Perfluoroalkyl and polyfluoroalkyl substances (PFASs) such as perfluorooctanoic acid (PFOA), and perfluorooctane sulfonate (PFOS) are found in aquatic environments worldwide. The presence of these compounds in the water environment is still unclear, even though direct or indirect discharges of these compounds from industries to the aquatic environment are the potential routes. In this paper, PFOA and PFOS contamination of aquatic ecosystems, and their removal efficiency by different water treatment processes are reviewed. Typically, PFOS and PFOA contamination levels are higher in industrialized countries than in non-industrial countries. Coagulation, sand filtration, sedimentation, oxidation and disinfection are mostly ineffective in removing PFASs from drinking and wastewater. Granular activated carbon demonstrated the removal of PFASs and the extent of removal depends on operational conditions, such as temperature, operational life period and empty bed contact time. High-pressure membrane systems are the most suitable processes for removing the PFOS and PFOA in water sources. In the high-pressure membrane, removal of those chemicals occurs through rejection via electrostatic interaction. The extent of the reduction efficiency depends on the solution chemistry of the sample; lower pH and higher calcium ion addition in the water sample enhance the reduction efficiency in the high-pressure membrane application.

INTRODUCTION

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) such as perfluorooctanoic acid (PFOA), and perfluorooctane sulfonate (PFOS) have been recognized as emerging environmental pollutants (Giesy & Kannan 2001) because of their ubiquitous occurrence in aquatic systems such as municipal wastewater, surface water and tap water. PFASs can also be found in snow and rain water (Liu et al. 2009; Dreyer et al. 2010). In PFASs, the hydrogen atoms attached to the alkyl chain carbons have been replaced by fluorine (Schuetze et al. 2010). The carbon–fluorine bonds are very strong and have thermal and chemical stability. This stability makes the fluorinated compounds desirable for commercial use and also makes them persistent environmental contaminants due to their resistance to natural breakdown processes (Key et al. 1997); in this context, PFOS was listed as a persistent organic pollutant (POP) under the Stockholm Convention on POPs (Wang et al. 2009).

PFAS compounds have been used for many industrial purposes and consumer-related products such as firefighting forms, mining, photolithography, electronics chemicals, hydraulic fluid additives, floor polishes, photographic film, denture cleaners, soap, shampoos, cosmetics, coating of cooking pans, oil repellents for leather, paper, and textiles. Paul et al. (2009) suggest that 45,000 tons of PFOS was released into the global environment between 1970 and 2012. During that time, the 3M Company was the primary global producer of PFOS and PFOS-related substances, and although 3M phased out production of these chemicals in 2002, contamination from PFOS is expected to continue because of its own persistence and that of its transformation products.

The relative importance of the various pathways is not well understood; however, contamination of aquatic systems by industrial products like PFASs can only be through a limited number of mechanisms, e.g. through atmospheric transport and deposition, run-off from industrial sites, breakdown and run-off from domestic uses, and disposal of PFASs to sewer. Moreover, these chemicals are introduced into the aquatic environment as a result of degradation in the environment of precursor compounds or reaction impurities (Boulanger et al. 2005). PFASs have already been found to cause a variety of toxicological effects in humans (Suja et al. 2009). The concentration of PFOS and PFOA in cord blood and maternal pregnancy serum were negatively associated with human birth weight, ponderal index, and head circumference of new born babies (Apelberg et al. 2007). There have been several reviews on the toxicity and bioaccumulation of PFASs (Lau et al. 2004, 2007; Suja et al. 2009), so this review focuses on the contamination of the aquatic environment by PFASs and their removal by water treatment processes.

OCCURRENCE OF PFASs IN THE AQUATIC ENVIRONMENT

Several studies have reported on PFASs found in the water environment, which is a crucial environmental concern. PFOA and PFOS were detected in tap water in Georgia, where several secondary manufacturers are located, which produce non-woven, household additives, apparel, carpet, and household textiles (3M 2001). Lai et al. (2009) reported higher PFOS concentrations in tap water in the Kansai region than in the other 47 regions of Japan. Mak et al. (2009) studied tap water from different cities of China and they found that PFAS contamination decreased in the following order Shanghai > Wuhan > Nanjing > Shenzhen > Xiamen > Shenyang > Beijing. Atkinson et al. (2008) monitored the presence of PFOA and PFOS in tap water from different sites in England. They found that the highest levels of PFOS (162 ng/L) were observed south of Cambridge near an airstrip, indicating that airstrips are a potential source of perfluorinated chemicals (PFCs) to the environment. The PFOS and PFOA concentrations in the water environment throughout the world are shown in Table 1.

