulos
G.
&
Spiliopoulou
I.
2006
Comparison of two commercial methods with PCR restriction fragment length polymorphism of the tuf gene in the identification of coagulase-negative staphylococci
.
Letters in Applied Microbiology
43
(
4
),
450
454
.
https://doi.10.1111/j.1472-765X.2006.01964.x
.
Amalina
N. Z.
&
Ina-Salwany
M. Y.
2016
Recent advancements in molecular detection of Vibrio species in aquatic animals: a review
.
Bioscience Biotechnology Research Communications
9
(
3
),
349
356
.
https://doi.10.21786/bbrc/9.3/3
.
Angulo
F. J.
,
Nargund
V. N.
&
Chiller T
C.
2004
Evidence of an association between use of anti-microbial agents in food animals and anti-microbial resistance among bacteria isolated from humans and the human health consequences of such resistance
.
Journal of Veterinary Medicine Series B: Infectious Diseases and Veterinary Public Health
51
(
8–9
),
374
379
.
https://doi.10.1111/j.1439-0450.2004.00789.x
.
Bengtsson-Palm
J.
,
Kristiansson
E.
&
Larsson
D. J.
2018
Environmental factors influencing the development and spread of antibiotic resistance
.
FEMS Microbiology Reviews
42
(
1
),
fux053
.
https://doi.10.1093/femsre/fux053
.
Ben Kahla-Nakbi
A.
,
Chaieb
K.
&
Bakhrouf
A.
2009
Investigation of several virulence properties among Vibrio alginolyticus strains isolated from diseased cultured fish in Tunisia
.
Diseases of Aquatic Organisms
86
(
1
),
21
28
.
https://doi.10.3354/dao02091
.
Bonnet
R.
,
Bru
J. P.
,
Caron
F.
,
Cattoen
C.
,
Cattoir
V.
,
Courvalin
P.
,
Dubreuil
L.
,
Jarlier
V.
,
Lefort
A.
,
Merens
A.
,
Plesiat
P.
,
Ploy
M. C.
,
Soussy
C. J.
,
Varon
E.
&
Weber
P.
2018
Comité de l'Antibiogramme de la Société Française de Microbiologie. Recommandations 2012
.
Caburlotto
G.
,
Suffredini
E.
,
Toson
M.
,
Fasolato
L.
,
Antonetti
P.
,
Zambon
M.
&
Manfrin
A.
2016
Occurrence and molecular characterization of Vibrio parahaemolyticus in crustaceans commercialized in Venice area, Italy
.
International Journal of Food Microbiology
220
,
39
49
.
https://doi.10.1016/j.ijfoodmicro.2015.12.007
.
Cantet
F.
,
Hervio-Heath
D.
,
Caro
A.
,
Le Mennec
C.
,
Monteil
C.
,
Quéméré
C.
,
Jolivet-Gougeon
A.
,
Colwell
R. R.
&
Monfort
P.
2013
Quantification of Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio cholerae in French Mediterranean coastal lagoons
.
Research in Microbiology
164
(
8
),
867
874
.
https://doi.10.1016/j.resmic.2013.06.005
.
Chandran
A.
&
Hatha
A. M.
2005
Relative survival of Escherichia coli and Salmonella typhimurium in a tropical estuary
.
Water Research
39
(
7
),
1397
1403
.
https://doi.10.1016/j.watres.2005.01.010
.
Chantziaras
I.
,
Boyen
F.
,
Callens
B.
&
Dewulf
J.
2014
Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: a report on seven countries
.
Journal of Antimicrobial Chemotherapy
69
(
3
),
827
834
.
https://doi.10.1093/jac/dkt443
.
Cherif
N.
,
Attia El Hili
H.
,
Mzoughi
N.
,
Chouba
L.
,
El Bourl
M.
,
El-Amri
D.
,
Hamza
A.
,
Maatoug
K.
,
Zaafrane
S.
&
Hammami
S.
2011
Tunisian aquaculture: present situation and potentialities
.
Fish Farms: Management, Disease Control & the Environment
1
(
4
),
1
19
.
