Fungal contamination of drinking water distribution systems can impact water quality with implications for public health. We document an instance of Exophiala spp. biofilm contamination of customer taps in the Midwest United States following consumer complaints. Three samples of black biofilm were collected from customer taps in Ohio and then processed using next-generation DNA sequencing of the bacterial 16S and fungal ITS regions. Two samples with successful ITS sequencing were dominated by Exophiala spp., putatively identified as E. cancerae and E. lecanii-corni. Dominant bacterial phyla in samples included Proteobacteria, Bacteroidetes, Actinobacteria, and Acidobacteria. Bacterial composition varied substantially at the family and genus levels, and potentially pathogenic bacteria (i.e., Acinetobacter spp., Legionella spp., Mycobacterium spp., and Pseudomonas spp.) were detected. The potential for fungal contamination of drinking water distribution systems should be evaluated when biofilms are observed.

  • The microbial composition of biofilms growing on customer taps was characterized.

  • Fungal communities were dominated by Exophiala spp., putatively identified as E. lecanii-corni.

  • Bacterial biofilms were predominantly Proteobacteria, Bacteroidetes, Actinobacteria, and Acidobacteria.

  • Opportunistic pathogens Acinetobacter spp., Legionella spp., Mycobacterium spp., and Pseudomonas spp. were detected.

Contamination of drinking water distribution systems by microorganisms has been recognized since the mid-1800s, and contamination events may result from introduction and/or regrowth of bacteria, viruses, protozoa, and fungi (Rochelle & Clancey 2006). For example, contamination with opportunistic pathogen bacteria such as Acinetobacter baumannii, Legionella pneumophila, and Mycobacterium avium is well-known (Falkinham 2011; Carvalheira et al. 2021; CDC 2021) with healthcare costs from these three species estimated at $600 million annually for the elderly in the United States (Naumova et al. 2016).

Fungal contamination of drinking water distribution systems is less frequently studied but is increasingly recognized (Mhlongo et al. 2019) with impacts upon water quality (e.g., color, odor, and taste), degradation of materials, and concerns about mycotoxin exposure and opportunistic infections (Nucci et al. 2002; Hageskal et al. 2009; Mesquita-Rocha et al. 2013; Mhlongo et al. 2020; Afonso et al. 2021). Available reports of fungal growth within distribution systems primarily implicate common, terrestrial, and filamentous genera, including Aspergillus, Cladosporium, and Penicillium (Afonso et al. 2021). These may co-occur with bacteria and protozoa in biofilm communities, and interkingdom interactions within such biofilms are poorly understood (Afonso et al. 2021).

Aside from common terrestrial fungi, members of the black yeast genus Exophiala are occasionally reported as distribution system contaminants in tap water and especially around outlets in bathrooms, kitchens, dishwashers, and laundry machines (Matos et al. 2002; Lian & De Hoog 2010; Biedunkiewicz & Schulz 2012; Adams et al. 2013; Isola et al. 2013; Babič et al. 2016, 2017; Moat et al. 2016; Zupančič et al. 2016; Wang et al. 2018; Kulesza et al. 2021). Within such environments, oligotrophy and tolerance of extreme conditions by certain Exophiala species enables their growth (Hamada & Abe 2010; Lian & De Hoog 2010; Heinrichs et al.2013b; Zupančič et al. 2016; Wang et al. 2018; Kulesza et al. 2021; Romsdahl et al. 2021). Moreover, many Exophiala spp. are opportunistic pathogens affecting both immune-competent and immune-compromised persons (Zeng et al. 2007; Sav et al. 2016; Singh et al. 2021; Usuda et al. 2021). Infections with Exophiala spp. are most often superficial but do include deep-tissue and systemic mycoses which most commonly affect the lungs (Zeng et al. 2007; Woo et al. 2013; Usuda et al. 2021). Dermal contact, ingestion, and inhalation may be relevant routes of exposure.

Recently, Heinrichs et al. (2013a, b) investigated black biofilms growing on aerators, shower heads, and toilet tanks in Germany. These biofilms were dominated by Exophiala lecanii-corni and smaller amounts of other Exophiala spp. and black yeast-like fungi. E. lecanii-corni may cause superficial mycoses effecting skin, nails, eyes, and sinuses in addition to deeper mycoses of the lungs, digestive system, and central nervous system (Zeng et al. 2007; Woo et al. 2013; Lee et al. 2016; Miyakubo et al. 2020; Hatta et al. 2021; Futatsuya et al. 2023). After further sampling of that distribution system, retrograde contamination with E. lecanii-corni was suggested (Heinrichs et al.2013b). However, it is unknown how frequently similar extensive E. lecanii-corni biofilms contaminate other distribution systems.

