Skip to Main Content

Algae may be used for the removal of copper because of their high capacity, low cost, renewability and ready abundance (Chen 2012). There are different types of marine algae, such as red algae, green algae and brown algae, that are used for copper removal from wastewater, and the main difference in these algae is in their respective cell walls where biosorption occurs (Romera et al. 2007). The cell walls of brown algae contain cellulose (as a structural support), alginic acid and polymers of mannuronic and guluronic acids complexed with metals such as sodium, magnesium, potassium, calcium and other polysaccharides (Romera et al. 2007). Green algae mainly have cellulose in the cell wall with a high content of bonded proteins. Therefore, this material contains various functional groups such as carboxyl, amino, sulfate and hydroxyl. Red algae contain cellulose in the cell wall, but their biosorption capacity is attributed mainly to the presence of sulfated polysaccharides called galactans (Romera et al. 2007). Brown algae, Turbinaria ornate, and green algae, Ulothrix zonata, have shown a maximum copper removal of 176.20 mg/g and 147.06 mg/g from wastewater at pH 6 and pH 4.5, respectively (Nuhoglu et al. 2002; Vijayaraghavan & Prabu 2006). Industrial algal waste has also been used for copper removal with a maximum adsorption of 16.7 mg/g at pH 5.3 (Vilar et al. 2008). Under hydrated and dehydrated conditions, micro algae Spirulina platensis has also been reported to remove up to 90% of copper from aqueous solution (Solisio et al. 2006). The dried biomass of Spirogyra neglecta has a reported maximum adsorption capacity for copper of 115.5 mg/g at pH 4.5–5 (Singh et al. 2007). Table 22 summarises the removal parameters for the sequestering of copper using algal biomass as an adsorbent.

Table 22

Copper removal using algal biomass as an adsorbent

AdsorbentIntial metal concentration (mg/L)pHBest model fitContact time (min)Adsorbent dose (g/L)Adsorption capacity (mg/g)Removal per cent (%)References
Sargassum sp., Padina sp., Ulva sp. and Gracillaria sp. 64 Langmuir 60 62.91, 72.44 90% Sheng et al. (2008)  
Padina sp. 127 Langmuir 30 50.87 90% Kaewsarn (2002)  
Sargassum 25 4–5 Equilibrium – 1.2 2.3 meq/g – Kratochvil & Volesky (1998)  
Macroalga, Sargassum muticum 15–190 4.5 Modified competitive Langmuir sorption 240 71 75% Herrero et al. (2011)  
Gelidium 317 5.3 Freundlich 60 1–20 31.137 97% Vilar et al. (2007)  
Cystoseira crinitophylla biomass 25, 40, 50 4.5 Langmuir, Freundlich 720 2.5 160 100% Christoforidis et al. (2015)  
Sargassum, Chlorococcum and GAC 1–100 4.5 Langmuir, Freundlich 60, 90, 300 0.1 71.4, 19.3, 11.4 87.3% Jacinto et al. (2009)  
Codium vermilara 10–150 Langmuir 120 0.5 16.521 – Romera et al. (2007)  
Spirogyra insignis 10–150 Langmuir 120 19.063 – Romera et al. (2007)  
Spirulina platensis 100–400 – Langmuir, Freundlich – 1–4 92.6–96.8 91% Solisio et al. (2006)  
Dried micro-algal/bacterial biomass 10–1,000 Langmuir 120 0.4 18–31 80–100% Loutseti et al. (2009)  
AdsorbentIntial metal concentration (mg/L)pHBest model fitContact time (min)Adsorbent dose (g/L)Adsorption capacity (mg/g)Removal per cent (%)References
Sargassum sp., Padina sp., Ulva sp. and Gracillaria sp. 64 Langmuir 60 62.91, 72.44 90% Sheng et al. (2008)  
Padina sp. 127 Langmuir 30 50.87 90% Kaewsarn (2002)  
Sargassum 25 4–5 Equilibrium – 1.2 2.3 meq/g – Kratochvil & Volesky (1998)  
Macroalga, Sargassum muticum 15–190 4.5 Modified competitive Langmuir sorption 240 71 75% Herrero et al. (2011)  
Gelidium 317 5.3 Freundlich 60 1–20 31.137 97% Vilar et al. (2007)  
Cystoseira crinitophylla biomass 25, 40, 50 4.5 Langmuir, Freundlich 720 2.5 160 100% Christoforidis et al. (2015)  
Sargassum, Chlorococcum and GAC 1–100 4.5 Langmuir, Freundlich 60, 90, 300 0.1 71.4, 19.3, 11.4 87.3% Jacinto et al. (2009)  
Codium vermilara 10–150 Langmuir 120 0.5 16.521 – Romera et al. (2007)  
Spirogyra insignis 10–150 Langmuir 120 19.063 – Romera et al. (2007)  
Spirulina platensis 100–400 – Langmuir, Freundlich – 1–4 92.6–96.8 91% Solisio et al. (2006)  
Dried micro-algal/bacterial biomass 10–1,000 Langmuir 120 0.4 18–31 80–100% Loutseti et al. (2009)  

Close Modal

or Create an Account

Close Modal
Close Modal