Chung
H. Y.
,
Na
E. J.
,
Lee
K. H.
,
Ryu
S.
,
Yoon
H.
,
Lee
J. H.
,
Kim
H. B.
,
Kim
H.
,
Choi
S. H.
&
Kim
B. S.
2016
Complete genome sequence of Vibrio parahaemolyticus FORC_023 isolated from raw fish storage water
.
Pathogens and Disease
74
(
4
).
https://doi.10.1093/femspd/ftw032.
CLSI
2018
Performance standards for antimicrobial disk susceptibility tests, 13th ed CLSI standard M02
.
Clinical and Laboratory Standards Institute
,
Wayne, PA
.
Copin
S.
,
Robert-Pillot
A.
,
Malle
P.
,
Quilici
M. L.
&
Gay
M.
2012
Evaluation of most-probable-number–PCR method with internal amplification control for the counting of total and pathogenic Vibrio parahaemolyticus in frozen shrimps
.
Journal of Food Protection
75
(
1
),
150
153
.
https://doi.10.4315/0362-028X.JFP-11-165
.
Croci
L.
,
Suffredini
E.
,
Cozzi
L.
,
Paniconi
M.
,
Ciccaglioni
G.
&
Colombo
M. M.
2007
Evaluation of different polymerase chain reaction methods for the identification of Vibrio parahaemolyticus strains isolated by cultural methods
.
Journal of AOAC International
90
(
6
),
1588
1597
.
Dalsgaard
A.
,
Forslund
A.
,
Petersen
A.
,
Brown
D. J.
,
Dias
F.
,
Monteiro
S.
,
Mølbak
K.
,
Aaby
P.
,
Rodrigues
A.
&
Sandström
A.
2000
Class 1 integron-borne, multiple-antibiotic resistance encoded by a 150-kilobase conjugative plasmid in epidemic Vibrio cholerae O1 strains isolated in Guinea-Bissau
.
Journal of Clinical Microbiology
38
(
10
),
3774
3779
.
PMID: 11015401
.
De-Paola
A.
,
Nordstrom
J. L.
,
Bowers
J. C.
,
Wells
J. G.
&
Cook
D. W.
2003
Seasonal abundance of total and pathogenic Vibrio parahaemolyticus in Alabama oysters
.
Applied and Environmental Microbiology
69
(
3
),
1521
1526
.
https://doi.10.1128/AEM.69.3.1521–1526.2003
.
Ding
T.
,
Suo
Y.
,
Xiang
Q.
,
Zhao
X.
,
Chen
S.
,
Ye
X.
&
Liu
D.
2017
Significance of viable but nonculturable Escherichia coli: induction, detection and control
.
Journal of Microbiology and Biotechnology
27
,
417
428
.
https://doi.10.4014/jmb.1609.09063
.
Di
D. Y. W.
,
Shin
H.
,
Han
D.
,
Unno
T.
&
Hur
H. G.
2019
High genetic diversity of Vibrio parahaemolyticus isolated from tidal water and mud of southern coast of South Korea
.
FEMS Microbiology Ecology
95
(
3
).
https://doi.10.1093/femsec/fiz022
Di Pinto
A.
,
Ciccarese
G.
,
Tantillo
G.
,
Catalano
D.
&
Forte
V. T.
2005
A collagenase targeted multiplex PCR assay for identification of Vibrio alginolyticus, Vibrio cholerae, and Vibrio parahaemolyticus
.
Journal of Food Protection
68
,
150
153
.
https://doi.10.4315/0362-028x-68.1.150
.
Eiler
A.
,
Gonzalez-Rey
C.
,
Allen
S.
&
Bertilsson
S.
2007
Growth response of Vibrio cholerae and other Vibrio spp. to cyanobacterial dissolved organic matter and temperature in brackish water
.
FEMS Microbiology Ecology
60
(
3
),
411
418
.
https://doi.10.1111/j.1574-6941.2007.00303.x
.
Elmahdi
S.
,
Parveen
S.
,
Ossai
S.
,
DaSilva
L. V.
,
Jahncke
M.
,
Bowers
J.
&
Jacobs
J.
