Skip to Main Content

Fungal biomass has been explored by several researchers for its potential to remove copper from wastewater. The use of fungal biomass for such purposes has been hindered due to problems such as small particle size, poor mechanical strength, low density and rigidity (Akar et al. 2009; McHale & McHale 1994; Volesky & Holan 1995). However, the use of a suitable matrix can potentially overcome these problems. Thus, Iqbal & Edyvean (2004) used a low cost, physically strong and highly porous matrix, namely ‘loofah sponge’ for the immobilised biomass of Phanerochaete chrysosporium, and a maximum adsorption capacity of 50.9 mg/g at pH 6 with 98% removal reported. Formaldehyde inactivated Cladosporium cladosporioides, Gliomastix murorum and Bjerkandera fungi, at optimum conditions, can also be used for copper removal. These fungi are highly porous, their mesh structure provides ready access and a large surface area for the biosorption of copper. Thus, Li et al. (2009) obtained maximum adsorption capacities of 7.74 mg/g, 9.01 mg/g and 12.08 mg/g, and removals of 93.79%, 85.09% and 81.96%, for C. cladosporioides, G. murorum and Bjerkandera fungi, respectively. The biosorption data of all fungal species fitted well with the Langmuir model. Ertugay & Bayhan (2010) used Agaricus bisporus fungi and 73.3% removal was obtained at pH 5 with a preferred fit to the Freundlich model compared to other adsorption models. Table 20 summarises the parameters for the sequestration of copper using fungal biomass.

Table 20

Copper removal using fungal biomass as an adsorbent

AdsorbentIntial metal concentration (mg/L)pHBest model fitContact time (min)Adsorbent dose (g/L)Adsorption capacity (mg/g)Removal per cent (%)References
Aspergillus niger 10–100 Langmuir and Freundlich – – 23.6 – Mukhopadhyay (2008)  
Mucor rouxii 10–1,000 5–6 Langmuir, adsorption 4,320 0.25 52.6 96.3%, 94.8%, 95.7%, 96.2% Majumdar et al. (2008)  
Fungal cells (dead) and (living) 20–100 5–9 – 4,320 0.2 – 95.27% Hemambika et al. (2011)  
Aspergillus niger 25–100 – 10, 200 15 15.6 – Dursun et al. (2003)  
Rhizopus oryazae filamentous fungus 20–200 4–6 Langmuir 200 19.4 – Bhainsa & D'Souza (2008)  
Pleurotus pulmonarius CCB019 and Schizophyllum commune 5–200 Langmuir 12 6.20, 1.52 – Veit et al. (2005)  
Chlorella sp. and Chlamydomonas sp. – 12 25 33.4 – Maznah et al. (2012)  
Trametes versicolor 37–80 5.51 Plackett–Burman 80 60.98 – Şahan et al. (2010)  
Aspergillus niger 10–100 Langmuir, Freundlich 30 2–5 23.62 30% Mukhopadhyay et al. (2007)  
Penicillium citrinum 10–90 Langmuir, Freundlich 30 1.5 – 76.2% Verma et al. (2013)  
AdsorbentIntial metal concentration (mg/L)pHBest model fitContact time (min)Adsorbent dose (g/L)Adsorption capacity (mg/g)Removal per cent (%)References
Aspergillus niger 10–100 Langmuir and Freundlich – – 23.6 – Mukhopadhyay (2008)  
Mucor rouxii 10–1,000 5–6 Langmuir, adsorption 4,320 0.25 52.6 96.3%, 94.8%, 95.7%, 96.2% Majumdar et al. (2008)  
Fungal cells (dead) and (living) 20–100 5–9 – 4,320 0.2 – 95.27% Hemambika et al. (2011)  
Aspergillus niger 25–100 – 10, 200 15 15.6 – Dursun et al. (2003)  
Rhizopus oryazae filamentous fungus 20–200 4–6 Langmuir 200 19.4 – Bhainsa & D'Souza (2008)  
Pleurotus pulmonarius CCB019 and Schizophyllum commune 5–200 Langmuir 12 6.20, 1.52 – Veit et al. (2005)  
Chlorella sp. and Chlamydomonas sp. – 12 25 33.4 – Maznah et al. (2012)  
Trametes versicolor 37–80 5.51 Plackett–Burman 80 60.98 – Şahan et al. (2010)  
Aspergillus niger 10–100 Langmuir, Freundlich 30 2–5 23.62 30% Mukhopadhyay et al. (2007)  
Penicillium citrinum 10–90 Langmuir, Freundlich 30 1.5 – 76.2% Verma et al. (2013)  

Close Modal

or Create an Account

Close Modal
Close Modal