Comparison between the best SOMFCM clustering scenarios based on conventional fuzzy validation indices and proposed techniques
The best clustering scenario . | Clustering validation type . | Optimum m . | Optimum c . | VEXB . | VK . | VFS . | MARD (%) . | CImean . | (Umax)mean . | N_Umax . | R2 . |
---|---|---|---|---|---|---|---|---|---|---|---|
Four-component (TPI-CN-Distance-P50) | Conventional index | 1.7 | 8 | 0.516 | 3,225 | −8,738 | 3.25 | 0.535 | 0.615 | 938 | 0.632 |
Four-component (TPI-CN-Distance-P50) | Proposed technique | 1.6 | 6 | 0.618 | 3,851 | −10,109 | 2.81 | 0.477 | 0.684 | 1,976 | 0.593 |
Three-component (TPI-CN-P50) | Conventional index | 1.7 | 7 | 0.329 | 2,266 | −9,620 | 15.31 | 0.38 | 0.739 | 2,266 | 0.716 |
Three-component (TPI-CN-P50) | Proposed technique | 1.6 | 6 | 0.386 | 2,416 | −10,509 | 3.13 | 0.326 | 0.788 | 3,261 | 0.739 |
1.7 | 6 | 0.376 | 2,355 | −9,533 | 3.51 | 0.385 | 0.731 | 2,686 | 0.737 | ||
Three-component (TPI-Distance-P50) | Proposed technique | 1.6 | 6 | 0.647 | 4,184 | −9,975 | 3.53 | 0.405 | 0.738 | 2,659 | 0.657 |
The best clustering scenario . | Clustering validation type . | Optimum m . | Optimum c . | VEXB . | VK . | VFS . | MARD (%) . | CImean . | (Umax)mean . | N_Umax . | R2 . |
---|---|---|---|---|---|---|---|---|---|---|---|
Four-component (TPI-CN-Distance-P50) | Conventional index | 1.7 | 8 | 0.516 | 3,225 | −8,738 | 3.25 | 0.535 | 0.615 | 938 | 0.632 |
Four-component (TPI-CN-Distance-P50) | Proposed technique | 1.6 | 6 | 0.618 | 3,851 | −10,109 | 2.81 | 0.477 | 0.684 | 1,976 | 0.593 |
Three-component (TPI-CN-P50) | Conventional index | 1.7 | 7 | 0.329 | 2,266 | −9,620 | 15.31 | 0.38 | 0.739 | 2,266 | 0.716 |
Three-component (TPI-CN-P50) | Proposed technique | 1.6 | 6 | 0.386 | 2,416 | −10,509 | 3.13 | 0.326 | 0.788 | 3,261 | 0.739 |
1.7 | 6 | 0.376 | 2,355 | −9,533 | 3.51 | 0.385 | 0.731 | 2,686 | 0.737 | ||
Three-component (TPI-Distance-P50) | Proposed technique | 1.6 | 6 | 0.647 | 4,184 | −9,975 | 3.53 | 0.405 | 0.738 | 2,659 | 0.657 |