Skip to Main Content
Overall, the choice of canopy parameters had only a small effect on the snow–soil interface temperature in the model simulations (Figure 6 and Table 4). Because of large range in the spruce canopy LAI estimates, range of simulated interception is also large – this has an indirect effect on the simulated snow–soil interface temperature below the spruce canopy through affecting the snow depth simulations (Figure 6(d)). Typically, the simulated snow–soil interface temperatures were too low compared with the measured temperatures during the snow season below the forest canopies. A good correspondence between the simulated and observed temperatures was found only at the dense canopy location at the pine site in the winter 2008–2009 (Figure 6(b)).
Table 4

Root-mean-squared errors between the SNOWPACK simulation outputs obtained using the parameterizations in Table 1 and the observations

 Optical effectiveOptical correctedOptical effective, Pomeroy SVFOptical effective, CLASS SVFOptical corrected, Pomeroy SVFOptical corrected, CLASS SVF
Snow–soil interface temperature 
Sparse pine 2008–2009 2.54 2.48 2.57 2.33 2.41 2.48 
Dense pine 2008–2009 1.72 1.69 1.74 1.84 1.66 1.71 
Sparse pine 2009–2010 3.30 3.33 3.34 3.80 3.21 3.58 
Spruce 2009–2010 2.14 3.85 4.89 2.14 2.07 4.78 
Incoming shortwave radiation 
Sparse pine 2008–2009 24.95 18.22 24.84 27.99 19.49 18.35 
Dense pine 2008–2009 22.61 17.02 24.53 28.04 17.71 16.98 
Sparse pine 2009–2010 27.22 21.17 27.13 29.84 22.35 21.30 
Spruce 2009–2010 10.72 5.72 6.77 10.72 6.34 5.62 
Incoming longwave radiation 
Sparse pine 2008–2009 24.33 19.67 24.19 28.01 15.24 17.96 
Dense pine 2008–2009 20.48 15.14 23.03 27.20 12.50 15.68 
Sparse pine 2009–2010 29.01 24.21 28.86 32.75 19.42 22.37 
Spruce 2009–2010 16.93 15.03 13.90 16.93 11.60 12.05 
 Optical effectiveOptical correctedOptical effective, Pomeroy SVFOptical effective, CLASS SVFOptical corrected, Pomeroy SVFOptical corrected, CLASS SVF
Snow–soil interface temperature 
Sparse pine 2008–2009 2.54 2.48 2.57 2.33 2.41 2.48 
Dense pine 2008–2009 1.72 1.69 1.74 1.84 1.66 1.71 
Sparse pine 2009–2010 3.30 3.33 3.34 3.80 3.21 3.58 
Spruce 2009–2010 2.14 3.85 4.89 2.14 2.07 4.78 
Incoming shortwave radiation 
Sparse pine 2008–2009 24.95 18.22 24.84 27.99 19.49 18.35 
Dense pine 2008–2009 22.61 17.02 24.53 28.04 17.71 16.98 
Sparse pine 2009–2010 27.22 21.17 27.13 29.84 22.35 21.30 
Spruce 2009–2010 10.72 5.72 6.77 10.72 6.34 5.62 
Incoming longwave radiation 
Sparse pine 2008–2009 24.33 19.67 24.19 28.01 15.24 17.96 
Dense pine 2008–2009 20.48 15.14 23.03 27.20 12.50 15.68 
Sparse pine 2009–2010 29.01 24.21 28.86 32.75 19.42 22.37 
Spruce 2009–2010 16.93 15.03 13.90 16.93 11.60 12.05 
Figure 6

Simulated mean monthly snow–soil interface temperatures using the LAI and canopy openness (SVF) parameterizations listed in Table 1 during winter 2008–2009 in the pine forest with (a) sparse canopy and (b) dense canopy and during winter 2009–1010 in the (c) sparse pine forest and in the (d) spruce forest. Dots mark the observations from the site.

Figure 6

Simulated mean monthly snow–soil interface temperatures using the LAI and canopy openness (SVF) parameterizations listed in Table 1 during winter 2008–2009 in the pine forest with (a) sparse canopy and (b) dense canopy and during winter 2009–1010 in the (c) sparse pine forest and in the (d) spruce forest. Dots mark the observations from the site.

Close Modal

or Create an Account

Close Modal
Close Modal