Skip to Main Content
Figure 2(a) and 2(b) show the experimental kinetic data modelled according to the pseudo-first and pseudo-second equation, respectively. The equilibrium was achieved within about 48 h. The experimental data were better described by the pseudo-second order equation, as inferred by the higher correlation coefficient R2 and by the lower parameter errors (see Table 2).
Table 2

Kinetic parameters for metaldehyde sorption as determined by the fitting procedure

Modelqe (μg g–1)k1 (h–1)k2 (g μg–1h–1)Z (h–1)kD (μg g–1 h–0.5)I (μg g–1)R2
Pseudo-first order model (1.45 ± 0.05) × 105 0.45 ± 0.05     0.870 
Pseudo-second order model (1.49 ± 0.03) × 105  (4.8 ± 0.5) × 10–6    0.950 
Vermeulen model (1.48 ± 0.02) × 105   0.18 ± 0.01   0.975 
Weber–Morris model     (3.5 ± 0.2) × 104 (3.0 ± 0.3) × 104 0.965 
Modelqe (μg g–1)k1 (h–1)k2 (g μg–1h–1)Z (h–1)kD (μg g–1 h–0.5)I (μg g–1)R2
Pseudo-first order model (1.45 ± 0.05) × 105 0.45 ± 0.05     0.870 
Pseudo-second order model (1.49 ± 0.03) × 105  (4.8 ± 0.5) × 10–6    0.950 
Vermeulen model (1.48 ± 0.02) × 105   0.18 ± 0.01   0.975 
Weber–Morris model     (3.5 ± 0.2) × 104 (3.0 ± 0.3) × 104 0.965 
Figure 2

(a) Pseudo-first order, (b) pseudo-second order and (c) Vermeulen kinetic models for metaldehyde sorption.

Figure 2

(a) Pseudo-first order, (b) pseudo-second order and (c) Vermeulen kinetic models for metaldehyde sorption.

Close Modal

or Create an Account

Close Modal
Close Modal