From 203 patterns of the sharp-crested weir, 132 patterns were selected for training and 71 patterns were reserved for testing. Table 4 summarizes the statistical criteria of all models. From the statistics, the MS5-based GEP and FFNN models have the highest accuracy. Figure 3(b) presents the observed vs. simulated scour depth values.
Testing statistics of the GEP and FFNN models for sharp edge overflow
Input configuration . | Model . | CC . | R2 . | RMSE . | MAE . | Hidden neuron no. . |
---|---|---|---|---|---|---|
MS1 | GEP | 0.511 | 0.629 | 0.194 | 0.078 | – |
FFNN | 0.319 | 0.426 | 0.385 | 0.162 | 2 | |
MS2 | GEP | 0.723 | 0.766 | 0.127 | 0.079 | – |
FFNN | 0.631 | 0.679 | 0.191 | 0.097 | 3 | |
MS3 | GEP | 0.759 | 0.817 | 0.152 | 0.085 | – |
FFNN | 0.813 | 0.850 | 0.126 | 0.062 | 5 | |
MS4 | GEP | 0.633 | 0.692 | 0.119 | 0.086 | – |
FFNN | 0.418 | 0.470 | 0.372 | 0.155 | 3 | |
MS5 | GEP | 0.814 | 0.874 | 0.112 | 0.088 | – |
FFNN | 0.862 | 0.885 | 0.104 | 0.059 | 5 | |
MS6 | GEP | 0.763 | 0.833 | 0.149 | 0.123 | – |
FFNN | 0.799 | 0.841 | 0.154 | 0.066 | 3 |
Input configuration . | Model . | CC . | R2 . | RMSE . | MAE . | Hidden neuron no. . |
---|---|---|---|---|---|---|
MS1 | GEP | 0.511 | 0.629 | 0.194 | 0.078 | – |
FFNN | 0.319 | 0.426 | 0.385 | 0.162 | 2 | |
MS2 | GEP | 0.723 | 0.766 | 0.127 | 0.079 | – |
FFNN | 0.631 | 0.679 | 0.191 | 0.097 | 3 | |
MS3 | GEP | 0.759 | 0.817 | 0.152 | 0.085 | – |
FFNN | 0.813 | 0.850 | 0.126 | 0.062 | 5 | |
MS4 | GEP | 0.633 | 0.692 | 0.119 | 0.086 | – |
FFNN | 0.418 | 0.470 | 0.372 | 0.155 | 3 | |
MS5 | GEP | 0.814 | 0.874 | 0.112 | 0.088 | – |
FFNN | 0.862 | 0.885 | 0.104 | 0.059 | 5 | |
MS6 | GEP | 0.763 | 0.833 | 0.149 | 0.123 | – |
FFNN | 0.799 | 0.841 | 0.154 | 0.066 | 3 |