Skip to Main Content

Karthikeyan et al. (2005) removed chromium from wastewater using activated carbon derived from rubber wood sawdust and 44 mg/g maximum adsorption capacity was obtained at an optimum pH 2. Maximum adsorption capacity obtained in their work was higher as compared to other adsorbents such as coconut tree sawdust (Selvi et al. 2001), coconut shell carbon (Babel & Kurniawan 2004), sugarcane bagasse (Sharma & Forster 1994) and treated sawdust of Indian rose wood (Garg et al. 2004), which were only 3.60 mg/g, 10.88 mg/g, 13.40 mg/g and 10 mg/g, respectively. Lo et al. (2012) derived activated carbon from moso and ma bamboo, and 100% removal was obtained using once activated maa bamboo and 91.7% removal using twice activated maa bamboo. Removal efficiency decreases for once activated moso bamboo and twice activated moso bamboo by 20–77% because their average pore diameter is less than 2 nm and major pores were mesopores. Kobya (2004) prepared activated carbon using hazelnut shell and maximum adsorption capacity of 170 mg/g was obtained at an optimum pH 1 which is higher than adsorption capacity of other adsorbents such as wood activated carbon (Selomulya et al. 1999), tyre activated carbon (Hamadi et al. 2001) and coconut shell activated carbon (Selomulya et al. 1999) which is only 87.6 mg/g, 58.5 mg/g and 107.1 mg/g, respectively. Table 2 summarises the reported use of activated carbon for chromium removal from wastewater.

Table 2

Chromium removal using activated carbon as an adsorbent

Adsorbent derived fromMetal concentration (mg/L)Optimum pHBest model fitContact time (min)Adsorbent dose (g/L)Adsorbent capacity (mg/g)Removal per cent (%)References
Acrylonitriledivinylbenzene copolymer 30 Freundlich 420 0.6 101.2 80% Duranoğlu et al. (2010)  
Syzygium jambolanum nut carbon 20–100 Langmuir 240 – 100% Muthukumaran & Beulah (2011)  
Green alga Ulva lactuca 5–50, 5–250 Langmuir 40 10.61 112.36 98% El-Sikaily et al. (2007)  
Jatropha wood 30–100 2–10 Langmuir 360 0.6–2 106.4–140.8 – Gueye et al. (2014)  
Tamarind wood 10–50 6.5 Langmuir Freundlich 40 – 28% Acharya et al. (2009)  
Pterocladia capillacea 5–100 Langmuir 120 3–10 66 100% El Nemr et al. (2015)  
Zizania caduciflora 10–50 2–3 Freundlich 48 0.8 2.7 84.8% Liu et al. (2014)  
Prawn shell 25–125 – Langmuir Freundlich 31.4 – 100 98% Arulkumar et al. (2012)  
Adsorbent derived fromMetal concentration (mg/L)Optimum pHBest model fitContact time (min)Adsorbent dose (g/L)Adsorbent capacity (mg/g)Removal per cent (%)References
Acrylonitriledivinylbenzene copolymer 30 Freundlich 420 0.6 101.2 80% Duranoğlu et al. (2010)  
Syzygium jambolanum nut carbon 20–100 Langmuir 240 – 100% Muthukumaran & Beulah (2011)  
Green alga Ulva lactuca 5–50, 5–250 Langmuir 40 10.61 112.36 98% El-Sikaily et al. (2007)  
Jatropha wood 30–100 2–10 Langmuir 360 0.6–2 106.4–140.8 – Gueye et al. (2014)  
Tamarind wood 10–50 6.5 Langmuir Freundlich 40 – 28% Acharya et al. (2009)  
Pterocladia capillacea 5–100 Langmuir 120 3–10 66 100% El Nemr et al. (2015)  
Zizania caduciflora 10–50 2–3 Freundlich 48 0.8 2.7 84.8% Liu et al. (2014)  
Prawn shell 25–125 – Langmuir Freundlich 31.4 – 100 98% Arulkumar et al. (2012)  

Close Modal

or Create an Account

Close Modal
Close Modal