2018
Vibrio parahaemolyticus and Vibrio vulnificus recovered from oysters during an oyster relay study
.
Applied and Environmental Microbiology
84
(
3
),
e01790–17
.
https://doi.10.1111/1750-3841.13584
.
Esteves
K.
,
Mosser
T.
,
Aujoulat
F.
,
Hervio-Heath
D.
,
Monfort
P.
&
Jumas-Bilak
E.
2015
Highly diverse recombining populations of Vibrio cholerae and Vibrio parahaemolyticus in French Mediterranean coastal lagoons
.
Frontiers in Microbiology
6
,
708
.
https://doi.org/10.3389/fmicb.2015.00708
.
Fri
J.
,
Ndip
R. N.
,
Njom
H. A.
&
Clarke
A. M.
2018
Antibiotic susceptibility of non-cholera vibrios isolated from farmed and wild marine fish (Argyrosomus japonicus), implications for public health
.
Microbial Drug Resistance
24
(
9
).
https://doi.10.1089/mdr.2017.0276
Fujino
T.
,
Okuno
Y.
,
Nakada
D.
,
Aoyama
A.
,
Fukai
K.
,
Mukai
T.
&
Ueho
T.
1953
On the bacteriological examination of shirasu-food poisoning
.
Medical Journal of Osaka University
4
(
2/3
),
299
304
.
https://doi.10.19542702324
.
Gdoura
M.
,
Sellami
H.
,
Nasfi
H.
,
Trabelsi
R.
,
Mansour
S.
,
Attia
T.
,
Nsaibia
S.
,
Vallaeys
T.
,
Gdoura
R.
&
Siala
M.
2016
Molecular detection of the three major pathogenic Vibrio species from seafood products and sediments in Tunisia using real-time PCR
.
Journal of Food Protection
79
(
12
),
2086
2094
.
https://doi.10.4315/0362-028X.JFP-16-205
.
Givens
C. E.
,
Bowers
J. C.
,
DePaola
A.
,
Hollibaugh
J. T.
&
Jones
J. L.
2014
Occurrence and distribution of Vibrio vulnificus and Vibrio parahaemolyticus – potential roles for fish, oyster, sediment and water
.
Letters in Applied Microbiology
58
(
6
),
503
510
.
https://doi.10.1111/lam.12226
.
Haendiges
J.
,
Timme
R.
,
Allard
M. W.
,
Myers
R. A.
,
Brown
E. W.
&
Gonzalez-Escalona
N.
2015
Characterization of Vibrio parahaemolyticus clinical strains from Maryland (2012–2013) and comparisons to a locally and globally diverse V. parahaemolyticus strains by whole-genome sequence analysis
.
Frontiers in Microbiology
6
,
125
.
https://doi.10.3389/fmicb.2015.00125
.
Han
D.
,
Yu
F.
,
Tang
H.
,
Ren
C.
,
Wu
C.
,
Zhang
P.
&
Han
C.
2017
Spreading of pandemic Vibrio parahaemolyticus O3:K6 and its serovariants: a re-analysis of strains isolated from multiple studies
.
Frontiers in Cellular and Infection Microbiology
7
,
188
.
https://doi.10.3389/fcimb.2017.00188
.
Idil
O.
,
Darcan
C.
,
Ozen
T.
&
Ozkanca
R.
2013
The effect of UV-A and various visible light wavelengths radiations on expression level of Escherichia coli oxidative enzymes in seawater
.
Jundishapur Journal of Microbiology
6
(
3
),
230
236
.
https://doi.10.10.5812/jjm.4917
.
Institut Pasteur de Tunis
2017
Rapport Annuel de L'Institut Pasteur de Tunis 2017
, p.
269
.
Institut Pasteur de Tunis
2018
Rapport Annuel de L'Institut Pasteur de Tunis 2018
, p.
263
.
Khouadja
S.
,
Lamari
F.
&
Bakhrouf
A.
2013a
Characterization of Vibrio parahaemolyticus isolated from farmed sea bass (Dicentrarchus labrax) during disease outbreaks
.
International Aquatic Research
5
(
1
),
13
.
https://doi.org/10.1186/2008-6970-5-13
.