Table 1

Contamination by PFOS and PFOA in the water environment

  No. of PFOA (ng/L) PFOS (ng/L)   
Water source Country, Region samples Range Mean Range Mean Reference 
Tap water China, Shenzhen nr nr nr nr–11 nr Mak et al. (2009)  
China, Shanghai nr 78 nr nr–7.6 nr Mak et al. (2009)  
China, Shenyang nr 2.6 nr nr–0.39 nr Mak et al. (2009)  
Japan, Morioka nr nr nr 0.1–0.5 nr Harada et al. (2003)  
Japan, Miyako nr nr nr nr 0.1 Harada et al. (2003)  
Japan, Kyoto nr nr nr 3.0–4.0 nr Harada et al. (2003)  
Japan, Setagaya nr nr nr 2.4–43.7 nr Harada et al. (2003)  
Japan, Kansai 15 4.9–42.2 15.3 0.3–12.7 3.8 Saito et al. (2004)  
Japan, Kanto 19 <5–25 <5 <5–37 6.4 Mitsuya et al. (2007)  
Japan, Tohoku 15 0.01–1.0 0.3 0.1–0.5 0.2 Saito et al. (2004)  
Italy, Northern 1.0–2.9 2.4 6.2–9.7 8.1 Loos et al. (2007)  
Spain, Catalonia nr 0.32–6.28 nr 0.39–0.87 nr Ericson et al. (2008)  
Surface water Austria, river water nr <1.1–19 nr <4.0–35 nr Clara et al. (2009)  
Australia, Sydney Harbour and surroundings 20 4.2–6.4 5.7 7.5–21 14 Thompson et al. (2011b)  
Brazil, South eastern nr 0.35–2.82 nr 0.58–6.70 nr Quinete et al. (2009)  
Brazil, Guanaba Bay nr 0.77–3.25 nr 0.40–1.32 nr Quinete et al. (2009)  
Canada, Lake Ontario nr 8.7 nr 13 Myers et al. (2012)  
China, Wuhan 69 <LOD–256 81 <LOD–88.9 51.8 Wang et al. (2013)  
China, Wuhan nr 2.8–5.6 nr 2.3–5.3 nr Jin et al. (2006)  
China, Dongguan nr 0.85–4.4 nr 0.90–99 nr So et al. (2007)  
China, Chongqing nr nd–35 nr nd–0.35 nr So et al. (2007)  
China, Yichang nr 4.1–4.9 nr 0.29–0.61 nr So et al. (2007)  
China, Nanjing nr 2.1–2.4 nr 0.33–0.38 nr So et al. (2007)  
China, Shanghai nr 22–260 nr 0.62–14 nr So et al. (2007)  
China, Guangzhou nr 0.85–13 nr 0.9–99 nr So et al. (2007)  
China, Pearl and Yangtze rivers nr 0.85–260 nr <0.01–99 nr So et al. (2007)  
China, Hun river nr <0.1–1.6 nr 0.2–44.6 nr Jin et al. (2009)  
China, Yangtze river nr 0.2–297.5 nr 0.2–25.5 nr Jin et al. (2009)  
China, Liao river nd–27.9 10.9 nd–6.6 0.33 Yang et al. (2011)  
China, Taihu lake 22 10.6–36.7 19.5 3.6–394 26.5 Yang et al. (2011)  
China, Pearl river 13 0.71–8.7 3.7 0.52–11 3.3 Zhang et al. (2013)  
China, Haihe river 4.4–42 15 2.0–7.6 3.7 Li et al. (2011)  
China, Jiangsu, Huai river basin nr nr 18 nr 4.7 Yu et al. (2013)  
China, Jiangsu, Taihu lake nr nr 56 nr 15 Yu et al. (2013)  
China, Bohai coastal region 17 0.96–4,534.41 nr nr nr Wang et al. (2014)  
China, Lake Taihu nr nr 136 nr 29.2 Pan et al. (2014)  
China, Liaoning nr nr–82 27 nr–31 4.7 Wang et al. (2012)  
China, Tainjin nr nr–12 6.8 nr–11 2.6 Wang et al. (2012)  
China, Shanxi nr nr–15 2.7 nr–5.7 0.93 Wang et al. (2012)  
China, Hohhot nr nr–1.8 1.2 nr–1.1 0.32 Wang et al. (2012)  
China, Guanting nr nr–2.3 1.2 nr–0.52 0.16 Wang et al. (2012)  
England, Cambridge nr nt nr nr–162 nr Atkinson et al. (2008)  
France, nr (surface water) 99 nr–7 nr–62 Boiteux et al. (2012)  
France, nr (ground water) 163 nr–12 nr–50 Boiteux et al. (2012)  
  France, Orge River nr 9.4 nr 17.4 nr Labadie & Chevreuil (2011)  
Germany, Rhine River 38 2–48 4.9 2–26 6.5 Skutlarek et al. (2006)  
Germany, Ruhr River 22 9–3,640 102 4–193 11.7 Skutlarek et al. (2006)  
Germany, Roter main river nr 3.2–3.4 nr 2.2–2.6 nr Weremiuk et al. (2006)  
Germany, Rhine river (upstream) 0.61–3.4 2.1 1.4–6.4 3.7 Möller et al. (2010)  
Germany, Rhine river (downstream) 2.3–4.1 3.1 3.0–7.3 4.1 Möller et al. (2010)  
Germany, River Ruhr 8.9–18 14.3 –0.89–10 4.2 Möller et al. (2010)  
Germany, River Elbe nr 2.8–9.6 nr 0.5–2.9 nr Ahrens et al. (2009)  
Germany, nr (surface water) 24 0.16–6.5 2.1 0.04–4.6 2.1 Llorca et al. (2012)  
Germany, nr (tap water) 0.16–1.9 1.3 0.04–0.4 0.4 Llorca et al. (2012)  
Hong Kong nr 0.73–5.5 nr 0.09–3.1 nr So et al. (2004)  
India, Ganges River nr <0.04–0.2 nr <0.04–1.81 nr Yeung et al. (2009)  
Italy, Po river nr 1–1,270 nr nd–25 nr Loos et al. (2007)  
Italy (Northern) 1.8–2.9 2.4 7.2–8.6 7.8 Loos et al. (2007)  
Japan, Arakawa River nr nr nr 2.8–51 nr Takazawa et al. (2009)  
Japan, Chubu 17 0.3–16.3 2.5 0.3–6.0 1.1 Saito et al. (2004)  
Japan, Chugoku 0.5–8.1 1.5 0.4–25.1 1.0 Saito et al. (2004)  
Japan, Kansai 2.1–456.4 21.2 0.8–37.3 5.7 Saito et al. (2004)  
Japan, Kyushu 0.2–33 1.3 0.3–1.7 0.7 Saito et al. (2004)  
Japan, Kanto 14 0.3–15.1 2.8 0.3–31.4 3.7 Saito et al. (2004)  
Japan, Shikoku 1.4–13.8 0.2–14.9 1.1 Saito et al. (2004)  
Japan, River basins nr 7.9–110 nr 0.8–11 nr Senthikumar et al. (2007)  
Japan, nr nr 5.2–80 nr 0.26–3.2 nr Takagi et al. (2008)  
Japan, nr nr 20–92 nr 1.0–4.6 nr Takagi et al. (2008)  
Japan, nr nr nr nr 0.3–1.57 1.68 Saito et al. (2003)  
Japan, nr nr nr nr <2.5–21 nr Taniyasu et al. (2003)  
Japan, Tohoku 15 0.1–4.2 1.1 0.3–4.6 1.2 Saito et al. (2004)  
Japan, Tsurumi River Basin nr 13.4–15.9 nr 179.6–179.9 nr Zushi et al. (2008)  
Japan, Tama river nr nr nr 0.5–58 nr Takazawa et al. (2009)  
Japan, Tone River nr nr nr 0.9–20 nr Takazawa et al. (2009)  
Japan, Yodo river nr 3.8–311 nr 1.6–104 nr Takagi et al. (2007)  
Japan, Yodo river 18 4.2–901 23.8 0.–49 2.4 Lien et al. (2008)  
Japan, Yodo river 30 7.4–1,044 29.4 0.4–56 3.8 Lien et al. (2008)  
Japan, Yodo river 33 6 = 2,568 36.6 0.8–123 5.6 Lien et al. (2008)  
Japan, Tokyo (groundwater) 53 <0.25–1,800 8.5 <0.25–990 5.7 Kuroda et al. (2014)  
Japan, Tokyo (tap water) 4.7–12 6.1 1.7–11 4.5 Kuroda et al. (2014)  
Japan, nr 18 0.76–192 35 <0.1–143 0.97 Murakami et al. (2008)  
  Japan, Northern basin of Lake Biwa nr 7.0–10 nr 0.8–16 nr Tsuda et al. (2010)  
Japan, Southern basin of Lake Biwa nr 8.3–13 nr 0.9–1.7 nr Tsuda et al. (2010)  
Japan, Akanoi Bay nr 9.1–17 nr 1.4–2.8 nr Tsuda et al. (2010)  
Singapore nr 5.7–9.15 nr 2.2–87.3 nr Hu et al. (2011)  
Switzerland, Glatt river nr 7.0–7.6 nr 43–60 nr Huset et al. (2008)  
Spain, Ebro River, Catalonia nr 1.45–1.90 nr 1.59–2.47 nr Ericson et al. (2008)  
Spain, Coastal water, Catalonia nr <0.08–9.13 nr <0.03–9.56 nr Sanchez-Avila et al. (2010)  
Spain, nr (surface water) 24 0.16–68 13 0.04–2,709 264 Llorca et al. (2012)  
Spain, nr (tap water) 84 0.16–35 6.7 0.04–258 46 Llorca et al. (2012)  
South Korea, Western coast nr 2.95–68.6 nr 4.11–450 nr Naile et al. (2010)  
South Korea, Youngsan river (artificial lake) 4.1–7.1 5.2 1.7–7.1 4.4 Hong et al. (2013)  
South Korea, Youngsan river (Inland creek) 2.6–10 6.2 0.38–68 20 Hong et al. (2013)  
South Korea, Youngsan river (Estuarine area) 1.3–3.6 2.4 0.57–5.8 2.2 Hong et al. (2013)  
South Korea, Nakdong river (artificial lake) 11–12 11.4 6.5–12 9.2 Hong et al. (2013)  
South Korea, Nakdong river (Inland creek) 8.9–28 16 5.3–66 26 Hong et al. (2013)  
South Korea, Nakdong river (Estuarine area) 11–23 15 2.5–26 Hong et al. (2013)  
USA nr 27–50 nr 21–70 nr Boulanger et al. (2004)  
USA, New York 51 15–49 nr 1.6–756 nr Sinclair et al. (2006)  
USA, New York (lake water) 11 nr–9.3 nr 3.27–15.8 nr Kim & Kannan (2007)  
USA, New York (rain water) 11 nr–1.51 nr nr–7.27 nr Kim & Kannan (2007)  
USA, Tennessee 40 140–498 366 16.8–144 55.1 Hansen et al. (2002)  
USA, Lake Ontario nr 18–34 nr 2.9–30 nr Sinclair et al. (2006)  
WWTP Austria nr 2–73 15.1 1–66 13.3 Clara et al. (2009)  
Canada, Lake Ontario nr 6.5–54.7 nr 8.6–208–5 nr Völkel et al. (2008)  
China, Shanghai 16 2–91 nr 1–32 nr Zhang et al. 2013a
China, Shenyang nr 18.4–41.1 nr 1.69–3.85 nr Sun et al. (2011)  
Europe, different countries 90 1–15,900 255 0.5–2,101 62.5 Loos et al. (2013)  
Germany nr 12.3–77.6 nr 0.4–82.2 nr Ahrens et al. (2009)  
Germany, nr 0.04–1.8 1.8 nr nr Llorca et al. (2012)  
Japan, nr 10–68 61 42–635 87 Murakami et al. (2008)  
Japan, nr 14–41 23 14–336 28 Murakami et al. (2009)  
Singapore nr 11.2–1,057 nr 5.3–560.9 nr Yu et al. (2009a)  
Singapore nr 7.9–1,060 nr 5.8–35.3 nr Hu et al. (2011)  
Spain, Catalonia nr 3.47–61.9 nr <0.03–72.1 nr Sanchez-Avila et al. (2010)  
Spain, nr 0.04–17 17 0.22–501 214 Llorca et al. (2012)  
Switzerland nr nr 12 nr 57 Huset et al. (2008)  
USA nr nr 11 nr 42 Sinclair & Kannan (2006)  
USA, Kentucky and Georgia, nr 1–334 nr 1.8–149 nr Loganathan et al. (2007)  
