The RMSE associated with the validation and training data are reported in Tables 3–5 for all conditions. Clustering parameters and epochs in which validation and training errors are minimized simultaneously are also reported in the tables. As is apparent from the tables, all ANFIS models compared to initial FIS models performed well enough. For instance, the RMSE obtained by the FIS model for estimating the velocity of longshore currents at the general condition is 0.0932 while it is equal to 0.0895 for the ANFIS model. This shows the efficiency of the training process to tune fuzzy antecedent and consequent parameters. In this model, the appropriate number of fuzzy IF-THEN rules is 4 in accordance with the following clustering parameters:
The RMSE of training and validation data sets estimated by the FIS and ANFIS models to estimate coastal current velocities at the general condition
Model type . | FIS . | ANFIS . |
---|---|---|
Longshore direction | ||
Training error (m/s) | 0.0932 | 0.0895 |
Validation error (m/s) | 0.0951 | 0.0893 |
Number of rules | 4 | 4 |
Desirable epoch | 125 | |
Clustering parameters | ||
Cross-shore direction | ||
Training error (m/s) | 0.0676 | 0.0575 |
Validation error (m/s) | 0.0563 | 0.0545 |
Number of rules | 4 | 4 |
Desirable epoch | 104 | |
Clustering parameters |
Model type . | FIS . | ANFIS . |
---|---|---|
Longshore direction | ||
Training error (m/s) | 0.0932 | 0.0895 |
Validation error (m/s) | 0.0951 | 0.0893 |
Number of rules | 4 | 4 |
Desirable epoch | 125 | |
Clustering parameters | ||
Cross-shore direction | ||
Training error (m/s) | 0.0676 | 0.0575 |
Validation error (m/s) | 0.0563 | 0.0545 |
Number of rules | 4 | 4 |
Desirable epoch | 104 | |
Clustering parameters |
The RMSE of training and validation data sets estimated by the FIS and ANFIS models to estimate coastal current velocities at the stormy condition
Model type . | FIS . | ANFIS . |
---|---|---|
Longshore direction | ||
Training error (m/s) | 0.1034 | 0.0990 |
Validation error (m/s) | 0.0970 | 0.0935 |
Number of rules | 5 | 5 |
Desirable epoch | 19 | |
Clustering parameters | ||
Cross-shore direction | ||
Training error (m/s) | 0.1015 | 0.0763 |
Validation error (m/s) | 0.0769 | 0.0653 |
Number of rules | 3 | 3 |
Desirable epoch | 32 | |
Clustering parameters |
Model type . | FIS . | ANFIS . |
---|---|---|
Longshore direction | ||
Training error (m/s) | 0.1034 | 0.0990 |
Validation error (m/s) | 0.0970 | 0.0935 |
Number of rules | 5 | 5 |
Desirable epoch | 19 | |
Clustering parameters | ||
Cross-shore direction | ||
Training error (m/s) | 0.1015 | 0.0763 |
Validation error (m/s) | 0.0769 | 0.0653 |
Number of rules | 3 | 3 |
Desirable epoch | 32 | |
Clustering parameters |
The RMSE of training and validation data sets estimated by the FIS and ANFIS models to estimate coastal current velocities at the windy condition
Model type . | FIS . | ANFIS . |
---|---|---|
Longshore direction | ||
Training error (m/s) | 0.1071 | 0.1012 |
Validation error (m/s) | 0.1028 | 0.0989 |
Number of rules | 4 | 4 |
Desirable epoch | 19 | |
Clustering parameters | ||
Cross-shore direction | ||
Training error (m/s) | 0.0588 | 0.0497 |
Validation error (m/s) | 0.0534 | 0.0500 |
Number of rules | 4 | 4 |
Desirable epoch | 29 | |
Clustering parameters |
Model type . | FIS . | ANFIS . |
---|---|---|
Longshore direction | ||
Training error (m/s) | 0.1071 | 0.1012 |
Validation error (m/s) | 0.1028 | 0.0989 |
Number of rules | 4 | 4 |
Desirable epoch | 19 | |
Clustering parameters | ||
Cross-shore direction | ||
Training error (m/s) | 0.0588 | 0.0497 |
Validation error (m/s) | 0.0534 | 0.0500 |
Number of rules | 4 | 4 |
Desirable epoch | 29 | |
Clustering parameters |