From the existing 80 patterns of inclined slope controlled structure data, 53 patterns were used for training and 27 patterns were considered for testing. Table 5 sums up the corresponding error statistics for the GEP and FFNN models. From the table, it is observed that the models corresponding to the MI3 configuration present the highest accuracies. Figure 3(c) illustrates the observed vs. simulated scour depth values of GEP and FFNN models.
Testing statistics of the GEP and FFNN models for inclined slope controlled structure
Input configuration . | Model . | CC . | R2 . | RMSE . | MAE . | Hidden neuron no. . |
---|---|---|---|---|---|---|
MI1 | GEP | 0.211 | 0.399 | 0.311 | 0.284 | – |
FFNN | 0.198 | 0.295 | 0.335 | 0.282 | 2 | |
MI2 | GEP | 0.502 | 0.514 | 0.282 | 0.246 | – |
FFNN | 0.613 | 0.666 | 0.239 | 0.202 | 2 | |
MI3 | GEP | 0.803 | 0.769 | 0.198 | 0.164 | – |
FFNN | 0.833 | 0.835 | 0.175 | 0.131 | 3 | |
MI4 | GEP | 0.633 | 0.699 | 0.221 | 0.186 | – |
FFNN | 0.702 | 0.745 | 0.208 | 0.185 | 5 | |
MI5 | GEP | 0.588 | 0.679 | 0.234 | 0.192 | – |
FFNN | 0.598 | 0.741 | 0.194 | 0.167 | 5 | |
MI6 | GEP | 0.657 | 0.717 | 0.223 | 0.186 | – |
FFNN | 0.635 | 0.677 | 0.232 | 0.197 | 7 | |
MI7 | GEP | 0.786 | 0.819 | 0.279 | 0.239 | – |
FFNN | 0.509 | 0.551 | 0.268 | 0.202 | 3 | |
MI8 | GEP | 0.691 | 0.733 | 0.212 | 0.174 | – |
FFNN | 0.609 | 0.658 | 0.237 | 0.197 | 3 | |
MI9 | GEP | 0.687 | 0.724 | 0.209 | 0.169 | – |
FFNN | 0.702 | 0.751 | 0.225 | 0.175 | 5 |
Input configuration . | Model . | CC . | R2 . | RMSE . | MAE . | Hidden neuron no. . |
---|---|---|---|---|---|---|
MI1 | GEP | 0.211 | 0.399 | 0.311 | 0.284 | – |
FFNN | 0.198 | 0.295 | 0.335 | 0.282 | 2 | |
MI2 | GEP | 0.502 | 0.514 | 0.282 | 0.246 | – |
FFNN | 0.613 | 0.666 | 0.239 | 0.202 | 2 | |
MI3 | GEP | 0.803 | 0.769 | 0.198 | 0.164 | – |
FFNN | 0.833 | 0.835 | 0.175 | 0.131 | 3 | |
MI4 | GEP | 0.633 | 0.699 | 0.221 | 0.186 | – |
FFNN | 0.702 | 0.745 | 0.208 | 0.185 | 5 | |
MI5 | GEP | 0.588 | 0.679 | 0.234 | 0.192 | – |
FFNN | 0.598 | 0.741 | 0.194 | 0.167 | 5 | |
MI6 | GEP | 0.657 | 0.717 | 0.223 | 0.186 | – |
FFNN | 0.635 | 0.677 | 0.232 | 0.197 | 7 | |
MI7 | GEP | 0.786 | 0.819 | 0.279 | 0.239 | – |
FFNN | 0.509 | 0.551 | 0.268 | 0.202 | 3 | |
MI8 | GEP | 0.691 | 0.733 | 0.212 | 0.174 | – |
FFNN | 0.609 | 0.658 | 0.237 | 0.197 | 3 | |
MI9 | GEP | 0.687 | 0.724 | 0.209 | 0.169 | – |
FFNN | 0.702 | 0.751 | 0.225 | 0.175 | 5 |