In this study, we report a series of Exophiala spp. biofilm contamination events similar to those reported by Heinrichs et al. (2013a), this time from a central Ohio (USA) distribution system. Our objective was to characterize these biofilms through DNA sequencing of the bacterial 16S and fungal ITS regions and to identify potentially pathogenic taxa of concern to water resource managers and for public health. This work highlights the potential importance of fungal biofilms in drinking water systems.

Three biofilm samples were collected during November 2022 from homes that belong to a central Ohio, USA distribution system (Figure 1). Samples were collected from an area within the distribution system where multiple homeowners had complained to operators about excessive biofilm growth on taps. Biofilms growing on kitchen sinks (i.e., samples S1 and S2) and a shower head (i.e., sample S3) were collected without prior flushing, using sterile cotton swabs and 4 oz Whirl-Pak® bags (Pleasant Prairie, WI, USA). Samples were promptly transported to The Ohio State University and stored at −20 °C. Microscopic observation, DNA extraction procedure, Illumina sequencing, and bioinformatics are detailed in the Supplementary material.
Figure 1

Biofilms on customer taps (left) and light microscope image of biofilm stained with crystal violet solution at 1,000× magnification (right).

Figure 1

Biofilms on customer taps (left) and light microscope image of biofilm stained with crystal violet solution at 1,000× magnification (right).

Close modal

Fungal sequences were identified for samples S1 and S2, which yielded 36,342 and 26,873 sequences per sample, respectively, before denoising. Sample S3 failed to amplify during ITS sequencing. Both samples were dominated Order Chaetothryiales, and specifically by Exophiala spp. (Table 1). In sample S1, the putative species E. cancerae (85% of the reads) and Knufia epidermidis (11% of the reads) were dominant, whereas in S2, the putative species E. lecanii-corni was dominant (98% of the reads). E. lecanii-corni dominated the biofilm samples characterized by Heinrichs et al. (2013a). We view the identification of E. cancerae with caution because species-level identifications from next-generation DNA sequencing are tentative owing in part to sequencing and database shortcomings (Nilsson et al. 2006; Yamamoto et al. 2014). Moreover, E. cancerae is primarily reported from tropical locations. In South America, it is a causative agent of Lethargic Crab Disease (Orélis-Ribeiro et al. 2011) and we are aware of one report of gastrointestinal infection by E. cancerae from Hong Kong (Woo et al. 2013).

Table 1

Read counts of putative fungal species identified through ITS sequencing

SpeciesS1S2
Exophiala cancerae 20,196 
Exophiala lecanii-corni 834 14,447 
Knufia epidermidis 2,574 48 
Fusarium acutatum 16 87 
Exophiala oligosperma 95 
Dactylella zhongdianensis 84 
Cyphellophora europaea 65 
Ochroconis mirabilis 30 
Cyphellophora reptans 11 
Cyphellophora guyanensis 
Metacordyceps chlamydosporia 
Cystobasidium slooffiae 
Schizothecium inaequale 
Naganishia albida 
Rhinocladiella similis 
Species unknown 
SpeciesS1S2
Exophiala cancerae 20,196 
Exophiala lecanii-corni 834 14,447 
Knufia epidermidis 2,574 48 
Fusarium acutatum 16 87 
Exophiala oligosperma 95 
Dactylella zhongdianensis 84 
Cyphellophora europaea 65 
Ochroconis mirabilis 30 
Cyphellophora reptans 11 
Cyphellophora guyanensis 
Metacordyceps chlamydosporia 
Cystobasidium slooffiae 
Schizothecium inaequale 
Naganishia albida 
Rhinocladiella similis 
Species unknown 

Several additional melanistic, black yeast-like fungi from orders Chaetothryiales and Venturiales that are commonly found in bathrooms (Lian & de Hoog 2010; Wang et al. 2018), and that are capable of human opportunism, were detected. First, E. oligosperma (0.6% of reads in S2) opportunistically infects cutaneous, subcutaneous, and various deep tissues including the lungs, heart, gastrointestinal tract, spleen, lymphatic system, blood, and brain (Tintelnot et al. 1991; de Hoog et al. 2003; al-Obaid et al. 2006; Zeng et al. 2007; Woo et al. 2013). Several additional species that opportunistically primarily infect human skin and nails were also detected, including Knufia epidermidis (11% of reads in S1; Li et al. 2008; Saunte et al. 2012; Martin-Gomez et al. 2019), Cyphellophora europaea (4% of reads in S2; de Hoog et al. 2000; Lian & de Hoog 2010; Saunte et al. 2012; Feng et al. 2014), Rhinocladiella similis (<0.001% of reads in S2; de Hoog et al. 2003; Lian & De Hoog 2010; Richarz et al. 2018), and Ochroconis mirabilis (0.1% of reads in S1; Giraldo et al. 2014; Shi et al. 2016; Yew et al. 2016).

