Skip to Main Content

The initial soil hydraulic parameters, , , , n, and , were estimated by inputting the soil bulk density and percentage of sand, silt, and clay (Table 1) into the Rosetta pedotransfer function model (Schaap et al. 2001). The Marquardt–Levenberg inverse algorithm, incorporated in the HYDRUS-1D model, was subsequently used to optimize these parameters using field-measured data (Marquardt 1963). The calibrated soil hydraulic parameters are shown in Table 2.

Table 2

Calibrated soil hydraulic parameters in A. capillaris and P. australis communities

Vegetation communitySoil depth (cm)θr (cm3 cm−3)θs (cm3 cm−3)α (cm−1)n (−)Ks (cm d−1)
A. capillaris community 0–20 0.05 0.47 0.031 2.31 277 
20–80 0.04 0.49 0.036 2.11 248 
80–120 0.05 0.48 0.008 3.46 183 
120–1,000 0.04 0.48 0.022 1.34 75 
P. australis community 0–20 0.06 0.46 0.008 1.08 102 
20–80 0.05 0.46 0.005 1.14 80 
80–800 0.06 0.46 0.009 1.08 45 
Vegetation communitySoil depth (cm)θr (cm3 cm−3)θs (cm3 cm−3)α (cm−1)n (−)Ks (cm d−1)
A. capillaris community 0–20 0.05 0.47 0.031 2.31 277 
20–80 0.04 0.49 0.036 2.11 248 
80–120 0.05 0.48 0.008 3.46 183 
120–1,000 0.04 0.48 0.022 1.34 75 
P. australis community 0–20 0.06 0.46 0.008 1.08 102 
20–80 0.05 0.46 0.005 1.14 80 
80–800 0.06 0.46 0.009 1.08 45 

Close Modal

or Create an Account

Close Modal
Close Modal