Skip to Main Content

The RMSE associated with the validation and training data are reported in Tables 3–5 for all conditions. Clustering parameters and epochs in which validation and training errors are minimized simultaneously are also reported in the tables. As is apparent from the tables, all ANFIS models compared to initial FIS models performed well enough. For instance, the RMSE obtained by the FIS model for estimating the velocity of longshore currents at the general condition is 0.0932 while it is equal to 0.0895 for the ANFIS model. This shows the efficiency of the training process to tune fuzzy antecedent and consequent parameters. In this model, the appropriate number of fuzzy IF-THEN rules is 4 in accordance with the following clustering parameters:

Table 3

The RMSE of training and validation data sets estimated by the FIS and ANFIS models to estimate coastal current velocities at the general condition

Model typeFISANFIS
Longshore direction 
Training error (m/s) 0.0932 0.0895 
Validation error (m/s) 0.0951 0.0893 
Number of rules 
Desirable epoch 125  
Clustering parameters  = [0.56, 0.6, 0.3, 0.6, 0.6, 0.6, 0.6, 2] 
Cross-shore direction 
Training error (m/s) 0.0676 0.0575 
Validation error (m/s) 0.0563 0.0545 
Number of rules 
Desirable epoch 104  
Clustering parameters = [0.56, 0.56, 0.3, 0.6, 0.6, 0.6, 0. 6, 2] 
Model typeFISANFIS
Longshore direction 
Training error (m/s) 0.0932 0.0895 
Validation error (m/s) 0.0951 0.0893 
Number of rules 
Desirable epoch 125  
Clustering parameters  = [0.56, 0.6, 0.3, 0.6, 0.6, 0.6, 0.6, 2] 
Cross-shore direction 
Training error (m/s) 0.0676 0.0575 
Validation error (m/s) 0.0563 0.0545 
Number of rules 
Desirable epoch 104  
Clustering parameters = [0.56, 0.56, 0.3, 0.6, 0.6, 0.6, 0. 6, 2] 
Table 4

The RMSE of training and validation data sets estimated by the FIS and ANFIS models to estimate coastal current velocities at the stormy condition

Model typeFISANFIS
Longshore direction 
Training error (m/s) 0.1034 0.0990 
Validation error (m/s) 0.0970 0.0935 
Number of rules 
Desirable epoch 19  
Clustering parameters = [0.4, 0.6, 0.5, 0.5, 0.5, 0.6, 0.6, 2] 
Cross-shore direction 
Training error (m/s) 0.1015 0.0763 
Validation error (m/s) 0.0769 0.0653 
Number of rules 
Desirable epoch 32  
Clustering parameters = [0.56, 0.56, 0.56, 0.6, 0.6, 0.6, 0. 6, 2] 
Model typeFISANFIS
Longshore direction 
Training error (m/s) 0.1034 0.0990 
Validation error (m/s) 0.0970 0.0935 
Number of rules 
Desirable epoch 19  
Clustering parameters = [0.4, 0.6, 0.5, 0.5, 0.5, 0.6, 0.6, 2] 
Cross-shore direction 
Training error (m/s) 0.1015 0.0763 
Validation error (m/s) 0.0769 0.0653 
Number of rules 
Desirable epoch 32  
Clustering parameters = [0.56, 0.56, 0.56, 0.6, 0.6, 0.6, 0. 6, 2] 
Table 5

The RMSE of training and validation data sets estimated by the FIS and ANFIS models to estimate coastal current velocities at the windy condition

Model typeFISANFIS
Longshore direction 
Training error (m/s) 0.1071 0.1012 
Validation error (m/s) 0.1028 0.0989 
Number of rules 
Desirable epoch 19  
Clustering parameters = [0.3, 0.5, 0.36, 0.56, 0.5, 0.5, 0.56, 2] 
Cross-shore direction 
Training error (m/s) 0.0588 0.0497 
Validation error (m/s) 0.0534 0.0500 
Number of rules 
Desirable epoch 29  
Clustering parameters = [0.3, 0.3, 0.5, 0.56, 0.36, 0.56, 0.56, 2] 
Model typeFISANFIS
Longshore direction 
Training error (m/s) 0.1071 0.1012 
Validation error (m/s) 0.1028 0.0989 
Number of rules 
Desirable epoch 19  
Clustering parameters = [0.3, 0.5, 0.36, 0.56, 0.5, 0.5, 0.56, 2] 
Cross-shore direction 
Training error (m/s) 0.0588 0.0497 
Validation error (m/s) 0.0534 0.0500 
Number of rules 
Desirable epoch 29  
Clustering parameters = [0.3, 0.3, 0.5, 0.56, 0.36, 0.56, 0.56, 2] 

Close Modal

or Create an Account

Close Modal
Close Modal