Bacterial sequencing was successful for all samples with 25,019–44,339 sequences per sample before denoising. Across all samples, 114 amplicon sequence variants (ASVs) were identified. Only 19 ASVs (17%) were detected in all three samples and 31 additional ASVs (27%) were present in two samples. Measures of alpha diversity after rarefaction were computed, including Shannon Entropy (Shannon 1948) and Chao 1 Index (Chao 1984) (Figure 2). Shannon diversity values were comparable to previous analyses of biofilms within water distribution systems (Gomez-Smith et al. 2015; Ren et al. 2024), whereas Chao I values were lower (Cruz et al. 2020).
Figure 2

Summary of bacterial communities in biofilm samples, including (a) Shannon Entropy, (b) Chao 1 index, (c) the top five most abundant taxa at phylum, class, family, and genus ranks, and (d) relative abundance of bacterial families.

Figure 2

Summary of bacterial communities in biofilm samples, including (a) Shannon Entropy, (b) Chao 1 index, (c) the top five most abundant taxa at phylum, class, family, and genus ranks, and (d) relative abundance of bacterial families.

Close modal

Four phyla – Proteobacteria, Bacteroidetes, Acidobacteria, and Actinobacteria – were present in all samples, accounting for 70–97% of reads (Figure 2). The bacterial composition of samples was similar at the phylum and class levels, with more differentiation at the family and genus levels (Figure 2) as reported previously (Li et al. 2016). Across different geographic regions and distribution system designs, predominant phyla in distribution system biofilms are Proteobacteria, Actinobacteria, Acidobacteria, Cyanobacteria, Bacteroidota, Nitrospira, Firmicutes, and Planctomycetota (Proctor & Hammes 2015; Li et al. 2016; Stanish et al. 2016; Cruz et al. 2020; Ren et al. 2024). The most abundant classes identified in our samples – Alphaproteobacteria, Betaproteobacteria, Cytophagia, and Gammaproteobacteria – were also detected in a German distribution system, where biofilm samples also displayed high community variance (Henne et al. 2012). The possible opportunistic pathogens Legionella spp., Pseudomonas spp., Mycobacterium spp., and Acinetobacter spp. were all detected in at least one sample, as in previous studies (Douterelo et al. 2014; Li et al. 2016; Waak et al. 2018). Certain members of these genera are capable of growth within distribution system biofilms, resulting in illness (Falkinham 2011; Waak et al. 2018; Carvalheira et al. 2021). Moreover, emerging evidence suggests microbial communities in drinking water influence human health through the gut microbiome (Bowyer et al. 2020; Lugli et al. 2022; Vanhaecke et al. 2022). Microbiome impacts from ingesting the bacterial and fungal communities we describe are unknown.

Beyond health implications, the identification of ecological processes promoting growth of biofilms dominated by Exophiala and other black yeast-like fungi may assist control efforts. E. lecanii-corni is resistant to temperature, osmotic, and oxidative stresses (Romsdahl et al. 2021), is oligotrophic, exhibits extreme shear strength (Heinrichs et al.2013b), and thrives in environments laden with toxic hydrocarbons (Woertz et al. 2001; Pirnie-Fisker &Woertz 2007). For these reasons, Heinrichs et al. (2013b) proposed that volatile organic compounds (VOCs) from cosmetics or cleaning may contribute to biofilm contamination. Other considerations for future studies include depletion of chlorine residual, microbial regrowth and its promoting conditions, and water age. In the distribution system sampled, contamination events were somewhat clustered, especially in areas where construction activity necessitated reduction of flow for extended periods. Future studies of these biofilms could sample distribution systems more extensively and seek to understand the source and conditions that encourage growth.

We document the occurrence of Exophiala-dominant biofilm on distribution system taps following Heinrichs et al. (2013a, b), this time in the Midwestern USA. Additionally, we report on the bacterial composition of these biofilms. Biofilms samples contained potentially pathogenic bacteria and fungi including Acinetobacter spp., Legionella spp., Mycobacterium spp., Pseudomonas spp., Exophiala spp., and Knufia spp. Health implications of these biofilms are uncertain. Future studies might include more extensive sampling of drinking water distribution systems for fungal contamination and may seek to identify the environmental conditions that support growth to inform future control efforts.

This study was partially funded by the National Science Foundation (Grant 1942501). We thank the water distribution company and the homeowners that contributed samples. Alauren Lane created our graphical abstract. We also thank Mark Weir for consulting and Nick Nastasi for assistance with microscopy.

Raw sequences are available from GenBank (BioProject: PRJNA1072827).

The authors declare there is no conflict.