Khouadja
S.
,
Suffredini
E.
,
Spagnoletti
M.
,
Croci
L.
,
Colombo
M. M.
&
Bakhrouf
A.
2013b
Presence of pathogenic Vibrio parahaemolyticus in waters and seafood from the Tunisian Sea
.
World Journal of Microbiology and Biotechnology
29
(
8
),
1341
1348
.
https://doi.10.1007/s11274-013-1297-1
.
Kim
Y. B.
,
Okuda
J.
,
Matsumoto
C.
,
Takahashi
N.
,
Hashimoto
S.
&
Nishibuchi
M.
1999
Identification of Vibrio parahaemolyticus strains at the species level by PCR targeted to the toxR gene
.
Journal of Clinical Microbiology
37
(
4
),
1173
1177
.
Konrad
S.
,
Paduraru
P.
,
Romero-Barrios
P.
,
Henderson
S. B.
&
Galanis
E.
2017
Remote sensing measurements of sea surface temperature as an indicator of Vibrio parahaemolyticus in oyster meat and human illnesses
.
Environmental Health
16
(
1
),
92
.
https://doi.10.1186/s12940-017-0301-x
.
Lajnef
R.
,
Snoussi
M.
,
Romalde
J. L.
,
Nozha
C.
&
Hassen
A.
2012
Comparative study on the antibiotic susceptibility and plasmid profiles of Vibrio alginolyticus strains isolated from four Tunisian marine biotopes
.
World Journal Microbiology Biotechnology
28
(
12
),
3345
3363
.
https://doi.10.1007/s11274-012-1147-6
.
Larsen
A. M.
,
Rikard
F. S.
,
Walton
W. C.
&
Arias
C. R.
2015
Temperature effect on high salinity depuration of Vibrio vulnificus and V. parahaemolyticus from the Eastern oyster (Crassostrea virginica)
.
International Journal of Food Microbiology
192
,
66
71
.
https://doi.10.1016/j.ijfoodmicro.2014.09.025
.
Leoni
F.
,
Talevi
G.
,
Masini
L.
,
Ottaviani
D.
&
Rocchegiani
E.
2016
Trh (tdh − /trh+) gene analysis of clinical, environmental and food isolates of Vibrio parahaemolyticus as a tool for investigating pathogenicity
.
International Journal of Food Microbiology
225
,
43
53
.
https://doi.org/10.1016/j.ijfoodmicro.2016.02.016
.
Letchumanan
V.
,
Chan
K. G.
&
Lee
L. H.
2014
Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques
.
Frontiers in Microbiology
5
,
705
.
https://doi.10.3389/fmicb.2014.00705
.
Letchumanan
V.
,
Yin
W. F.
,
Lee
L. H.
&
Chan
K. G.
2015
Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shrimps in Malaysia
.
Frontiers in Microbiology
6
,
33
.
https://doi.10.3389/fmicb.2015.00033
.
Li
L.
,
Mendis
N.
,
Trigui
H.
,
Oliver
J. D.
&
Faucher
S. P.
2014
The importance of the viable but non-culturable state in human bacterial pathogens
.
Frontiers in Microbiology
5
,
258
.
https://doi.10.3389/fmicb.2014.00258
.
Liu
Y.
,
Tam
Y. H.
,
Yuan
J.
,
Chen
F.
,
Cai
W.
,
Liu
J.
,
Chen
F.
,
Cai
W.
,
Liu
J.
,
Ma
X.
,
Xie
C.
,
Zheng
C.
,
Zhuo
L.
,
Cao
X.
,
Tan
H.
,
Li
B.
,
Xie
H.
,
Liu
Y.
&
Ip
D.
2015
A foodborne outbreak of gastroenteritis caused by Vibrio parahaemolyticus and norovirus through non-seafood vehicle
.
PLoS ONE
10
(
9
),
e0137848
.
https://doi.10.1371/journal.pone.0137848
.
Lopez-Joven
C.
,
de Blas
I.
,
Furones
M. D.
&
Roque
A.