  No. of PFOA (ng/L) PFOS (ng/L)   
Water source Country, Region samples Range Mean Range Mean Reference 
Tap water China, Shenzhen nr nr nr nr–11 nr Mak et al. (2009)  
China, Shanghai nr 78 nr nr–7.6 nr Mak et al. (2009)  
China, Shenyang nr 2.6 nr nr–0.39 nr Mak et al. (2009)  
Japan, Morioka nr nr nr 0.1–0.5 nr Harada et al. (2003)  
Japan, Miyako nr nr nr nr 0.1 Harada et al. (2003)  
Japan, Kyoto nr nr nr 3.0–4.0 nr Harada et al. (2003)  
Japan, Setagaya nr nr nr 2.4–43.7 nr Harada et al. (2003)  
Japan, Kansai 15 4.9–42.2 15.3 0.3–12.7 3.8 Saito et al. (2004)  
Japan, Kanto 19 <5–25 <5 <5–37 6.4 Mitsuya et al. (2007)  
Japan, Tohoku 15 0.01–1.0 0.3 0.1–0.5 0.2 Saito et al. (2004)  
Italy, Northern 1.0–2.9 2.4 6.2–9.7 8.1 Loos et al. (2007)  
Spain, Catalonia nr 0.32–6.28 nr 0.39–0.87 nr Ericson et al. (2008)  
Surface water Austria, river water nr <1.1–19 nr <4.0–35 nr Clara et al. (2009)  
Australia, Sydney Harbour and surroundings 20 4.2–6.4 5.7 7.5–21 14 Thompson et al. (2011b)  
Brazil, South eastern nr 0.35–2.82 nr 0.58–6.70 nr Quinete et al. (2009)  
Brazil, Guanaba Bay nr 0.77–3.25 nr 0.40–1.32 nr Quinete et al. (2009)  
Canada, Lake Ontario nr 8.7 nr 13 Myers et al. (2012)  
China, Wuhan 69 <LOD–256 81 <LOD–88.9 51.8 Wang et al. (2013)  
China, Wuhan nr 2.8–5.6 nr 2.3–5.3 nr Jin et al. (2006)  
China, Dongguan nr 0.85–4.4 nr 0.90–99 nr So et al. (2007)  
China, Chongqing nr nd–35 nr nd–0.35 nr So et al. (2007)  
China, Yichang nr 4.1–4.9 nr 0.29–0.61 nr So et al. (2007)  
China, Nanjing nr 2.1–2.4 nr 0.33–0.38 nr So et al. (2007)  
China, Shanghai nr 22–260 nr 0.62–14 nr So et al. (2007)  
China, Guangzhou nr 0.85–13 nr 0.9–99 nr So et al. (2007)  
China, Pearl and Yangtze rivers nr 0.85–260 nr <0.01–99 nr So et al. (2007)  
China, Hun river nr <0.1–1.6 nr 0.2–44.6 nr Jin et al. (2009)  
China, Yangtze river nr 0.2–297.5 nr 0.2–25.5 nr Jin et al. (2009)  
China, Liao river nd–27.9 10.9 nd–6.6 0.33 Yang et al. (2011)  
China, Taihu lake 22 10.6–36.7 19.5 3.6–394 26.5 Yang et al. (2011)  
China, Pearl river 13 0.71–8.7 3.7 0.52–11 3.3 Zhang et al. (2013)  
China, Haihe river 4.4–42 15 2.0–7.6 3.7 Li et al. (2011)  
China, Jiangsu, Huai river basin nr nr 18 nr 4.7 Yu et al. (2013)  
China, Jiangsu, Taihu lake nr nr 56 nr 15 Yu et al. (2013)  
China, Bohai coastal region 17 0.96–4,534.41 nr nr nr Wang et al. (2014)  
China, Lake Taihu nr nr 136 nr 29.2 Pan et al. (2014)  
China, Liaoning nr nr–82 27 nr–31 4.7 Wang et al. (2012)  
China, Tainjin nr nr–12 6.8 nr–11 2.6 Wang et al. (2012)  
China, Shanxi nr nr–15 2.7 nr–5.7 0.93 Wang et al. (2012)  
China, Hohhot nr nr–1.8 1.2 nr–1.1 0.32 Wang et al. (2012)  
China, Guanting nr nr–2.3 1.2 nr–0.52 0.16 Wang et al. (2012)  
England, Cambridge nr nt nr nr–162 nr Atkinson et al. (2008)  
France, nr (surface water) 99 nr–7 nr–62 Boiteux et al. (2012)  
France, nr (ground water) 163 nr–12 nr–50 Boiteux et al. (2012)  
  France, Orge River nr 9.4 nr 17.4 nr Labadie & Chevreuil (2011)  
Germany, Rhine River 38 2–48 4.9 2–26 6.5 Skutlarek et al. (2006)  
Germany, Ruhr River 22 9–3,640 102 4–193 11.7 Skutlarek et al. (2006)  
Germany, Roter main river nr 3.2–3.4 nr 2.2–2.6 nr Weremiuk et al. (2006)  
Germany, Rhine river (upstream) 0.61–3.4 2.1 1.4–6.4 3.7 Möller et al. (2010)  
Germany, Rhine river (downstream) 2.3–4.1 3.1 3.0–7.3 4.1 Möller et al. (2010)  
Germany, River Ruhr 8.9–18 14.3 –0.89–10 4.2 Möller et al. (2010)  
Germany, River Elbe nr 2.8–9.6 nr 0.5–2.9 nr Ahrens et al. (2009)  
Germany, nr (surface water) 24 0.16–6.5 2.1 0.04–4.6 2.1 Llorca et al. (2012)  
Germany, nr (tap water) 0.16–1.9 1.3 0.04–0.4 0.4 Llorca et al. (2012)  
Hong Kong nr 0.73–5.5 nr 0.09–3.1 nr So et al. (2004)  
India, Ganges River nr <0.04–0.2 nr <0.04–1.81 nr Yeung et al. (2009)  
Italy, Po river nr 1–1,270 nr nd–25 nr Loos et al. (2007)  
Italy (Northern) 1.8–2.9 2.4 7.2–8.6 7.8 Loos et al. (2007)  
Japan, Arakawa River nr nr nr 2.8–51 nr Takazawa et al. (2009)  
Japan, Chubu 17 0.3–16.3 2.5 0.3–6.0 1.1 Saito et al. (2004)  
Japan, Chugoku 0.5–8.1 1.5 0.4–25.1 1.0 Saito et al. (2004)  
Japan, Kansai 2.1–456.4 21.2 0.8–37.3 5.7 Saito et al. (2004)  
Japan, Kyushu 0.2–33 1.3 0.3–1.7 0.7 Saito et al. (2004)  
Japan, Kanto 14 0.3–15.1 2.8 0.3–31.4 3.7 Saito et al. (2004)  
Japan, Shikoku 1.4–13.8 0.2–14.9 1.1 Saito et al. (2004)  
Japan, River basins nr 7.9–110 nr 0.8–11 nr Senthikumar et al. (2007)  
Japan, nr nr 5.2–80 nr 0.26–3.2 nr Takagi et al. (2008)  
Japan, nr nr 20–92 nr 1.0–4.6 nr Takagi et al. (2008)  
Japan, nr nr nr nr 0.3–1.57 1.68 Saito et al. (2003)  
Japan, nr nr nr nr <2.5–21 nr Taniyasu et al. (2003)  
Japan, Tohoku 15 0.1–4.2 1.1 0.3–4.6 1.2 Saito et al. (2004)  
Japan, Tsurumi River Basin nr 13.4–15.9 nr 179.6–179.9 nr Zushi et al. (2008)  
Japan, Tama river nr nr nr 0.5–58 nr Takazawa et al. (2009)  
Japan, Tone River nr nr nr 0.9–20 nr Takazawa et al. (2009)  
Japan, Yodo river nr 3.8–311 nr 1.6–104 nr Takagi et al. (2007)  
Japan, Yodo river 18 4.2–901 23.8 0.–49 2.4 Lien et al. (2008)  
Japan, Yodo river 30 7.4–1,044 29.4 0.4–56 3.8 Lien et al. (2008)  
Japan, Yodo river 33 6 = 2,568 36.6 0.8–123 5.6 Lien et al. (2008)  
Japan, Tokyo (groundwater) 53 <0.25–1,800 8.5 <0.25–990 5.7 Kuroda et al. (2014)  
Japan, Tokyo (tap water) 4.7–12 6.1 1.7–11 4.5 Kuroda et al. (2014)  
Japan, nr 18 0.76–192 35 <0.1–143 0.97 Murakami et al. (2008)  
  Japan, Northern basin of Lake Biwa nr 7.0–10 nr 0.8–16 nr Tsuda et al. (2010)  
Japan, Southern basin of Lake Biwa nr 8.3–13 nr 0.9–1.7 nr Tsuda et al. (2010)  
Japan, Akanoi Bay nr 9.1–17 nr 1.4–2.8 nr Tsuda et al. (2010)  
Singapore nr 5.7–9.15 nr 2.2–87.3 nr Hu et al. (2011)  
Switzerland, Glatt river nr 7.0–7.6 nr 43–60 nr Huset et al. (2008)  
Spain, Ebro River, Catalonia nr 1.45–1.90 nr 1.59–2.47 nr Ericson et al. (2008)  
Spain, Coastal water, Catalonia nr <0.08–9.13 nr <0.03–9.56 nr Sanchez-Avila et al. (2010)  
Spain, nr (surface water) 24 0.16–68 13 0.04–2,709 264 Llorca et al. (2012)  
Spain, nr (tap water) 84 0.16–35 6.7 0.04–258 46 Llorca et al. (2012)  
South Korea, Western coast nr 2.95–68.6 nr 4.11–450 nr Naile et al. (2010)  
South Korea, Youngsan river (artificial lake) 4.1–7.1 5.2 1.7–7.1 4.4 Hong et al. (2013)  
South Korea, Youngsan river (Inland creek) 2.6–10 6.2 0.38–68 20 Hong et al. (2013)  
South Korea, Youngsan river (Estuarine area) 1.3–3.6 2.4 0.57–5.8 2.2 Hong et al. (2013)  
South Korea, Nakdong river (artificial lake) 11–12 11.4 6.5–12 9.2 Hong et al. (2013)  
South Korea, Nakdong river (Inland creek) 8.9–28 16 5.3–66 26 Hong et al. (2013)  
South Korea, Nakdong river (Estuarine area) 11–23 15 2.5–26 Hong et al. (2013)  
USA nr 27–50 nr 21–70 nr Boulanger et al. (2004)  
USA, New York 51 15–49 nr 1.6–756 nr Sinclair et al. (2006)  
USA, New York (lake water) 11 nr–9.3 nr 3.27–15.8 nr Kim & Kannan (2007)  
USA, New York (rain water) 11 nr–1.51 nr nr–7.27 nr Kim & Kannan (2007)  
USA, Tennessee 40 140–498 366 16.8–144 55.1 Hansen et al. (2002)  
USA, Lake Ontario nr 18–34 nr 2.9–30 nr Sinclair et al. (2006)  
WWTP Austria nr 2–73 15.1 1–66 13.3 Clara et al. (2009)  
Canada, Lake Ontario nr 6.5–54.7 nr 8.6–208–5 nr Völkel et al. (2008)  
China, Shanghai 16 2–91 nr 1–32 nr Zhang et al. 2013a
China, Shenyang nr 18.4–41.1 nr 1.69–3.85 nr Sun et al. (2011)  
Europe, different countries 90 1–15,900 255 0.5–2,101 62.5 Loos et al. (2013)  
Germany nr 12.3–77.6 nr 0.4–82.2 nr Ahrens et al. (2009)  
Germany, nr 0.04–1.8 1.8 nr nr Llorca et al. (2012)  
Japan, nr 10–68 61 42–635 87 Murakami et al. (2008)  
Japan, nr 14–41 23 14–336 28 Murakami et al. (2009)  
Singapore nr 11.2–1,057 nr 5.3–560.9 nr Yu et al. (2009a)  
Singapore nr 7.9–1,060 nr 5.8–35.3 nr Hu et al. (2011)  
Spain, Catalonia nr 3.47–61.9 nr <0.03–72.1 nr Sanchez-Avila et al. (2010)  
Spain, nr 0.04–17 17 0.22–501 214 Llorca et al. (2012)  
Switzerland nr nr 12 nr 57 Huset et al. (2008)  
USA nr nr 11 nr 42 Sinclair & Kannan (2006)  
USA, Kentucky and Georgia, nr 1–334 nr 1.8–149 nr Loganathan et al. (2007)  