Adams
R. I.
,
Miletto
M.
,
Taylor
J. W.
&
Bruns
T. D.
(
2013
)
The diversity and distribution of fungi on residential surfaces
,
PLoS One
,
8
,
e78866
.
https://doi.org/10.1371/journal.pone.0078866
.
Afonso
T. B.
,
Simões
L. C.
&
Lima
N.
(
2021
)
Occurrence of filamentous fungi in drinking water: their role on fungal-bacterial biofilm formation
,
Research in Microbiology
,
172
,
103791
.
https://doi.org/10.1016/j.resmic.2020.11.002
.
Al-Obaid
I.
,
Ahmad
S.
,
Khan
Z. U.
,
Dinesh
B.
&
Hejab
H. M.
(
2006
)
Catheter-associated fungemia due to Exophiala oligosperma in a leukemic child and review of fungemia cases caused by Exophiala species
,
European Journal of Clinical Microbiology & Infectious Diseases
,
25
,
729
732
.
https://doi.org/10.1007/s10096-006-0205-0
.
Babič
M. N.
,
Zalar
P.
,
Ženko
B.
,
Džeroski
S.
&
Gunde-Cimerman
N.
(
2016
)
Yeasts and yeast-like fungi in tap water and groundwater, and their transmission to household appliances
,
Fungal Ecology
,
20
,
30
39
.
https://doi.org/10.1016/j.funeco.2015.10.001
.
Babič
M.
,
Gunde-Cimerman
N.
,
Vargha
M.
,
Tischner
Z.
,
Magyar
D.
,
Veríssimo
C.
,
Sabino
R.
,
Viegas
C.
,
Meyer
W.
&
Brandão
J.
(
2017
)
Fungal contaminants in drinking water regulation? A tale of ecology, exposure, purification and clinical relevance
,
International Journal of Environmental Research and Public Health
,
14
,
636
.
https://doi.org/10.3390/ijerph14060636
.
Biedunkiewicz
A.
&
Schulz
Ł
. (
2012
)
Fungi of the genus Exophiala in tap water – potential etiological factors of phaeohyphomycoses
,
Mikologia Lekarska
,
19
,
23–36
.
Bowyer
R. C. E.
,
Schillereff
D. N.
,
Jackson
M. A.
,
Le Roy
C.
,
Wells
P. M.
,
Spector
T. D.
&
Steves
C. J.
(
2020
)
Associations between UK tap water and gut microbiota composition suggest the gut microbiome as a potential mediator of health differences linked to water quality
,
Science of The Total Environment
,
739
,
139697
.
https://doi.org/10.1016/j.scitotenv.2020.139697
.
Carvalheira
A.
,
Silva
J.
&
Teixeira
P.
(
2021
)
Acinetobacter spp. in food and drinking water – a review
,
Food Microbiology
,
95
,
103675
.
https://doi.org/10.1016/j.fm.2020.103675
.
Centers for Disease Control and Prevention (CDC)
(
2021
)
About Legionnaires Disease and Pontiac Fever [WWW Document]. Available at: https://www.cdc.gov/legionella/about/index.html (Accessed: 29 February 2024)
.
Chao
A.
(
1984
)
Nonparametric estimation of the number of classes in a population
,
Scandinavian Journal of Statistics
,
11
,
265
270
.
Cruz
M. C.
,
Woo
Y.
,
Flemming
H.-C.
&
Wuertz
S.
(
2020
)
Nitrifying niche differentiation in biofilms from full-scale chloraminated drinking water distribution system
,
Water Research
,
176
,
115738
.
https://doi.org/10.1016/j.watres.2020.115738
.
De Hoog
G. S.
,
Mayser
P.
,
Haase
G.
,
Horré
R.
&
Horrevorts
A. M.
(
2000
)
A new species, Phialophora europaea, causing superficial infections in humans [Eine neue Art, Phialophora europaea, als Erreger oberflächlicher Infektionen beim Menschen]
,
Mycoses
,
43
,
409
416
.
https://doi.org/10.1111/j.1439-0507.2000.00601.x
.
De Hoog
G. S.
,
Vicente
V.
,
Caligiorne
R. B.
,
Kantarcioglu
S.
,
Tintelnot
K.
,
Gerrits Van Den Ende
A. H. G.
&
Haase
G.
(
2003
)
Species diversity and polymorphism in the Exophiala spinifera clade containing opportunistic black yeast-like fungi
,
Journal of Clinical Microbiology
,
41
,
4767
4778
.
https://doi.org/10.1128/JCM.41.10.4767-4778.2003
.
Falkinham
J. O.
(
2011
)
Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease
,
Emerging Infectious Diseases
,
17
,
419
424
.
https://doi.org/10.3201/eid1703.101510
.
Feng
P.
,
Lu
Q.
,
Najafzadeh
M. J.
,
Gerrits Van Den Ende
A. H. G.
,
Sun
J.
,
Li
R.
,
Xi
L.
,
Vicente
V. A.
,
Lai
W.
,
Lu
C.
&
De Hoog
G. S.
(
2014
)
Cyphellophora and its relatives in Phialophora: biodiversity and possible role in human infection
,
Fungal Diversity
,
65
,
17
45
.
https://doi.org/10.1007/s13225-012-0194-5
.
Futatsuya
T.
,
Mura
T.
,
Anzawa
K.
,
Mochizuki
T.
,
Shimizu
A.
&
Iinuma
Y.
(
2023
)
MALDI-TOF MS identification of Exophiala species isolated in Japan: library enrichment and faster sample preparation
,
The Journal of Dermatology
,
50
,
1313
1320
.
https://doi.org/10.1111/1346-8138.16878
.
Giraldo
A.
,
Sutton
D. A.
,
Samerpitak
K.
,
De Hoog
G. S.
,
Wiederhold
N. P.
,
Guarro
J.
&
Gené
J.
(
2014
)
Occurrence of Ochroconis and Verruconis species in clinical specimens from the United States
,
Journal of Clinical Microbiology
,
52
,
4189
4201
.
https://doi.org/10.1128/JCM.02027-14
.
Gomez-Smith
C. K.
,
LaPara
T. M.
&
Hozalski
R. M.
(
2015
)
Sulfate reducing bacteria and mycobacteria dominate the biofilm communities in a chloraminated drinking water distribution system
,
Environmental Science & Technology
,
49
,
8432
8440
.
https://doi.org/10.1021/acs.est.5b00555
.
Hageskal
G.
,
Lima
N.
&
Skaar
I.
(
2009
)
The study of fungi in drinking water
,
Mycological Research
,
113
,
165
172
.
https://doi.org/10.1016/j.mycres.2008.10.002
.
Hamada, N. & Abe, N. (2010) Comparison of fungi found in bathrooms and sinks, Biocontrol Science, 15, 51–56. https://doi.org/10.4265/bio.15.51.
Hatta
J.
,
Anzawa
K.
,
Kubota
K.
,
Ohtani
T.
&
Mochizuki
T.
(
2021
)
A case of recalcitrant phaeohyphomycosis of the face caused by Exophiala lecanii-corni
,
Medical Mycology Journal
,
62
,
35
39
.
https://doi.org/10.3314/mmj.20-00018
.
Heinrichs
G.
,
Hübner
I.
,
Schmidt
C. K.
,
De Hoog
G. S.
&
Haase
G.
(
2013a
)
Analysis of black fungal biofilms occurring at domestic water taps (I): compositional analysis using tag-encoded FLX amplicon pyrosequencing
,
Mycopathologia
,
175
,
387
397
.
https://doi.org/10.1007/s11046-013-9618-3
.
Heinrichs
G.
,
Hübner
I.
,
Schmidt
C. K.
,
De Hoog
G. S.
&
Haase
G.
(
2013b
)
Analysis of black fungal biofilms occurring at domestic water taps (II): potential routes of entry
,
Mycopathologia
,
175
,
399
412
.
https://doi.org/10.1007/s11046-013-9619-2
.
Henne
K.
,
Kahlisch
L.
,
Brettar
I.
&
Höfle
M. G.
(
2012
)
Analysis of structure and composition of bacterial core communities in mature drinking water biofilms and bulk water of a citywide network in Germany
,
Applied and Environmental Microbiology
,
78
,
3530
3538
.
https://doi.org/10.1128/AEM.06373-11
.
Isola
D.
,
Selbmann
L.
,
De Hoog
G. S.
,
Fenice
M.
,
Onofri
S.
,
Prenafeta-Boldú
F. X.
&
Zucconi
L.
(
2013
)
Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons
,
Mycopathologia
,
175
,
369
379
.
https://doi.org/10.1007/s11046-013-9635-2
.
Kulesza
K.
,
Biedunkiewicz
A.
,
Nowacka
K.
,
Dynowska
M.
,
Urbaniak
M.
&
Stępień
Ł
. (
2021
)
Dishwashers as an extreme environment of potentially pathogenic yeast species
,
Pathogens
,
10
,
446
.
https://doi.org/10.3390/pathogens10040446
.
Lee
K. C.
,
Kim
M. J.
,
Chae
S. Y.
,
Lee
H. S.
,
Jang
Y. H.
,
Lee
S.-J.
,
Kim
D. W.
&
Lee
W. J.
(
2016
)
A case of phaeohyphomycosis caused by Exophiala lecanii-corni
,
Annals of Dermatology
,
28
,
385
.
https://doi.org/10.5021/ad.2016.28.3.385
.
Li
D. M.
,