2015
Prevalences of pathogenic and non-pathogenic Vibrio parahaemolyticus in mollusks from the Spanish Mediterranean Coast
.
Frontiers in Microbiology
6
,
736
.
https://doi.10.3389/fmicb.2015.00736
.
Malainine
S. M.
,
Moussaoui
W.
,
Prévost
G.
,
Scheftel
J. M.
&
Mimouni
R.
2013
Rapid identification of Vibrio parahaemolyticus isolated from shellfish, sea water and sediments of the Khnifiss lagoon, Morocco, by MALDI-TOF mass spectrometry
.
Letters in Applied Microbiology
56
(
5
),
379
386
.
https://doi.10.1111/lam.12060
.
Martinez-Urtaza
J.
,
Huapaya
B.
,
Gavilan
R. G.
,
Blanco-Abad
V.
,
Ansede-Bermejo
J.
,
Cadarso-Suarez
C.
,
Figueiras
A.
&
Trinanes
J.
2008
Emergence of Asiatic Vibrio diseases in South America in phase with El Niño
.
Epidemiology
19
(
6
),
829
837
.
https://doi.10.1097/EDE.0b013e3181883d43
.
Martinez-Urtaza
J.
,
Baker-Austin
C.
,
Jones
J. L.
,
Newton
A. E.
,
Gonzalez-Aviles
G. D.
&
De-Paola
A.
2013
Spread of Pacific northwest Vibrio parahaemolyticus strain
.
New England Journal of Medicine
369
(
16
),
1573
1574
.
https://doi.10.1056/NEJMc1305535
.
Millot
C.
&
Taupier-Letage
I.
2005
Circulation in the Mediterranean sea
. In:
The Mediterranean Sea
.
Springer
,
Berlin, Heidelberg
, pp.
29
66
.
https://doi.10.1007/b107143
.
Munita
J. M.
&
Arias
C. A.
2016
Mechanisms of antibiotic resistance
.
Microbiology Spectrum
4
(
2
).
https://doi.10.1128/microbiolspec.VMBF-0016-2015
.
Munro
P. M.
,
Brahic
G.
&
Clement
R. L.
1994
Seawater effects on various Vibrio species
.
Microbios
77
(
312
),
191
198
.
Newton
A.
,
Kendall
M.
,
Vugia
D. J.
,
Henao
O. L.
&
Mahon
B. E.
2012
Increasing rates of vibriosis in the United States, 1996–2010: review of surveillance data from 2 systems
.
Clinical Infectious Diseases
54
(
suppl_5
),
391
395
.
https://doi.10.1093/cid/cis243
.
Nigro
O. D.
&
Steward
G. F.
2015
Differential specificity of selective culture media for enumeration of pathogenic vibrios: advantages and limitations of multi-plating methods
.
Journal of Microbiological Methods
111
,
24
30
.
https://doi.10.1016/j.mimet.2015.01.014
.
Nongogo
V.
&
Okoh
A. I.
2014
Occurrence of Vibrio pathotypes in the final effluents of five wastewater treatment plants in Amathole and Chris Hani District Municipalities in South Africa
.
International Journal of Environmental Research and Public Health
11
(
8
),
7755
7766
.
https://doi.10.3390/ijerph110807755
.
Okeyo
A.
,
Nontongana
N.
,
Fadare
T.
&
Okoh
A.
2018
Vibrio species in wastewater final effluents and receiving watershed in South Africa: implications for public health
.
International Journal of Environmental Research and Public Health
15
(
6
),
1266
.
https://doi.10.3390/ijerph15061266
.
Oliver
J. D.
2005
Wound infections caused by Vibrio vulnificus and other marine bacteria
.
Epidemiology & Infection
133
(
3
),
383
391
.
https://doi.10.1017/S0950268805003
.
Ottaviani
D.
,
Leoni
F.
,
Serra
R.
,
Serracca
L.
,
Decastelli
L.
,
Rocchegiani
E.
,
Masini
L.
,
Canonico
C.
,
Talevi
G.
&
Carraturo
A.
2012
Non-toxigenic Vibrio parahaemolyticus strains causing acute gastroenteritis
.