nd, not done; nr, not reported.

A comprehensive study on the occurrences of PFOS (0.89–5.773 ng/L) and PFOA (0.97–21.5 ng/L) at 79 sampling sites in Japanese rivers revealed widespread occurrences of these compounds (Saito et al. 2004). Hansen et al. (2002) found that the PFOS and PFOA concentration was 50 times higher in Tennessee River than in the Elbe River. This was because of fluorochemical manufacturing facility discharge into the Tennessee River bodies. Jin et al. (2009) found that the level of PFAS contamination was greater in urban rivers than in rural areas in China. Seasonal changes have a significant effect on the loading of PFASs in surface water. So et al. (2004) found that higher concentrations were detected in winter than in summer. A similar observation was reported by Tsuda et al. (2010) in Japan, and is attributed to both the effects of different sampling seasons and the presence of algal blooms in summer, which may affect the distribution of different PFAS forms.

PFOA have been found in the coastal water of Japan in different places such as Hiroshima Bay, Kin Bay, and Lake Shikatsu (Taniyasu et al. 2003). Hart et al. (2008) found that Tokyo Bay had 2–3 times greater PFOS concentration in coastal water than in offshore locations of Japan. So et al. (2004) found that the concentration of PFOS in coastal waters of Hong Kong was up to 3.1 ng/L, which is greater than those observed in Gyeonggi Bay (South Korea) but approximately 10 times less than those observed in Lake Shihwa (China). Finally, Kim & Kannan (2007) found that the PFOA concentrations in lake water were significantly greater than the concentrations found in rainwater, suggesting that snowfall meltwater is the source of PFOA contaminations in lake water in the spring.

PFASs have been observed in the effluent from municipal wastewater treatment plants (WWTPs). For instance, Loganathan et al. (2007) found that the concentration of PFOA and PFOS in secondary effluent was 227 ng/L and 22 ng/L, respectively. Another study in Singapore by Yu et al. (2009a) found that the concentration of PFOA and PFOS in WWTP secondary effluent was 1,057 ng/L and 461 ng/L, respectively. Pan et al. (2014) found that PFOA concentrations in Lake Taihu (China) were higher than PFOS concentrations (136 ng/L and 29.2 ng/L, respectively), perhaps due to the higher water solubility of PFOA.

REMOVAL OF PFASs IN WATER TREATMENT PROCESSES

The ability of wastewater treatment technologies to remove or degrade PFASs depends on the water treatment process. For instance, Ochoa-Herrera & Sierra-Alvarez (2008) reported that granular activated carbon (GAC) could effectively remove PFOS from aqueous solutions (Table 2). Flores et al. (2013) found that GAC removed PFOS and PFOA concentration with removal efficiency of 64 ± 11% and 45 ± 19%, respectively. The explanation for this was that the molecular size of PFOS is slightly larger than the PFOA which is slightly more hydrophilic. Takagi et al. (2011) reported that GAC could effectively remove the PFOS and PFOA when it was used for less than 1 year. In contrast, the effluent concentration of those compounds was higher than the influent concentration when it used for a longer time (>1 year), possibly due to growth of the biofilm into the pores and surface of the carbon, exhausting the adsorption capacity and possibly interaction between those compounds and between those compounds and the biofilm, producing lowered concentrations initially and higher concentrations after significant use.

