In Bangladesh, arsenic contamination of groundwater, microbial contamination of surface water and seasonally variable rainfall make reliable access to acceptable quality drinking water a challenge. Arsenic-iron removal plants (AIRPs) are a relatively inexpensive way of removing arsenic from groundwater for access to safer drinking water. This study evaluated the performance of 21 (of 105) AIRPs installed by a local non-governmental organization (Society for People's Action in Change and Equity) with financial assistance from the Australian High Commission, Dhaka, under the Direct Aid Program of the Australian Government. All AIRPs achieved the Bangladesh standard for arsenic in drinking water of 50 μg L−1 and 17 achieved the World Health Organization guideline of 10 μg L−1. The AIRPs removed 87% of influent arsenic, on average. After cleaning, poor arsenic and iron removal was observed for about 2 days due to inadequate residence time. Chemical processes that may influence AIRP performance are also discussed herein, including iron and arsenic oxidation, arsenic co-precipitation with iron, multiple iron additions, interference by organics, and iron crystallization. Effluent faecal coliform counts were generally low, though were slightly higher than influent counts. Overall, AIRPs were shown to possess considerable promise for use in areas with high natural iron where users are concerned about arsenic and/or iron in their drinking water.

This content is only available as a PDF.