Journal of Clinical Microbiology
50
(
12
),
4141
4143
.
https://doi.10.1128/JCM.01993-12
.
Park
K.
,
Mok
J. S.
,
Kwon
J. Y.
,
Ryu
A. R.
,
Kim
S. H.
&
Lee
H. J.
2018
Food-borne outbreaks, distributions, virulence, and antibiotic resistance profiles of Vibrio parahaemolyticus in Korea from 2003 to 2016: a review
.
Fisheries and Aquatic Sciences
21
(
1
),
1
10
.
https://doi.10.1186/s41240-018-0081-4
.
Partridge
S. R.
,
Kwong
S. M.
,
Firth
N.
&
Jensen
S. O.
2018
Mobile genetic elements associated with antimicrobial resistance
.
Clinical Microbiology Reviews
31
(
4
),
e00088
-
17
.
https://doi.10.1128/CMR.00088-17
.
Passalacqua
P. L.
,
Zavatta
E.
,
Bignami
G.
,
Serraino
A.
&
Serratore
P.
2016
Occurrence of Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus in the clam Ruditapes philippinarum (Adams & Reeve, 1850) from Emilia Romagna and Sardinia, Italy
.
Italian Journal of Food Safety
5
(
1
).
https://doi.10.4081/ijfs.2016.5709
Patrolecco
L.
,
Rauseo
J.
,
Ademollo
N.
,
Grenni
P.
,
Cardoni
M.
,
Levantesi
C.
,
Luprano
M. L.
&
Caracciolo
A. B.
2018
Persistence of the antibiotic sulfamethoxazole in river water alone or in the co-presence of ciprofloxacin
.
The Science of the Total Environment
640–641
,
1438
1446
.
https://doi.10.1016/j.scitotenv.2018.06.025
.
Rao
B. M.
,
Floyd
F.
IIII
,
Holmes
L.
&
Lalitha
K. V.
2013
Chitinase production in a fed-batch fermentation of colloidal chitin using a mixed culture of Vibrio harveyi and Vibrio alginolyticus
.
Fishery Technology
50
,
66
74
.
http://hdl.handle.net/123456789/2082
.
Raszl
S. M.
,
Froelich
B. A.
,
Vieira
C. R. W.
,
Blackwood
A. D.
&
Noble
R. T.
2016
Vibrio parahaemolyticus and Vibrio vulnificus in South America: water, seafood and human infections
.
Journal of Applied Microbiology
121
(
5
),
1201
1222
.
https://doi.10.1111/jam.13246
.
Robben
C.
,
Mester
P.
,
Wiite
A. K.
,
Stessl
B.
,
Schoder
D.
&
Rossmanith
P.
2019
A fast and easy ATP-based approach enables MIC testing for non-resuscitating VBNC pathogens
.
Frontiers in Microbiology
10
,
1365
.
https://doi.10.3389/fmicb.2019.01365
.
Schmitz-Valckenberg
S.
,
Sahel
J. A.
,
Danis
R.
,
Fleckenstein
M.
,
Jaffe
G. J.
,
Wolf
S.
,
Pruente
C.
&
Holz
F. G.
2016
Natural history of geographic atrophy progression secondary to age-related macular degeneration (geographic atrophy progression study)
.
Ophthalmology
123
(
2
),
361
368
.
https://doi.10.1016/j.ophtha.2015.09.036
.
Shen
X.
,
Cai
Y.
,
Liu
C.
,
Liu
W.
,
Hui
Y.
&
Su
Y. C.
2009
Effect of temperature on uptake and survival of Vibrio parahaemolyticus in oysters (Crassostrea plicatula)
.
International Journal of Food Microbiology
136
(
1
),
129
132
.
https://doi.10.1016/j.ijfoodmicro.2009.09.012
.
Siddique
A. B.
,
Moniruzzaman
M.
,
Ali
S.
,
Dewan
M.
,
Islam
M. R.
,
Islam
M. S.
,
Amin
M. B.
,
Mondal
D.
,
Pavarez
A. K.
&
Mahmud
Z. H.
2021
Characterization of pathogenic Vibrio parahaemolyticus isolated from fish aquaculture of the southwest coastal area of Bangladesh
.