Table 2

PFCs removal during water treatment processes

Treatment processes Water source PFOS reduction (%) PFOA reduction (%) References 
GAC Synthetic wastewater nr nr Knepper & Lange (2012)  
GAC Wastewater 82–90 50–90 Lampert et al. (2007)  
GAC Simulated water <20 <20 Appleman et al. (2013)  
GAC Secondary effluent 97 95 Schröder et al. (2010)  
GAC Tap water 99.99 nr Senevirathna et al. (2010)  
GAC Aqueous solution nr nr Ochoa-Herrera & Sierra-Alvarez (2008)  
PAC Secondary effluent 22 16 Yu et al. (2012)  
PAC Synthetic industrial wastewater >97 >97 Rattanaoudom et al. (2012)  
PAC + microfiltration/ultrafiltration Synthetic wastewater nr nr Knepper & Lange (2012)  
PAC + coagulation Synthetic wastewater >90 >90 Bao et al. (2014)  
Carbon nanotubes Simulated water nr nr Chen et al. (2011)  
Carbon nanotubes Simulated water 95 95 Deng et al. (2012)  
Carbon nanotubes Aqueous solution nr nr Dai et al. (2013)  
Coagulation Drinking water <20 <20 Xiao et al. (2013)  
Coagulation Synthetic wastewater 32 12 Bao et al. (2014)  
Coagulation (polyaluminium chloride) Surface water nr nr Deng et al. (2011)  
Coagulation + DAF Secondary effluent 49 nr Appleman (2012)  
Membrane, Cl2 River water >22 44 Takagi et al. (2008)  
NF Simulated water >99 >97 Appleman et al. (2013)  
NF Wastewater 90–99 nr Tang et al. (2007)  
NF Wastewater 90–99 nr Tang et al. (2007)  
NF Simulated surface water 95 nr Zhao et al. (2013)  
RO Wastewater >99 nr Tang et al. (2007)  
RO Wastewater >90 nr Tang et al. (2006)  
RO Wastewater >99 nr Tang et al. (2007)  
RO Secondary effluent 86 90 Schröder et al. (2010)  
RO Synthetic wastewater 99 nr Knepper & Lange (2012)  
Ozonation under alkaline condition Secondary effluent 42 56 Lin et al. (2012)  
Ozonation Secondary effluent 32 18 Schröder et al. (2010)  
Ozonation + UV Secondary effluent 46 48 Schröder et al. (2010)  
Fenton Secondary effluent 68 70 Schröder et al. (2010)  
Fenton + UV Secondary effluent 68 75 Schröder et al. (2010)  
UV nr nr 61.7 Chen et al. (2007)  
UV nr nr nr Hori et al. (2004)  
Photo-degradation nr 8–68 nr Yamamoto et al. (2007)  
RBF River water nr nr Eschauzier et al. (2010)  
RBF Surface water nr nr Skutlarek et al. (2006)  
AIX Wastewater >99 >99 Lampert et al. (2007)  
Ultrafiltration, Cl2 Groundwater −164 Atkinson et al. (2008)  
Rapid sand filtration (RSF), O3, GAC, Cl2 River water −28 Takagi et al. (2008)  
RSF, GAC, Cl2 Lake water 97 90 Takagi et al. (2008)  
Cl2, coagulation/flocculation, RSF, O3, GAC Surface water 69 52 Flores et al. (2013)  
Cl2, coagulation/flocculation, RSF, O3, GAC, UF, RO Surface water 86 89 Flores et al. (2013)  
Coagulation/flocculation/sedimentation, SF, O3, GAC Cl2 River water −185 (summer), 60 (winter) −220 (summer), 0 (winter) Takagi et al. (2011)  
Coagulation/flocculation/sedimentation, SF, O3, GAC (reactivated), Cl2 Lake water >89 (summer), >88 (winter) 85 (summer), 78 (winter) Takagi et al. (2011)  
Zeolite Aqueous solution nr nr Ochoa-Herrera & Sierra-Alvarez (2008)  
Sludge Aqueous solution nr nr Ochoa-Herrera & Sierra-Alvarez (2008)  
Deep bed filtration (DBF), medium pressure UV, Cl2 Groundwater Quinones & Snyder (2009)  
O3, coagulation/flocculation, DBF, Cl2 Surface water Quinones & Snyder (2009)  
PAC, chloramination, DBF Surface water −12 Quinones & Snyder (2009)  
Cl2, coagulation/flocculation, DBF, UV Surface water Quinones & Snyder (2009)  
Treatment processes Water source PFOS reduction (%) PFOA reduction (%) References 
GAC Synthetic wastewater nr nr Knepper & Lange (2012)  
GAC Wastewater 82–90 50–90 Lampert et al. (2007)  
GAC Simulated water <20 <20 Appleman et al. (2013)  
GAC Secondary effluent 97 95 Schröder et al. (2010)  
GAC Tap water 99.99 nr Senevirathna et al. (2010)  
GAC Aqueous solution nr nr Ochoa-Herrera & Sierra-Alvarez (2008)  
PAC Secondary effluent 22 16 Yu et al. (2012)  
PAC Synthetic industrial wastewater >97 >97 Rattanaoudom et al. (2012)  
PAC + microfiltration/ultrafiltration Synthetic wastewater nr nr Knepper & Lange (2012)  
PAC + coagulation Synthetic wastewater >90 >90 Bao et al. (2014)  
Carbon nanotubes Simulated water nr nr Chen et al. (2011)  
Carbon nanotubes Simulated water 95 95 Deng et al. (2012)  
Carbon nanotubes Aqueous solution nr nr Dai et al. (2013)  
Coagulation Drinking water <20 <20 Xiao et al. (2013)  
Coagulation Synthetic wastewater 32 12 Bao et al. (2014)  
Coagulation (polyaluminium chloride) Surface water nr nr Deng et al. (2011)  
Coagulation + DAF Secondary effluent 49 nr Appleman (2012)  
Membrane, Cl2 River water >22 44 Takagi et al. (2008)  
NF Simulated water >99 >97 Appleman et al. (2013)  
NF Wastewater 90–99 nr Tang et al. (2007)  
NF Wastewater 90–99 nr Tang et al. (2007)  
NF Simulated surface water 95 nr Zhao et al. (2013)  
RO Wastewater >99 nr Tang et al. (2007)  
RO Wastewater >90 nr Tang et al. (2006)  
RO Wastewater >99 nr Tang et al. (2007)  
RO Secondary effluent 86 90 Schröder et al. (2010)  
RO Synthetic wastewater 99 nr Knepper & Lange (2012)  
Ozonation under alkaline condition Secondary effluent 42 56 Lin et al. (2012)  
Ozonation Secondary effluent 32 18 Schröder et al. (2010)  
Ozonation + UV Secondary effluent 46 48 Schröder et al. (2010)  
Fenton Secondary effluent 68 70 Schröder et al. (2010)  
Fenton + UV Secondary effluent 68 75 Schröder et al. (2010)  
UV nr nr 61.7 Chen et al. (2007)  
UV nr nr nr Hori et al. (2004)  
Photo-degradation nr 8–68 nr Yamamoto et al. (2007)  
RBF River water nr nr Eschauzier et al. (2010)  
RBF Surface water nr nr Skutlarek et al. (2006)  
AIX Wastewater >99 >99 Lampert et al. (2007)  
Ultrafiltration, Cl2 Groundwater −164 Atkinson et al. (2008)  
Rapid sand filtration (RSF), O3, GAC, Cl2 River water −28 Takagi et al. (2008)  
RSF, GAC, Cl2 Lake water 97 90 Takagi et al. (2008)  
Cl2, coagulation/flocculation, RSF, O3, GAC Surface water 69 52 Flores et al. (2013)  
Cl2, coagulation/flocculation, RSF, O3, GAC, UF, RO Surface water 86 89 Flores et al. (2013)  
Coagulation/flocculation/sedimentation, SF, O3, GAC Cl2 River water −185 (summer), 60 (winter) −220 (summer), 0 (winter) Takagi et al. (2011)  
Coagulation/flocculation/sedimentation, SF, O3, GAC (reactivated), Cl2 Lake water >89 (summer), >88 (winter) 85 (summer), 78 (winter) Takagi et al. (2011)  
Zeolite Aqueous solution nr nr Ochoa-Herrera & Sierra-Alvarez (2008)  
Sludge Aqueous solution nr nr Ochoa-Herrera & Sierra-Alvarez (2008)  
Deep bed filtration (DBF), medium pressure UV, Cl2 Groundwater Quinones & Snyder (2009)  
O3, coagulation/flocculation, DBF, Cl2 Surface water Quinones & Snyder (2009)  
PAC, chloramination, DBF Surface water −12 Quinones & Snyder (2009)  
Cl2, coagulation/flocculation, DBF, UV Surface water Quinones & Snyder (2009)  

The adsorption capacity of the GAC is also related to the temperature of the water sample. Takagi et al. (2008) found that the removal of PFOA was 36–56% in summer and 31–58% in winter. Knepper & Lange (2012) made a statement that the adsorption capacity of PFASs was low for GAC treatment because of the presence of organic matter in the water sample, considering the organic fractions of the dissolved organic matter adsorb more strongly than PFOS and PFOA compounds. The removal efficiency of PFOA and PFOS by GAC also depends on the volumes of activated carbon. Lampert et al. (2007) found in their batch test that more than 90% of both PFOA and PFOS were removed when the activated carbon was 0.1047 g or greater at 7 days of contact time. However, at a similar contact time, the reduction efficiency was decreased to about 50% for PFOA and 82% for PFOS when 0.0587 g GAC was used. Therefore, use of GAC with greater volume and suitable regeneration regimes appear to be the important parameters in the efficient removal of PFASs.

