Final results of determination optimum c and m for different clustering scenarios
Clustering scenario (input components) . | Range of m . | Optimum fuzzification parameter (m) . | Optimum number of cluster (c) . | |
---|---|---|---|---|
Technique I . | Technique II . | Technique III . | ||
Scenario 1 (TPI-CN-Distance-P50) | 1.1 ≤ m ≤ 2.2 | 1.6 | 7 | 6 |
Scenario 2 (TPI-CN-Distance-P25) | 1.1 ≤ m ≤ 2.6 | 1.6 | 8 | 6 |
Scenario 3 (TPI-CN-Distance-P100) | 1.1 ≤ m ≤ 2.3 | 1.6 | 4 | 6 |
Scenario 4 (TPI-CN-P50) | 1.1 ≤ m ≤ 2.7 | 1.7 | 6 | 6 |
Clustering scenario (input components) . | Range of m . | Optimum fuzzification parameter (m) . | Optimum number of cluster (c) . | |
---|---|---|---|---|
Technique I . | Technique II . | Technique III . | ||
Scenario 1 (TPI-CN-Distance-P50) | 1.1 ≤ m ≤ 2.2 | 1.6 | 7 | 6 |
Scenario 2 (TPI-CN-Distance-P25) | 1.1 ≤ m ≤ 2.6 | 1.6 | 8 | 6 |
Scenario 3 (TPI-CN-Distance-P100) | 1.1 ≤ m ≤ 2.3 | 1.6 | 4 | 6 |
Scenario 4 (TPI-CN-P50) | 1.1 ≤ m ≤ 2.7 | 1.7 | 6 | 6 |