Frontiers in Microbiology
266
(
12
).
https://doi:10.3389/fmicb.2021.635539.
Slimani
S.
,
Robyns
A.
,
Jarraud
S.
,
Molmeret
M.
,
Dusserre
E.
,
Mazure
C.
,
Facon
J. P.
,
Lina
G.
,
Etienne
J.
&
Ginevra
C.
2012
Evaluation of propidium monoazide (PMA) treatment directly on membrane filter for the enumeration of viable but non cultivable Legionella by qPCR
.
Journal of Microbiological Methods
88
(
2
),
319
321
.
https://doi.10.1016/j.mimet.2011.12.010
.
Smaldone
G.
,
Marrone
R.
,
Cappiello
S.
,
Martin
G. A.
,
Oliva
G.
,
Cortesi
M. L.
&
Anastasio
A.
2014
Occurrence of antibiotic resistance in bacteria isolated from seawater organisms caught in Campania Region: preliminary study
.
BMC Veterinary Research
10
(
1
),
161
.
https://doi.10.1186/1746-6148-10-161
.
Snoussi
M.
,
Noumi
E.
,
Usai
D.
,
Sechi
L. A.
,
Zanetti
S.
&
Bakhrouf
A.
2008
Distribution of some virulence related-properties of Vibrio alginolyticus strains isolated from Mediterranean seawater (Bay of Khenis, Tunisia): investigation of eight Vibrio cholerae virulence genes
.
World Journal of Microbiology and Biotechnology
24
(
10
),
2133
2141
.
https://doi.org/10.1007/s11274-008-9719-1
.
Soto-Rodriguez
S. A.
,
Gomez-Gil
B.
,
Lozano-Olvera
R.
,
Betancourt-Lozano
M.
&
Morales-Covarrubias
M. S.
2015
Field and experimental evidence of Vibrio parahaemolyticus as the causative agent of acute hepatopancreatic necrosis disease of cultured shrimp (Litopenaeus vannamei) in Northwestern Mexico
.
Applied and Environmental Microbiology
81
(
5
),
1689
1699
.
https://doi.10.1128/AEM.03610-14
.
Tada
J.
,
Ohashi
T.
,
Nishimura
N.
,
Shirasaki
Y.
,
Ozaki
H.
,
Fukushima
S.
,
Takano
J.
,
Nishibuchi
M.
&
Takeda
Y.
1992
Detection of the thermostable direct hemolysin gene (tdh) and the thermostable direct hemolysin-related hemolysin gene (trh) of Vibrio parahaemolyticus by polymerase chain reaction
.
Molecular and Cellular Probes
6
(
6
),
477
487
.
https://doi.10.1016/0890-8508(92)90044-X
.
Taylor
M.
,
Cheng
J.
,
Sharma
D.
,
Bitzikos
O.
,
Gustafson
R.
,
Fyfe
M.
,
Greve
R.
,
Murti
M.
,
Stone
J.
,
Honish
L.
,
Mah
V.
,
Punja
N.
,
Hexemer
A.
,
McIntyre
L.
,
Henry
B.
,
Kendall
P.
,
Atkinson
R.
,
Buenaventura
E.
,
Martinez-Perez
A.
&
Galanis
E.
2018
Outbreak of Vibrio parahaemolyticus associated with consumption of raw oysters in Canada, 2015
.
Food Borne Pathogens and Disease
15
(
9
),
554
559
.
https://doi.10.1089/fpd.2017.2415
.
Tran
T. H. T.
,
Yanagawa
H.
,
Nguyen
K. T.
,
Hara-Kudo
Y.
,
Taniguchi
T.
&
Hayashindani
H.
2018
Prevalence of Vibrio parahaemolyticus in seafood and water environment in the Mekong Delta, Vietnam
.
Journal of Veterinary Medical Science
80
(
11
),
1737
1742
.
https://doi.10.1292/jvms.18-0241
.