Deng et al. (2011) found that coagulation (polyaluminium chloride) could remove the PFOA from water. This was because some PFOA transferred from aqueous phase to solid phase. They also found that the addition of powdered activated carbon (PAC) before the coagulation process significantly enhanced the PFOA removal efficiency. This was explained as the negative PFOS adsorbing onto the PAC via electrostatic interaction, resulting in removal with the precipitate form in the coagulation process. A similar observation was made by Yu et al. (2009b) that PAC could effectively remove the PFOA concentration through the electrostatic interaction and hydrophobic interaction between them. A greater coagulation dosage (>60 mg/L) and lower pH (4.5–6.5) can enhance the PFAS removal (Xiao et al. 2013). Knepper & Lange (2012) mentioned that the combination of PAC with microfiltration/ultrafiltration is a promising advance for conventional PAC treatment for the removal of PFASs, because of improving sorption kinetics.

There are many studies demonstrating that the high pressure membranes such as those in nanofiltration (NF) and reverse osmosis (RO) can effectively remove the PFAS compounds (Tang et al. 2006; Zhao et al. 2013). Tang et al. (2006) investigated the use of RO membrane in removing PFOS from wastewater with the concentration range of 0.5 to 1,500 mg/L and they found that >90% reduction was achieved by RO. Tang et al. (2007) further studied the use of RO and NF to removal PFOS from wastewater and they got >99% and 90–99% removal for RO and NF membranes, respectively. Knepper & Lange (2012) mentioned that 99% rejection of PFOS was achieved by RO over a wide range of feed concentrations of 1–1,000 mg/L. They explained that the passage of up to 1% PFOS through RO membranes was by diffusion through the polyamide separation layer. Zhao et al. (2013) studied the NF membrane for removing PFOS from simulated surface water and found that the membrane can effectively reduce the concentration. They also investigated the effects of PFOS concentration, pH and calcium concentration on PFOS rejection. They found pH leads to an increase in the PFOS rejection when the pH increases from 3 to 9 which leads to an increase in the PFOS rejection from 86 to 95% and 93 to 97% in the presence of 0.1 mM Ca2+ and 1 mM Ca2+ at 0.4 MPa, respectively, because the increasing pH generally increases electrostatic interactions which play a role in PFOS rejection. Similarly, increasing calcium concentration decreased the permeate PFOS concentration because calcium ions bridge PFOS and the negatively charged membrane surface, which enhances the adsorption of PFOS on the membrane. Another study shows that average rejections of the PFASs were 99.3% for virgin RO membranes, but 95.3% for fouled RO membranes (Appleman et al. 2013). The trans-membrane pressure was not increased to maintain a constant flux across the membrane's surface for the fouled membranes. Although Tang et al. (2006) recommended that high flux RO membranes should be avoided when treating water with high concentrations of PFOS (>30 mg/l PFOS), these membranes normally have a low rejection effect and the advantage of a high flux cannot be maintained for a long time.

UV photolysis has been demonstrated to be effective at degrading PFOS and PFOA (Hori et al. 2004; Chen et al. 2007). Fujii et al. (2007) demonstrated that photocatalysis (reaction time up to 3 days) and advanced oxidation (with high temperature and pressure) could effectively degrade the PFOS and PFOA to CO2 and ‘hydrogen fluoride’. Lampert et al. (2007) demonstrated more than 99% removal of PFOS and PFOA using anion exchange (AIX) resins (Table 2).

Conventional water treatment processes are not effective in removing PFASs. For instance, Zhang et al. (2011) found that PFASs are partly reduced by a drinking water treatment system in China where surface water was the source sample. Another study by Eschauzier et al. (2010) shows that river bank filtration did not remove the PFASs. Skutlarek et al. (2006) also clearly demonstrated that PFASs were not removed by water treatment steps and the concentrations in the surface waters corresponded to PFAS levels in drinking water. Recently Quinones & Snyder (2009) confirmed that the PFAS concentration of influent and effluent was similar in drinking water treatment plants in the USA, suggesting that treatment systems were ineffective in removing these compounds. Sand filtration and ozonation processes were also ineffective in removing PFOS and PFOA during drinking water treatment (Takagi et al. 2011). A similar result was found by Thompson et al. (2011a) in a water reclamation plant in South East Queensland, Australia. Appleman (2012) investigated the efficiency of PFAS removal using coagulation followed by sedimentation or dissolved air flotation (DAF) and/or filtration. They found that coagulation (aluminium sulfate) followed by sedimentation did not lead to PFAS removal, but where sedimentation was replaced by DAF, a 49% removal of PFOS was observed.

CONCLUSIONS

PFASs are globally distributed in the aquatic environment, including drinking water and wastewater. The clear pathways are still poorly understood for this group although the manufacture of PFASs and use of products containing PFASs are direct sources for the release of these compounds to the aquatic environment. Developed countries are more highly affected by PFAS contamination than developing countries due to their increased use of PFAS-containing goods. Several treatment processes are used in the removal of PFAS compounds. Conventional water treatments are ineffective in removing these compounds. Activated carbon may be a good choice to reduce the concentration if the activated carbon is used for a year. High pressure membrane systems are the most suitable processes for reducing these chemicals from water and wastewater and the extent of their reduction efficiency depends on the solution chemistry of the water sample.

PFASs are listed as chemicals of concern, so regular monitoring of the contamination level of these chemicals in the water environment is required for regulatory purposes. Although biological processes are mostly ineffective in removing these chemicals, there is a possible biological conversion of these compounds during water treatment processes. Therefore further investigation regarding the mechanisms of the biological degradation of these chemicals is required. Moreover, other treatment processes such as GAC and/or high pressure membranes are essential to equip the water treatment processes to remove these chemicals for drinking purposes and for safe water disposal to the environment.