De Hoog
G. S.
,
Saunte
D. M. L.
,
Van Den Ende
A. H. G. G.
&
Chen
X. R.
(
2008
)
Coniosporium epidermidis sp. nov., a new species from human skin
,
Studies in Mycology
,
61
,
131
136
.
https://doi.org/10.3114/sim.2008.61.13
.
Li
W.
,
Wang
F.
,
Zhang
J.
,
Qiao
Y.
,
Xu
C.
,
Liu
Y.
,
Qian
L.
,
Li
W.
&
Dong
B.
(
2016
)
Community shift of biofilms developed in a full-scale drinking water distribution system switching from different water sources
,
Science of The Total Environment
,
544
,
499
506
.
https://doi.org/10.1016/j.scitotenv.2015.11.121
.
Lian
X.
&
De Hoog
G. S.
(
2010
)
Indoor wet cells harbour melanized agents of cutaneous infection
,
Medical Mycology
,
48
,
622
628
.
https://doi.org/10.3109/13693780903405774
.
Lugli
G. A.
,
Longhi
G.
,
Mancabelli
L.
,
Alessandri
G.
,
Tarracchini
C.
,
Fontana
F.
,
Turroni
F.
,
Milani
C.
,
Van Sinderen
D.
&
Ventura
M.
(
2022
)
Tap water as a natural vehicle for microorganisms shaping the human gut microbiome
,
Environmental Microbiology
,
24
,
3912
3923
.
https://doi.org/10.1111/1462-2920.15988
.
Martin-Gomez
M. T.
,
Valenzuela-Lopez
N.
&
Cano-Lira
J. F.
(
2019
)
Knufia epidermidis: a rare finding in a paediatric dermatological sample
,
Clinical Microbiology and Infection
,
25
,
65
66
.
https://doi.org/10.1016/j.cmi.2018.08.006
.
Matos
T.
,
De Hoog
G. S.
,
De Boer
A. G.
,
De Crom
I.
&
Haase
G.
(
2002
)
High prevalence of the neurotrope Exophiala dermatitidis and related oligotrophic black yeasts in sauna facilities
,
Mycoses
,
45
,
373
377
.
https://doi.org/10.1046/j.1439-0507.2002.00779.x
.
Mesquita-Rocha
S.
,
Godoy-Martinez
P. C.
,
Gonçalves
S. S.
,
Urrutia
M. D.
,
Carlesse
F.
,
Seber
A.
,
Silva
M. A. A.
,
Petrilli
A. S.
&
Colombo
A. L.
(
2013
)
The water supply system as a potential source of fungal infection in paediatric haematopoietic stem cell units
,
BMC Infectious Diseases
,
13
,
289
.
https://doi.org/10.1186/1471-2334-13-289
.
Mhlongo
N. T.
,
Tekere
M.
&
Sibanda
T.
(
2019
)
Prevalence and public health implications of mycotoxigenic fungi in treated drinking water systems
,
Journal of Water and Health
,
17
,
517
531
.
https://doi.org/10.2166/wh.2019.122
.
Mhlongo
T. N.
,
Ogola
H. J. O.
,
Selvarajan
R.
,
Sibanda
T.
,
Kamika
I.
&
Tekere
M.
(
2020
)
Occurrence and diversity of waterborne fungi and associated mycotoxins in treated drinking water distribution system in South Africa: implications on water quality and public health
,
Environmental Monitoring and Assessment
,
192
,
519
.
https://doi.org/10.1007/s10661-020-08477-x
.
Miyakubo
T.
,
Todokoro
D.
,
Satake
Y.
,
Makimura
K.
,
Miyakubo
S.
&
Akiyama
H.
(
2020
)
Exophiala lecanii-corni keratitis presenting as a serpiginous pigmented superficial lesion: a case report
,
Medicine
,
99
,
e22121
.
https://doi.org/10.1097/MD.0000000000022121
.
Moat
J.
,
Rizoulis
A.
,
Fox
G.
&
Upton
M.
(
2016
)
Domestic shower hose biofilms contain fungal species capable of causing opportunistic infection
,
Journal of Water and Health
,
14
,
727
737
.
https://doi.org/10.2166/wh.2016.297
.
Naumova
E. N.
,
Liss
A.
,
Jagai
J. S.
,
Behlau
I.
&
Griffiths
J. K.
(
2016
)
Hospitalizations due to selected infections caused by opportunistic premise plumbing pathogens (OPPP) and reported drug resistance in the United States older adult population in 1991–2006
,
Journal of Public Health Policy
,
37
,
500
513
.
https://doi.org/10.1057/s41271-016-0038-8
.
Nilsson
R. H.
,
Ryberg
M.
,
Kristiansson
E.
,
Abarenkov
K.
,
Larsson
K.-H.
&
Kõljalg
U.
(
2006
)
Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective
,
PLoS ONE
,
1
,
e59
.
https://doi.org/10.1371/journal.pone.0000059
.
Nucci
M.
,
Akiti
T.
,
Barreiros
G.
,
Silveira
F.
,
Revankar
S. G.
,
Wickes
B. L.
,
Sutton
D. A.
&
Patterson
T. F.
(
2002
)
Nosocomial outbreak of Exophiala jeanselmei fungemia associated with contamination of hospital water
,
Clinical Infectious Diseases
,
34
,
1475
1480
.
https://doi.org/10.1086/340344
.
Orélis-Ribeiro
R.
,
Boeger
W. A.
,
Vicente
V. A.
,
Chammas
M.
&
Ostrensky
A.
(
2011
)
Fulfilling Koch's postulates confirms the mycotic origin of Lethargic Crab Disease
,
Antonie van Leeuwenhoek
,
99
,
601
608
.
https://doi.org/10.1007/s10482-010-9531-4
.
Pirnie-Fisker, E. F. & Woertz, J. R. (2007) Degradation of ethanol plant by-products by Exophiala lecanii-corni and Saccharomyces cerevisiae in batch studies, Applied Microbiology and Biotechnology, 74, 902–910. https://doi.org/10.1007/s00253-006-0726-6.
Proctor
C. R.
&
Hammes
F.
(
2015
)
Drinking water microbiology – from measurement to management
,
Current Opinion in Biotechnology
,
33
,
87
94
.
https://doi.org/10.1016/j.copbio.2014.12.014
.
Richarz
N. A.
,
Jaka
A.
,
Fernández-Rivas
G.
,
Bassas
J.
,
Bielsa
I.
&
Ferrándiz
C.
(
2018
)
First case of chronic cutaneous chromoblastomycosis by Rhinocladiella similis aquired in Europe
,
Clinical and Experimental Dermatology
,
43
,
925
927
.
https://doi.org/10.1111/ced.13659
.
Rochelle
P.
&
Clancey
J.
(
2006
)
The evolution of microbiology in the drinking water industry
,
Journal AWWA
,
98
,
163
191
.
https://doi.org/10.1002/j.1551-8833.2006.tb07614.x
.
Romsdahl
J.
,
Schultzhaus
Z.
,
Cuomo
C. A.
,
Dong
H.
,
Abeyratne-Perera
H.
,
Hervey
W. J.
&
Wang
Z.
(
2021
)
Phenotypic characterization and comparative genomics of the melanin-producing yeast Exophiala lecanii-corni reveals a distinct stress tolerance profile and reduced ribosomal genetic content
,
Journal of Fungi
,
7
,
1078
.
https://doi.org/10.3390/jof7121078
.
Saunte
D. M.
,
Tarazooie
B.
,
Arendrup
M. C.
&
de Hoog
G. S.
(
2012
)
Black yeast-like fungi in skin and nail: it probably matters
,
Mycoses
,
55
,
161
167
.
https://doi.org/10.1111/j.1439-0507.2011.02055.x
.
Sav
H.
,
Ozakkas
F.
,
Altınbas
R.
,
Kiraz
N.
,
Tümgör
A.
,
Gümral
R.
,
Döğen
A.
,
Ilkit
M.
&
De Hoog
G. S.
(
2016
)
Virulence markers of opportunistic black yeast in Exophiala
,
Mycoses
,
59
,
343
350
.
https://doi.org/10.1111/myc.12478
.
Shannon
C. E.
(
1948
)
A mathematical theory of communication
,
The Bell System Technical Journal
,
27
,
378
423
.
Shi
D.
,
Lu
G.
,
Mei
H.
,
De Hoog
G. S.
,
Samerpitak
K.
,
Deng
S.
,
Shen
Y.
&
Liu
W.
(
2016
)
Subcutaneous infection by Ochroconis mirabilis in an immunocompetent patient
,
Medical Mycology Case Reports
,
11
,
44
47
.
https://doi.org/10.1016/j.mmcr.2016.04.007
.
Singh
S.
,
Rudramurthy
S. M.
,
Padhye
A. A.
,
Hemashetter
B. M.
,
Iyer
R.
,
Hallur
V.
,
Sharma
A.
,
Agnihotri
S.
,
Gupta
S.
,
Ghosh
A.
&
Kaur
H.
(
2021
)
Clinical spectrum, molecular characterization, antifungal susceptibility testing of Exophiala spp. from India and description of a novel Exophiala species, E. arunalokei sp. nov
,
Frontiers in Cellular and Infection Microbiology
,
11
,
686120
.
https://doi.org/10.3389/fcimb.2021.686120
.
Stanish
L. F.
,
Hull
N. M.
,
Robertson
C. E.
,
Harris
J. K.
,
Stevens
M. J.
,
Spear
J. R.
&
Pace
N. R.
(
2016
)
Factors influencing bacterial diversity and community composition in municipal drinking waters in the Ohio River Basin, USA
