Quantitative microbial risk assessment (QMRA) is increasingly applied to estimate drinking water safety. In QMRA the risk of infection is calculated from pathogen concentrations in drinking water, water consumption and dose response relations. Pathogen concentrations in drinking water are generally low and monitoring provides little information for QMRA. Therefore pathogen concentrations are monitored in the raw water and reduction of pathogens by treatment is modelled stochastically with Monte Carlo simulations. The method was tested in a case study with Campylobacter monitoring data of rapid sand filtration and ozonation processes. This study showed that the currently applied method did not predict the monitoring data used for validation. Consequently the risk of infection was over estimated by one order of magnitude. An improved method for model validation was developed. It combines non-parametric bootstrapping with statistical extrapolation to rare events. Evaluation of the treatment model was improved by presenting monitoring data and modelling results in CCDF graphs, which focus on the occurrence of rare events. Apart from calculating the yearly average risk of infection, the model results were presented in FN curves. This allowed for evaluation of both the distribution of risk and the uncertainty associated with the assessment.