REFERENCES

REFERENCES
3M Company
2001
Environmental monitoring-multi-city study; water, sludge, sediment, POTW effluent and landfill leachate samples – executive summary
.
Apelberg
B. J.
Witter
F. R.
Herbstman
J. B.
Calafat
A. M.
Halden
R. U.
Needham
L. L.
Goldman
L. R.
2007
Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth
.
Environ. Health Perspect.
115
,
1670
1676
.
Appleman
T. D.
2012
The Removal of Poly- and Perfluoroalkyl Substances by North American Water Treatment Practices
.
MSc Thesis
,
Department of Civil and Environmental Engineering, Colorado School of Mines
.
Appleman
T. D.
Dickenson
E. R. V.
Bellona
C.
Higgins
C. P.
2013
Nanofiltration and granular activated carbon treatment of perfluoroalkyl acids
.
J. Hazard. Mater.
260
,
740
746
.
Atkinson
C.
Blake
S.
Hall
T.
Kanda
K.
Rumsby
P.
2008
Survey of the prevalence of perfluorooctane sulphonate (PFOS), Perfluorooctanoic acid (PFOA) and related compounds in drinking water and their sources; DEFRA 7585; Drinking Water Inspectorate
.
Department for Environment, Food and Rural Affairs
.
Boiteux
V.
Dauchy
X.
Rosin
C.
Munoz
J. F.
2012
National screening study on 10 perfluorinated compounds in raw and treated tap water in France
.
Arch Environ. Contam. Toxicol.
63
(
1
),
1
12
.
Boulanger
B.
Vargo
J.
Schnoor
J. L.
Hornbuckle
K. C.
2004
Detection of perfluorooctane surfactants in Great Lakes water
.
Environ. Sci. Technol.
38
,
4064
4070
.
Clara
M.
Gans
O.
Weiss
S.
Sanz-Escribano
D.
Scharf
S.
Scheffknecht
C.
2009
Perfluorinated alkylated substances in the aquatic environment: an Austrian case study
.
Water Res.
43
(
18
),
4760
4768
.
Deng
S.
Zhang
Q.
Nie
Y.
Wei
H.
Wang
B.
Huang
J.
Yu
G.
Xing
B.
2012
Sorption mechanisms of perfluorinated compounds on carbon nanotubes
.
Environ. Pollut.
168
,
138
144
.
Dreyer
A.
Matthias
V.
Weinberg
I.
Ebinghaus
R.
2010
Wet deposition of poly- and perfluorinated compounds in Northern Germany
.
Environ. Pollut.
158
,
1221
1227
.
Eschauzier
C.
Haftka
J.
Stuyfzand
P. J.
De Voogt
P.
2010
Perfluorinated compounds in infiltrated river Rhine water and infiltrated rainwater in coastal dunes
.
Environ. Sci. Technol.
44
(
19
),
7450
7455
.
Fujii
S.
Polprasert
C.
Tanaka
S.
Lien
N. P.
Qui
Y.
2007
New POPs in the water environment: distribution, bioaccumulation and treatment of perfluorinated compounds: a review paper
.
J. Water Suppl. Res. Technol.-AQUA
56
,
313
326
.
Giesy
J. P.
Kannan
K.
2001
Global distribution of perfluorooctane sulfonate in wildlife
.
Environ. Sci. Technol.
35
,
1339
1342
.
Hansen
K. J.
Johnson
H. O.
Eldridge
J. S.
Butenhoff
J. L.
Dick
L. A.
2002
Quantitative characterization of trace levels of PFOS and PFOA in the Tennessee River
.
Environ. Sci. Technol.
36
,
1681
1685
.
Hart
K.
Kannan
K.
Tao
L.
Takahashi
S.
Tanabe
S.
2008
Skipjack tuna as a bioindicator of contamination by perfluorinated compounds in the oceans
.
Sci. Total Environ.
403
,
215
221
.
Hong
S.
Khim
J. S.
Park
J.
Kim
M.
Kim
W. K.
Jung
J.
Hyun
S.
Kim
J. G.
Lee
H.
Choi
H. J.
Codling
G.
Giesy
J. P.
2013
In situ fate and partitioning of waterborne perfluoroalkyl acids (PFAAs) in the Youngsan and Nakdong River Estuaries of South Korea
.
Sci. Total Environ.
445–446
,
136
145
.
Hori
H.
Hayakawa
E.
Einaga
H.
Kutsuna
S.
Koike
K.
Ibusuki
T.
Kiatagawa
H.
Arakawa
R.
2004
Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches
.
Environ. Sci. Technol.
38
(
22
),
6118
6124
.
Huset
C. A.
Chiaia
A. C.
Barofsky
D. F.
Jonkers
N.
Kohler
H. P. E.
Giger
W.
Field
J. A.
2008
Occurrence and mass flows of fluorochemicals in the Glatt Valley Watershed, Switzerland
.
Environ. Sci. Technol.
42
(
17
),
6369
6377
.
Jin
Y. H.
Ding
M.
Di
C.
Wang
L.
Dong
G. H.
Shu
W. Q.
Zhang
Y. H.
2006
Monitoring the status of PFOS and PFOA pollution in Sanxia reservoir area of the Yangtze river and surface water of Wuhan
.
Ecol. Environ.
15
,
486
489
.
Jin
Y. H.
Liu
W.
Sato
I.
Nakayama
S. F.
Sasaki
K.
Saito
N.
Tsuda
S.
2009
PFOS and PFOA in environmental and tap water in China
.
Chemosphere
77
,
605
611
.
Key
B. D.
Howell
R. D.
Criddle
C. S.
1997
Fluorinated organics in the biosphere
.
Environ. Sci. Technol.
31
(
9
),
2445
2454
.
Knepper
T. P.
Lange
F. T.
2012
Polyfluorinated chemicals and transformation products
. In:
Handbook of Environmental Chemistry
vol. 17. Springer Verlag, pp. 103–125
.
Lai
F. Y.
Yeung
L. W. Y.
Taniyasu
S.
Li
P.
Horii
Y.
Kannan
K.
Lam
P. K. S.
Yamashita
N.
2009
A nationwide survey of perfluorinated compounds in surface water samples from 47 prefectures in Japan
.
Organohalogen Comp.
71
,
2627
2632
.
Lampert
D.
Frisch
M.
Speitel
G.
2007
Removal of perfluorooctanoic acid and perfluorooctane sulfonate from wastewater by ion exchange
.
Pract. Periodical Hazard., Toxic, Radioact. Waste Manage.
11
(
1
),
60
68
.
Lau
C.
Butenhoff
J.
Rogers
J.
2004
The developmental toxicity of perfluoroalkyl acids and their derivatives
.
Toxicol. Appl. Pharmacol.
198
,
231
241
.
Lau
C.
Anitole
C.
Hodes
D.
Lai
A.
Pfahles–Hutchens
A.
Seed
J.
2007
Perfluoroalkyl acids: a review of monitoring and toxicological findings
.
Toxicol. Sci.
99
,
366
394
.
Li
F.
Sun
H.
Hao
Z.
He
N.
Zhao
L.
Zhang
T.
Sun
T.
2011
Perfluorinated compounds in Haihe River and Dagu Drainage Canal in Tianjin, China
.
Chemosphere
84
,
265
271
.
Lin
A. Y.
Panchangam
S. C.
Chang
C. Y.
Hong
P. K.
Hsueh
H. F.
2012
Removal of perfluorooctanoic acid and perfluorooctane sulfonate via ozonation under alkaline condition
.
J. Hazard. Mater.
243
,
272
277
.
Liu
W.
Jin
Y.
Quan
X.
Sasaki
K.
Saito
N.
Nakayama
S. F.
Sato
I.
Tsuda
S.
2009
Perfluorosulfonates and perfluorocarboxylates in snow and rain in Dalian, China
.
Environ. Int.
35
,
737
742
.
Llorca
M.
Farré
M.
Picó
Y.
Müller
J.
Knepper
T. P.
Barceló
D.
2012
Analysis of perfluoroalkyl substances in waters from Germany and Spain
.
Sci. Total Environ.
431
,
139
150
.
Loos
R.
Carvalho
R.
António
D. C.
Comero
S.
Locoro
G.
Tavazzi
S.
Paracchini
B.
Ghiani
M.
Lettieri
T.
Blaha
L.
Jarosova
B.
Voorspoels
S.
Servaes
K.
Haglund
P.
Fick
J.
Lindberg
R. H.
Schwesig
D.
Gawlik
B. M.
2013
EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents
.
Water Res.
47
(
17
),
6475
6487
.
Mak
Y. L.
Taniyasu
S.
Yeung
L. W. Y.
Lu
G.
Jin
L.
Yang
Y.
Lam
P. K. S.
Kannan
K.
Yamashita
N.
2009
Perfluorinated compounds in tap water from China and several other countries
.
Environ. Sci. Technol.
43
,
4824
4829
.
Mitsuya
R.
Sometani
A.
Hosoda
N.
Matsuzaki
T.
Ohara
K.
2007
A survey of PFOS and PFOA and its removal during water treatment. Abstracts of 58th annual meeting of Japan Water Works Association
, pp.
554
555
.
Möller
A.
Ahrens
L.
Surm
R.
Westerveld
J.
van der Wielen
F.
Ebinghaus
R.
de Voogt
P.
2010
Distribution and sources of polyfluoroalkyl substances (PFAS) in the River Rhine watershed
.
Environ. Pollut.
158
,
3243
3250
.
Murakami
M.
Imamura
E.
Shinohara
H.