Urquhart
E. A.
,
Jones
S. H.
,
Jong
W. Y.
,
Schuster
B. M.
,
Marcinkiewicz
A. L.
,
Whistler
C. A.
&
Cooper
V. S.
2016
Environmental conditions associated with elevated Vibrio parahaemolyticus concentrations in Great Bay Estuary, New Hampshire
.
PLoS ONE
11
(
5
),
e0155018
.
https://doi.10.1371/journal.pone.0155018
.
Vezzulli
L.
,
Grande
C.
,
Reid
P. C.
,
Hélaouët
P.
,
Edwards
M.
,
Höfle
M. G.
,
Brettar
H. I.
,
Colwell
R. R.
&
Pruzzo
C.
2016
Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic
.
Proceedings of the National Academy of Sciences
113
(
34
),
E5062
E5071
.
https://doi.10.1073/pnas.1609157113
.
von Wintersdorff
C. J. H.
,
Penders
J.
,
van Niekerk
J. M.
,
Mills
N. D.
,
Majumder
S.
,
van Alphen
L. B.
,
Savelkoul
P. H. M.
&
Wolffs
P. F. G.
2016
Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer
.
Frontiers in Microbiology
7
,
173
.
https://doi.10.3389/fmicb.2016.00173
.
Wagley
S.
,
Titball
R.
&
Butler
C.
2019
Uncovering the molecular basis of viable but non culturable (VBNC) cells
.
Access Microbiology
1
(
1A
).
https://doi.org/10.1099/acmi.ac2019.po0311
Wang
H.
,
Tang
X.
,
Su
Y. C.
,
Chen
J.
&
Yan
J.
2017
Characterization of clinical Vibrio parahaemolyticus strains in Zhoushan, China, from 2013 to 2014
.
PLoS ONE
12
(
7
),
e0180335
.
https://doi.10.1371/journal.pone.0180335
.
Wang
Y.
,
Zhang
H. Y.
,
Fodjo
E. K.
,
Kong
C.
,
Gu
R. R.
,
Han
F.
&
Shen
X. S.
2018
Temperature effect study on growth and survival of pathogenic Vibrio parahaemolyticus in Jinjiang oyster (Crassostrea rivularis) with rapid count method
.
Journal of Food Quality
2018
.
https://doi.org/10.1155/2018/2060915
.
Yang
Y.
,
Xie
J.
,
Li
H.
,
Tan
S.
,
Chen
Y.
&
Yu
H.
2017
Prevalence, antibiotic susceptibility and diversity of Vibrio parahaemolyticus isolates in seafood from south China
.
Frontiers in Microbiology
8
,
25
66
.
https://doi.10.10.3389/fmicb.2017.02566
.
Zaafrane
S.
,
Maatouk
K.
,
Gauthier
J. M.
&
Bakhrouf
A.
2004
Influence des conditions de culture préalables et de la présence du gène rpoS pour la survie de Salmonella typhimurium en eau de mer exposée à la lumière solaire
.
Canadian Journal of Microbiology
50
,
341
350
.
https://doi.10.1010.1139/W04-011
.
Zago
V.
,
Veschetti
L.
,
Patuzzo
C.
,
Malerba
G.
&
Lleo
M. M.
2020
Resistome, mobilome and virulome analysis of Shewanella algae and Vibrio spp. strains isolated in Italian aquaculture centers
.
Microorganisms
8
(
4
),
572
.
https://doi:10.3390/microorganisms8040572
.
Zrelli
S.
,
Oueslati
W.
,
Essalah
L.
,
Federighi
M.
,
Ghariani
A.
,
El Bour
M.
,
Chabouni
M.
,
Slim-Saidi
L.
&
Ettriqui
A.
2015
Prévalence de Vibrio parahaemolyticus dans les mollusques bivalves purifiés en Tunisie: application aux réseaux de collecte des palourdes (Ruditapes decussatus)
.
Marine Life
18
,
25
31
.
Zulkifli
Y.
,
Alitheen
N. B.
,
Son
R.
,
Yeap
S. K.
,
Lesley
M. B.
&
Raha
A. R.
2009
Identification of Vibrio parahaemolyticus isolates by PCR targeted to the toxR gene and detection of virulence genes
.
International Food Research Journal
16
,
289
296
.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).