Abstract

The objective of this paper is to compare, under Dutch market conditions, the energy consumption and net costs of membrane-based advanced treatment processes for three water reuse types (i.e. potable, industrial, agricultural reuse). The water source is municipal wastewater treatment plant effluent. Results indicate that the application of reverse osmosis is needed to reclaim high quality water for industrial and potable reuse but not for irrigation water which offers significant energy savings but may not lead automatically to lower net costs. While a reclamation process for industrial reuse is economically most promising, irrigation water reclamation processes are not cost effective due to low water prices. Moreover, process operational expenditures may exceed capital expenditures which is important for tender procedures. A significant cost factor is waste management that may exceed energy costs. Water recovery rates could be significantly enhanced through the integration of a softener/biostabilizer unit prior to reverse osmosis. Moreover, the energy consumption of wastewater reclamation processes could be supplied on-site with solar energy. The possibility of designing a ‘fit for multi-purpose’ reclamation process is discussed briefly. This comparative analysis allows for better informed decision making about which reuse type is preferably targeted in a municipal wastewater reuse project from a process design perspective.

HIGHLIGHTS

  • Water prices determine the economic feasibility of water reuse.

  • Brine treatment costs exceed energy costs in processes that apply reverse osmosis.

  • Operational expenditures of reuse processes are higher than capital expenditures .

  • A softener/biostabilizer unit as reverse osmosis pre-treatment may significantly improve a the recovery rate, energy consumption and cost effectiveness of water reclamation processes.

This content is only available as a PDF.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

Supplementary data