Kiri
K.
Muramatsu
Y.
Harada
A.
Takada
H.
2008
Occurrence and sources of perfluorinated surfactants in rivers in Japan
.
Environ. Sci. Technol.
42
,
6566
6572
.
Myers
A. L.
Crozier
P. W.
Helm
P. A.
Brimacombe
C.
Furdui
V. I.
Reiner
E. J.
Burniston
D.
Marvin
C. H.
2012
Fate, distribution, and contrasting temporal trends of perfluoroalkyl substances (PFASs) in Lake Ontario, Canada
.
Environ. Int.
44
,
92
99
.
Naile
J. E.
Khim
J. S.
Wang
T.
Chen
C.
Luo
W.
Kwon
B. O.
Park
J.
Koh
C. H.
Jones
P. D.
Lu
Y.
Giesy
J. P.
2010
Perfluorinated compounds in water, sediment, soil and biota from estuarine and coastal areas of Korea
.
Environ. Pollut.
158
,
1237
1244
.
Pan
G.
Zhou
Q.
Luan
X.
Fu
Q. S.
2014
Distribution of perfluorinated compounds in Lake Taihu (China): impact to human health and water standards
.
Sci. Total Environ.
487
,
778
784
.
Paul
A. G.
Jones
K. C.
Sweetman
A. J.
2009
A first global production, emission, and environmental inventory for perfluorooctane sulfonate
.
Environ. Sci. Technol.
43
(
2
),
386
392
.
Rattanaoudom
R.
Visvanathan
C.
Boontanon
S. K.
2012
Removal of concentrated PFOS and PFOA in synthetic industrial wastewater by powder activated carbon and hydrotalcite
.
J. Water Sustain.
2
(
4
),
245
258
.
Saito
N.
Sasaki
K.
Nakatome
K.
Harada
K.
Yoshinaga
T.
Koizumi
A.
2003
Perfluorooctane sulfonate concentrations in surface water in Japan
.
Arch. Environ. Contam. Toxicol.
45
,
149
158
.
Saito
N.
Harada
K.
Inoue
K.
Sasaki
K.
Yoshinaga
T.
Koizumi
A.
2004
Perfluorooctanoate and perfluorooctane sulfonate concentrations in surface water in Japan
.
J. Occup. Health
46
,
49
59
.
Schröder
H. F.
José
H. J.
Gebhardt
W.
Moreira
R. F.
Pinnekamp
J.
2010
Biological wastewater treatment followed by physicochemical treatment for the removal of fluorinated surfactants
.
Water Sci Technol.
61
(
12
),
3208
3215
.
Schuetze
A.
Heberer
T.
Effkemann
S.
Juergensen
S.
2010
Occurrence and assessment of perfluorinated chemicals in wild fish from Northern Germany
.
Chemosphere
78
,
647
652
.
Senevirathna
S. T. M. L. D.
Tanaka
S.
Fujii
S.
Kunacheva
C.
Harada
H.
Ariyadasa
B. H. A. K. T.
Shivakoti
B. R.
2010
Adsorption of perfluorooctane sulfonate (n-PFOS) onto non ion-exchange polymers and granular activated carbon: batch and column test
.
Desalination
260
(
1–3
),
29
33
.
Senthilkumar
K.
Ohi
E.
Sajwan
K.
Takasuga
T.
Kannan
K.
2007
Perfluorinated compounds in river water, river sediment, market fish, and wildlife samples from Japan
.
Bull. Environ. Contam. Toxicol.
79
,
427
431
.
Sinclair
E.
Mayack
D. T.
Roblee
K.
Yamashita
N.
Kannan
K.
2006
Occurrence of perfluoroalkyl surfactants in water, fish, and birds from New York State
.
Arch. Environ. Contam. Toxicol.
50
,
398
410
.
Skutlarek
D.
Exner
M.
Färber
H.
2006
Perfluorinated surfactants in surface and drinking waters
.
Environ. Sci. Pollut. Res.
13
,
299
307
.
So
M. K.
Taniyasu
S.
Yamashita
N.
Giesy
J. P.
Zheng
J.
Fang
Z.
Im
S. H.
Lam
P. K. S.
2004
Perfluorinated compounds in coastal waters of Hong Kong, South China, and Korea
.
Environ. Sci. Technol.
38
,
4056
4063
.
So
M. K.
Miyake
Y.
Yeung
W. Y.
Ho
Y. M.
Taniyasu
S.
Rostkowski
P.
Yamashita
N.
Zhou
B. S.
Shi
X. J.
Wang
J. X.
Giesy
J. P.
Yu
H.
Lam
P. K.
2007
Perfluorinated compounds in the Pearl River and Yangtze River of China
.
Chemosphere
68
,
2085
2095
.
Sun
H.
Li
F.
Zhang
T.
Zhang
X.
He
N.
Song
Q.
Zhao
L.
Sun
L.
Sun
T.
2011
Perfluorinated compounds in surface waters and WWTPs in Shenyang, China: mass flows and source analysis
.
Water Res.
45
(
15
),
4483
4490
.
Takagi
S.
Adaci
F.
Watanabe
I.
Kannan
K.
2007
Concentrations of perfluorinated compounds in Yodo River system, Osaka, Japan
.
Organohalogen Compd.
69
,
2808
2811
.
Takagi
S.
Adachi
F.
Miyano
K.
Koizumi
Y.
Tanaka
H.
Mimura
M.
Watanabe
I.
Tanabe
S.
Kannan
K.
2008
Perfluorooctanesulfonate and perfluorooctanoate in raw and treated tap water from Osaka, Japan
.
Chemosphere
72
,
1409
1412
.
Takagi
S.
Adachi
F.
Miyano
K.
Koizumi
Y.
Tanaka
H.
Watanabe
I.
Tanabe
S.
Kannan
K.
2011
Fate of perfluorooctanesulfonate and perfluorooctanoate in drinking water treatment processes
.
Water Res.
45
,
3925
3932
.
Takazawa
Y.
Nishino
T.
Sasaki
Y.
Yamashita
H.
Suzuki
N.
Tanabe
K.
Shibata
Y.
2009
Occurrence and distribution of perfluorooctane sulfonate and perfluorooctanoic acid in the rivers of Tokyo
.
Water Air Soil Pollut.
202
,
57
67
.
Tang
C. Y.
Fu
Q. S.
Robertson
A. P.
Criddle
C. S.
Leckie
J. O.
2006
Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater
.
Environ. Sci. Technol.
40
(
23
),
7343
7349
.
Thompson
J.
Eaglesham
G.
Reungoat
J.
Poussade
Y.
Bartkow
M.
Lawrence
M.
Mueller
J. F.
2011a
Removal of PFOS, PFOA and other perfluoroalkyl acids at water reclamation plants in South East Queensland Australia
.
Chemosphere
82
,
9
17
.
Thompson
J.
Roach
A.
Eaglesham
G.
Bartkow
M. E.
Edge
K.
Mueller
J. F.
2011b
Perfluorinated alkyl acids in water, sediment and wildlife from Sydney Harbour and surroundings
.
Mar. Pollut. Bull.
62
(
12
),
2869
2875
.
Tsuda
T.
Inoue
A.
Igawa
T.
Tanaka
K.
2010
Seasonal changes of PFOS and PFOA concentrations in Lake Biwa Water
.
Bull. Environ. Contam. Toxicol.
85
,
593
597
.
Völkel
W.
Genzel-Boroviczeny
O.
Demmelmair
H.
Gebauer
C.
Koletzko
B.
Twardella
D.
Raab
U.
Fromme
H.
2008
Perfluorooctane sulphonate (PFOS) and perfluorooctanoic acid (PFOA) in human breast milk: results of a pilot study
.
Int. J. Hyg. Environ. Health
211
,
440
446
.
Wang
B.
Cao
M.
Zhu
H.
Chen
J.
Wang
L.
Liu
G.
Gu
X.
Lu
X.
2013
Distribution of perfluorinated compounds in surface water from Hanjiang River in Wuhan, China
.
Chemosphere
93
(
3
),
468
473
.
Wang
T.
Khim
J. S.
Chen
C.
Naile
J. E.
Lu
Y.
Kannan
K.
Park
J.
Luo
W.
Jiao
W.
Hu
W.
Giesy
J. P.
2012
Perfluorinated compounds in surface waters from Northern China: comparison to level of industrialization
.
Environ. Int.
42
,
37
46
.
Yamamoto
T.
Noma
Y.
Sakai
S.
Shibata
Y.
2007
Photodegradation of perfluorooctane sulfonate by UV irradiation in water and alkaline 2-propanol
.
Environ. Sci. Technol.
41
(
16
),
5660
5665
.
Yu
Q.
Zhang
R. Q.
Deng
S. B.
Huang
J.
Yu
G.
2009b
Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: kinetic and isotherm study
.
Water Res.
43
,
1150
1158
.
Zhang
W.
Zhang
Y.
Taniyasu
S.
Yeung
L. W.
Lam
P. K.
Wang
J.
Li
X.
Yamashita
N.
Dai
J.
2013a
Distribution and fate of perfluoroalkyl substances in municipal wastewater treatment plants in economically developed areas of China
.
Environ. Pollut.
176
,
10
17
.
Zhang
Y.
Lai
S.
Zhao
Z.
Liu
F.
Chen
H.
Zou
S.
Xie
Z.
Ebinghaus
R.
2013
Spatial distribution of perfluoroalkyl acids in the Pearl River of southern China
.
Chemosphere
93
(
8
),
1519
1525
.
Zhao
C.
Zhang
J.
He
G.
Wang
T.
Hou
D.
Luan
Z.
2013
Perfluorooctane sulfonate removal by nanofiltration membrane the role of calcium ions
.
Chemical Eng. J.
233
,
224
232
.