,
PLoS One
,
11
,
e0157966
.
https://doi.org/10.1371/journal.pone.0157966
.
Tintelnot
K.
,
de Hoog
G. S.
,
Thomas
E.
,
Steudel
W. I.
,
Huebner
K.
&
Seeliger
H. P. R.
(
1991
)
Cerebral phaeohyphomycosis caused by an Exophiala species
,
Mycoses
,
34
,
239
244
.
https://doi.org/10.1111/j.1439-0507.1991.tb00651.x
.
Usuda
D.
,
Higashikawa
T.
,
Hotchi
Y.
,
Usami
K.
,
Shimozawa
S.
,
Tokunaga
S.
,
Osugi
I.
,
Katou
R.
,
Ito
S.
,
Yoshizawa
T.
,
Asako
S.
,
Mishima
K.
,
Kondo
A.
,
Mizuno
K.
,
Takami
H.
,
Komatsu
T.
,
Oba
J.
,
Nomura
T.
&
Sugita
M.
(
2021
)
Exophiala dermatitidis
,
WJCC
,
9
,
7963
7972
.
https://doi.org/10.12998/wjcc.v9.i27.7963
.
Vanhaecke
T.
,
Bretin
O.
,
Poirel
M.
&
Tap
J.
(
2022
)
Drinking water source and intake are associated with distinct gut microbiota signatures in US and UK populations
,
The Journal of Nutrition
,
152
,
171
182
.
https://doi.org/10.1093/jn/nxab312
.
Waak
M. B.
,
LaPara
T. M.
,
Hallé
C.
&
Hozalski
R. M.
(
2018
)
Occurrence of Legionella spp. in water-main biofilms from two drinking water distribution systems
,
Environmental Science & Technology
,
52
,
7630
7639
.
https://doi.org/10.1021/acs.est.8b01170
.
Wang
X.
,
Cai
W.
,
Van Den Ende
A. H. G. G.
,
Zhang
J.
,
Xie
T.
,
Xi
L.
,
Li
X.
,
Sun
J.
&
De Hoog
S.
(
2018
)
Indoor wet cells as a habitat for melanized fungi, opportunistic pathogens on humans and other vertebrates
,
Scientific Reports
,
8
,
7685
.
https://doi.org/10.1038/s41598-018-26071-7
.
Woertz
J. R.
,
Kinney
K. A.
,
McIntosh
N. D. P.
&
Szaniszlo
P. J.
(
2001
)
Removal of toluene in a vapor-phase bioreactor containing a strain of the dimorphic black yeast Exophiala lecanii-corni
,
Biotech & Bioengineering
,
75
,
550
558
.
https://doi.org/10.1002/bit.10066
.
Woo
P. C. Y.
,
Ngan
A. H. Y.
,
Tsang
C. C. C.
,
Ling
I. W. H.
,
Chan
J. F. W.
,
Leung
S.-Y.
,
Yuen
K.-Y.
&
Lau
S. K. P.
(
2013
)
Clinical spectrum of Exophiala infections and a novel Exophiala species, Exophiala hongkongensis
,
Journal of Clinical Microbiology
,
51
,
260
267
.
https://doi.org/10.1128/JCM.02336-12
.
Yamamoto
N.
,
Dannemiller
K. C.
,
Bibby
K.
&
Peccia
J.
(
2014
)
Identification accuracy and diversity reproducibility associated with internal transcribed spacer-based fungal taxonomic library preparation: accuracy of fungal ITS sequencing
,
Environmental Microbiology
,
16
,
2764
2776
.
https://doi.org/10.1111/1462-2920.12338
.
Yew
S. M.
,
Chan
C. L.
,
Kuan
C. S.
,
Toh
Y. F.
,
Ngeow
Y. F.
,
Na
S. L.
,
Lee
K. W.
,
Hoh
C.-C.
,
Yee
W.-Y.
&
Ng
K. P.
(
2016
)
The genome of newly classified Ochroconis mirabilis: insights into fungal adaptation to different living conditions
,
BMC Genomics
,
17
,
91
.
https://doi.org/10.1186/s12864-016-2409-8
.
Zeng
J. S.
,
Sutton
D. A.
,
Fothergill
A. W.
,
Rinaldi
M. G.
,
Harrak
M. J.
&
De Hoog
G. S.
(
2007
)
Spectrum of clinically relevant Exophiala species in the United States
,
Journal of Clinical Microbiology
,
45
,
3713
3720
.
https://doi.org/10.1128/JCM.02012-06
.
Zupančič
J.
,
Novak Babič
M.
,
Zalar
P.
&
Gunde-Cimerman
N.
(
2016
)
The black yeast Exophiala dermatitidis and other selected opportunistic human fungal pathogens spread from dishwashers to kitchens
,
PLoS ONE
,
11
,
e0148166
.
https://doi.org/10.1371/journal.pone.0148166
.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY-ND 4.0), which permits copying and redistribution with no derivatives, provided the original work is properly cited (http://creativecommons.org/licenses/by-nd/4.0/).

Supplementary data