Skip to Main Content

The main purpose of this paper was the introduction and verification of the GCC method. Investigation of the runoff generation process was not our focus, so a traditional and reliable runoff generation method was sufficient for our purpose. The direct runoff hydrograph (DRH) was separated from base flow using the objective and repeatable digital filter method (Chapman 1999; Lin et al. 2007). The effective rainfall hyetograph (ERH) was derived according to the traditional precipitation-runoff correlation diagram derived from the API (Antecedent Precipitation Index) Model (Sittner et al. 1969), which has previously been successfully applied in humid and semi-humid regions of China (Zhang 2010). Appropriate values were assigned for the model parameters, including maximum areal mean tension water storage Wm (mm) for each watershed, and initial soil moisture W0 (mm) for each storm (Table 2). The isochrones of the watershed were determined from the DEM by the method of Zhang et al. (2010) using GIS software. GIS was also used to measure the reach-average riverbed slopes for each subarea from the DEM (Table 3).

Table 2

Parameters for derivation of the ERH

WatershedStorm IDPeriodW0 (mm)Wm (mm)
Dagutai Calibration 92 110 
Calibration 20 110 
Calibration 42 110 
Calibration 50 110 
Verification 87 110 
Verification 107 110 
Bailianhe Calibration 72 135 
Calibration 93 135 
Calibration 45 135 
10 Calibration 15 135 
11 Verification 72 135 
12 Verification 114 135 
13 Verification 53 135 
Kaifengyu 14 Calibration 43 100 
15 Calibration 86 100 
16 Calibration 32 100 
17 Verification 40 100 
18 Verification 33 100 
WatershedStorm IDPeriodW0 (mm)Wm (mm)
Dagutai Calibration 92 110 
Calibration 20 110 
Calibration 42 110 
Calibration 50 110 
Verification 87 110 
Verification 107 110 
Bailianhe Calibration 72 135 
Calibration 93 135 
Calibration 45 135 
10 Calibration 15 135 
11 Verification 72 135 
12 Verification 114 135 
13 Verification 53 135 
Kaifengyu 14 Calibration 43 100 
15 Calibration 86 100 
16 Calibration 32 100 
17 Verification 40 100 
18 Verification 33 100 
Table 3

Measured riverbed mean slope, area weight of river networks and parameters of Nash and GCC method

CatchmentNash NNash KnτGCC KRiverbed mean slope ijkjArea weight
Dagutai 1.41 3.00 1.58 2.78 0.0062325,0.0250921 3.71, 1.85 0.31,0.69 
Bailianhe 2.51 3.02 2.08 2.67 0.001211,0.006129,0.0.012531 3.69, 3.18, 1.15 0.40,0.19,0.41 
Kaifengyu 4.38 2.94 1.22 2.68 0.001656,0.002177,0.007407,0.00907,0.01105 4.24,3.70,2.00,1.81,1.64 0.04,0.16,0.2,0.46,0.14 
CatchmentNash NNash KnτGCC KRiverbed mean slope ijkjArea weight
Dagutai 1.41 3.00 1.58 2.78 0.0062325,0.0250921 3.71, 1.85 0.31,0.69 
Bailianhe 2.51 3.02 2.08 2.67 0.001211,0.006129,0.0.012531 3.69, 3.18, 1.15 0.40,0.19,0.41 
Kaifengyu 4.38 2.94 1.22 2.68 0.001656,0.002177,0.007407,0.00907,0.01105 4.24,3.70,2.00,1.81,1.64 0.04,0.16,0.2,0.46,0.14 

Close Modal

or Create an Account

Close Modal
Close Modal